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Abstract

Purpose of Review—Angiotensin type 2 receptor (AT2R) and receptor Mas (MasR) are part of 

the “protective arm” of the renin angiotensin system. Gene and pharmacological manipulation 

studies reveal that AT2R and MasR are involved in natriuretic, vasodilatory, and anti-inflammatory 

responses and in lowering blood pressure in various animal models under normal and pathological 

conditions such as salt-sensitive hypertension, obesity, and diabetes. The scope of this review is to 

discuss colocalization and heterodimerization as potential molecular mechanisms of AT2R- and 

MasR-mediated functions including antihypertensive activities.

Recent Findings—Accumulating evidences show that AT2R and MasR are co-localized, make a 

heterodimer, and are functionally interdependent in producing their physiological responses. 

Moreover, ang-(1–7) preferably may be an AT1R-biased agonist while acting as a MasR agonist.

Summary—The physical interactions of AT2R and MasR appear to be an important mechanism 

by which these receptors are involved in blood pressure regulation and antihypertensive activity. 

Whether heteromers of these receptors influence affinity or efficacy of endogenous or synthetic 

agonists remains a question to be considered.
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Introduction

Renin angiotensin system (RAS) is an important hormone system known to regulate volume 

homeostasis and BP. RAS is comprised of various enzymes, bioactive peptides, and 

receptors, which produce diverse and opposing cellular and physiological responses. 

Angiotensin-converting enzyme (ACE) and angiotensin II (ang-II) and its type 1 receptor 

(AT1R), collectively termed as “deleterious arm” of RAS, are involved in the pathogenesis of 
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hypertension including vasoconstriction and anti-diuresis/anti-natriuresis. Contrarily, ang-II 

type 2 receptor (AT2R), ACE2, ang-(1–7), and MasR, collectively termed as “protective 

arm” of the RAS, have been shown to play role in vasodilatation, promoting diuresis/

natriuresis, and lowering BP, thus largely counteracting the effects mediated via the AT1R. 

Although the threeRAS receptors, namely AT1R, AT2R, and MasR, have been assigned to 

their specific cellular and physiological responses, evidences have been documented 

indicating that these receptors affect each other’s cellular expression, signaling, and 

response. For example, the absence of the AT2R enhances the AT1R-mediated cellular 

response and BP [1–4] and an increased expression of the AT2R attenuates the AT1R-

mediated signaling [5] and BP [6, 7]. Similarly, AT1R-mediated responses decrease upon 

activation of the MasR [8]. As it relates to the expression, renal MasR expression is 

decreased in AT2R knockout mice [1] and the activation of the AT2R causes an increase in 

the kidney MasR expression [9]. Of the proposed mechanisms include physical interaction 

of AT2R [10] or MasR [11] with AT1R and/or post-receptor opposing signaling cross talk. 

Since the expression of AT1R, relative to the AT2R and MasR, is much higher in the heart, 

the kidney, the vasculature, and other tissues, reducing the plasma levels of ang-II and/or 

AT1R activation by ACE inhibitors and selective antagonists, respectively, has been the 

focus to tackle RAS hyperactivity and treat various renal and cardiovascular diseases, 

including hypertension. Interestingly, however, RAS story seems to be more complex than 

ever before, particularly in light of new findings as to how the AT2R and MasR may be 

joining forces together to oppose and counterbalance the deleterious effects mediated by the 

AT1R. Purpose of this review is to highlight recent discoveries on AT2R and MasR 

heterodimerization as a potential mechanism responsible for these receptors to amplify their 

cellular signal impacting RAS physiology related to cardiovascular function and BP 

regulation.

Role of the AT2R and the MasR in Blood Pressure Regulation

AT2R Activation and Signaling in Blood Pressure Control

AT2R is an atypical G-protein (guanine nucleotide-binding protein)-coupled receptor 

(GPCR) with only 30% homology with AT1R. Both the receptors are activated by ang-II 

with similar affinity [12]. Other studies have suggested ang-III as the preferred peptide 

agonist for AT2R [13]. It is unusual that activation of AT2R is linked to inhibitory (Gαi/o) 

[14] as well as stimulatory (Gαs) protein and even G-protein-independent pathways [15, 16]. 

It is the SH2 domain which predominately mediates AT2R signaling via nitric oxide (NO)-

cyclic guanosine monophosphate (cGMP) pathway [16], a pathway known to cause 

vasodilatation and natriuresis. Additionally, the AT2R is linked to activation of tyrosine 

phosphatases. Recently, the AT2R has been crystallized which provides a glimpse as to the 

chemical nature of the receptor [17]. One notable is the feature that AT2R tends to stay in an 

active state without exposing with an agonist, a concept held based on early pharmacological 

and biochemical studies [18]. Specifically, mere increase in the AT2R expression reduces the 

AT1R function in terms of reducing inositol hydrolysis [10]. Consistently, the AT2R is 

designated as an endogenous AT1R antagonist. Moreover, unlike typical GPCRs, the AT2R 

is resistant to agonist-induced desensitization, endocytosis, and degradation [19] due to 

fewer serine residues and the inability of the receptor to recruit β-arrestin [17]. The agonist 
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treatment triggers rapid transport of cytosolic AT2R onto the plasma membrane which is 

likely to intensify AT2R-mediated signaling and cellular response [20]. Collectively, these 

chemical and cellular regulatory features of the AT2R make AT2R an attractive potential 

target for agonist-based therapy. With the availability of a selective orally active AT2R 

agonist compound 21 (C21), it became easier to study the AT2R for its biological roles in 

health and disease.

The AT2Rs are expressed in various organ systems including the heart, the vasculature 

particularly on endothelial cells, the brain, immune cells, and kidney tubular cells. Generally, 

the expression of AT2R is upregulated under various pathological conditions both in humans 

and animal models. For example, human diabetic resistance arteries [21] and failing heart 

[22], as well as rodent diabetic [23] and obese [24, 25] kidney, express higher levels of the 

AT2Rs. Information linking the AT2R to natriuresis and BP control including inflammation 

and oxidative stress comes from knockout as well as pharmacological studies. Mice lacking 

the AT2R exhibit modest higher BP [4] and higher sensitivity to ang-II elevating systolic BP 

[3, 4]. Also, these mice are more susceptible to deoxycorticosterone acetate (DOCA)-salt 

hypertension [26, 27]. Since the AT2R-null mice express higher levels of the AT1R [1], it is 

difficult to clearly ascribe the changes in natriuresis and BP directly due to lack of the AT2R 

or increased the AT1R expression/signaling. Although some studies show that the AT2R-

mediated natriuretic, vasodilatory, and depressor responses can be observed only in the 

presence of blockade of the AT1R [28, 29] or ACE [30], other studies demonstrate that the 

AT2R agonists such as peptide CGP42112a and nonpeptide C21 are able to produce 

natriuresis [24]. In obese Zucker rats, acute infusion of CGP42112a [24] or C21 [31] 

produced remarkable natriuresis. It is interesting to note that the AT2R agonist does not 

affect natriuresis in control lean Zucker rats [24]. Similarly, other studies show enhanced 

natriuretic response in female spontaneously hypertensive rats (SHRs) (not in males) upon 

activation of AT2R by the agonist C21 [32]. The greater response in obese Zucker rats 

(compared to lean) or females (compared to males) may be linked to the higher expression 

of the AT2R in the kidney [23–25, 33]. Likewise, greater AT2R function in females may be 

attributed to a positive feedback loop between the AT2R expression and estrogen levels [34]. 

In the long term, chronic treatment with C21 of obese Zucker rats with high salt-induced 

hypertension [35•] or of Sprague-Dawley rats with ang-II-induced hypertension prevented 

increase in systolic BP to almost normal levels [36••]. In both the studies, C21 co-

administration with high salt or ang-II produced greater natriuresis compared to high salt or 

ang-II alone [35•, 36••], preventing sodium and water retention and body fluid buildup thus 

preventing rise in BP. Central role of the AT2R receptors in BP control also has been 

reported. Cerebroventricular infusion of the AT2R agonist C21 lowers BP in normal rats 

[37••] and suppresses sympathetic outflow in failing heart model by improving baroreflex 

sensitivity [38]. Collectively, emerging studies provide strong evidences as to the role of 

AT2R in fluid homeostasis and BP control/regulation. However, given that the AT2R 

expression is very low compared with the AT1R, it is puzzling as to how the AT2R activation 

produces significant biological responses particularly under pathological conditions such as 

obesity, diabetes, salt-sensitive hypertension, inflammation, and oxidative stress. This review 

highlights, in the following section, that interaction with the AT1R and MasR may be a 

plausible explanation to the AT2R function.
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MasR Activation and Signaling in Blood Pressure Control

The MasR is a proto-oncogene, which based on conserved structural motifs is classified as a 

GPCR and with ang-(1–7) as its natural agonist MasR belongs to the RAS. Multiple G-

proteins such Gs, Gi, and G12 have been suggested to couple with the MasR [39], but 

vasodilatory NO and prostaglandins are the most reported signaling pathways linked to the 

MasR stimulation in the vasculature [40], heart [41, 42], and kidney [43]. Unlike the AT2R, 

the MasR in response to its agonist ang-(1–7) stimulation internalizes through clathrin- or 

caveolin-1/dynamin-coated endocytic pit and slowly re-sensitizes through recycling protein 

Rab11. However, surprisingly, the internalized MasR does not follow classical lysosomal 

trafficking for degradation [44]. Another study shows that chronic treatment of normotensive 

Wistar-Kyoto (WKY) rats with ang-(1–7) does not affect the MasR expression in the kidney, 

but cardiac MasR expression is decreased [45], suggesting an organ/cell-type-specific 

regulation of the MasR. More studies are needed to understand the cellular regulation of 

MasR in response to chronic agonist exposure, particularly whether MasR degradation is 

tissue/cell specific. Similar to the AT2R, the MasR also is considered a physiological 

antagonist of the AT1R [11], i.e., the activation of the MasR produces natriuretic [46] and 

vasodilatory responses in various vascular beds [47–49], increases blood flow [50], and 

lowers BP in animal models of hypertension [8, 51, 52]. A recent article provides a thorough 

review on ang-(1–7), AVE0991, and CGEN-856S on vasodilation and antihypertensive 

activity of these MasR agonists [53]. Some of the early studies indicate that ang-(1–7) 

infusion produces natriuretic and diuretic responses and increases glomerular filtration rate 

[54–56]. Ang-(1–7) attenuates ang-II-stimulated Na+-ATPase activity in isolated proximal 

tubules, suggesting a direct action on tubular sodium transport [57]. Recently, we have 

reported that ang-(1–7) produces natriuretic and diuretic responses which are blocked by the 

MasR antagonist A-779 [58••]. Other studies also confirmed natriuretic role of ang-(1–7) 

[59, 60], but there is some evidence suggesting antidiuretic actions of ang-(1–7) blocked by 

MasR antagonist D-ala7-ang-(1–7) [61]. Similarly, some studies suggest that ang-(1–7) 

despite with a vasodilatory response does not lower BP [50, 62, 63] or increases mean 

arterial pressure [64–67], while other studies clearly demonstrate that acute as well as 

chronic infusion of agonists ang-(1–7) [68, 69], AVE0991 [70–72], or CGEN-856S [73] 

lowers BP in control SHRs and protected against BP elevation and end-organ damage 

provoked by L-NG-nitroarginine methyl ester treatment in these animals [74].

Most of the initial discoveries assigned to the MasR function come from ang-(1–7) as an 

agonist, which through MasR knockout studies has been established as a MasR’s natural 

agonist [75]. However, emerging evidences demonstrate that ang-(1–7) may not be binding 

to and eliciting its responses via MasR alone. For example, ang-(1–7)-elicited responses are 

attenuated by the AT1R antagonist losartan [51, 59, 76] or the AT2R antagonist PD123319 

[76, 77, 78]. Several possibilities including heterodimerization of MasR and AT2R with 

AT1R (discussed in the next section) have been suggested in order to explain ang-(1–7) 

physiological functions. However, recent studies are of particular importance showing that 

ang-(1–7) also is a biased ligand for the AT1R [79, 80••]. The ang-(1–7) binds to AT1R and 

activates only β-arrestin pathway while blocking Gi/Go-linked pathways and thereby 

produces cardioprotective effects mediated by AT1R [79, 80••]. While there still exist 

questions related to the specificity of ang-(1–7) with MasR activation and the net responses, 
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more selective ligands for MasR, such as AVE0991 and CGEN-856S as agonists and A779 

as antagonist, have been helpful to confirm and study the MasR-mediated physiological 

responses, as described above.

Dimerization and Functional Interdependence of the AT2R and the MasR

As the AT2R and MasR are components of the protective arm of the RAS, a communication 

in terms of functional interaction has been reported in many studies. For instance, the MasR 

agonist ang-(1–7) induced vasoprotective and atheroprotective effects in apolipoprotein E-

deficient mice [77], amelioration of right ventricular modelling in diabetic rats [78•], and 

vasodepressor response in SHR and WKY rats [68] which are prevented by the AT2R 

antagonist PD123319. Conversely, in monocrotaline-induced rat model of pulmonary 

hypertension, the AT2R agonist C21 reduced pulmonary and ventricular fibrosis which is 

prevented by MasR antagonist A-779 [81]. Ang-(1–7) and C21 have been shown to improve 

neurological deficits in endothelin-1-induced stroke model which is cross-inhibited by their 

antagonists PD123319 and A-779 [82]. Such cross-inhibition indicates that these receptors 

may have post-receptor signaling cross talk or may exist in close proximity which allows 

them to interact at receptor level by heterodimerization. Recent two studies emerged at the 

same time showing that the AT2R and the MasR make heterodimers that may be responsible 

for functional interdependence of these two receptors [58••, 83••]. Using gold standard co-

immunoprecipitation and dual-immunolabelling experiments, we have reported an 

interaction of the AT2R and the MasR in obese Zucker rat kidney and human kidney-2 

(HK-2) cells [58••]. Moreover, incubation of renal cortical homogenate with cupric-

phenanthroline (CuP), an oxidative cross-linker of proteins via free thiol (–SH) group of 

amino acids located within < 7 Å, followed by western immunoblotting of receptor 

complexes reveals that the AT2R and the MasR bands on the blot shifted at higher molecular 

weight. This suggests a heterodimerization of AT2R and MasR through free thiol groups of 

cysteine residues that may have located in very close proximity [58••]. This AT2R-MasR 

interaction is sensitive to reducing agent, β-mercaptoethanol, suggesting that it is the 

disulfide formation that mediates the heterodimerization. Moreover, it seems that the AT2R-

MasR constitutively exists in the heterodimer form, as the western blotting in the absence of 

β-mercaptoethanol (not CuP either) reveals upward shift of some of the AT2R and MasR; 

CuP converts 100% of the AT2R-MasR into heterodimer or heteromers of the higher order. 

Earlier, through mutagenesis experiments, disulfide formation within the AT2R has been 

shown to confer stability to AT2R and introduction of free –SH groups leads to inactive 

population of the AT2R [84], highlighting the importance of cysteine residues in the AT2R 

activity. Another study utilized fluorescence resonance energy transfer (FRET) and cross-

correlation spectroscopy in HEK-293 cells transfected with vectors encoding fluorophore-

tagged AT2R and MasR. The tagged receptors results in FRET with 10.8% efficiency, 

suggesting AT2R and MasR are capable of forming heterodimers and dimerization 

disappears when AT2R is mutated at Cys35 residue [83••]. Furthermore, Leonhardt et al. 

[83••] also show that the AT2R and the MasR in astrocytes with CX3CR1 mRNA as the 

functional readout are interdependent. Specifically, blocking with either of the receptor 

antagonists (AT2R, PD123319, and MasR, A-779) or knocking out of a single of these 

receptors made astrocytes unresponsive for both agonists. Consistent to these findings, our in 

vivo renal function experiment reveals that natriuretic and diuretic responses to the AT2R 
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agonist C21 or MasR agonist ang-(1–7) were cross-inhibited by their selective antagonists 

[58••]. In light of reports that AT2R [35•, 85••] and MasR [8, 86••] activations exhibit 

antihypertensive activity, it remains unknown whether blocking one receptor would impair 

the antihypertensive activity of the other receptor and to what extent.

Functionally important thiol group-containing amino acids are sensitive to oxidative stress 

and the CuP experiment provided cues that oxidative stress may play a critical role in 

dimerization of the AT2R and the MasR. The treatment of HK-2 cells with glucose (25 mM), 

a known pro-oxidant molecule, followed by CuP reaction shows enhanced cross-linking of 

the AT2R and the MasR (unpublished observations). Since obese Zucker rats exhibit modest 

hyperglycemia, consistent to the observation in HK-2 cells exposed to higher glucose 

concentration, there is an increase in the AT2R-MasR dual-labelled puncta in the kidney of 

obese Zucker rats compared to lean Zucker rats (Fig. 1a, b). However, the increased dual 

labelling in obese rat kidney also could be due to the higher AT2Rs expressed in obese rat 

kidneys [24]. In another study, we have reported that the AT2R agonist chronic treatment of 

obese Zucker rats increases MasR expression [9], whether this would lead to more 

dimerization and enhanced the AT2R function is not known. Overall, studies to determine 

whether a correlation exists between the levels of the AT2R and MasR expression, 

heterodimer formation, and enhanced signaling and functional interdependence would have 

patho-physiological significance.

Kidney sections of obese rats and HK-2 cells also show the AT2R-MasR puncta in the 

cytosol and on nuclear envelop, in addition to the plasma membrane. It appears that much of 

the AT2R and the MasR are localized on organelles such as Golgi apparatus, mitochondria, 

and endoplasmic reticulum. The AT2R [24] and MasR [87], both are heavily glycosylated 

and it is known that only completely glycosylated receptor is delivered to plasma membrane. 

It is likely that considerable amount of these receptors escape glycosylation and may remain 

in cytosol.

It has been reported that Golgi membrane-associated AT2R-binding protein binds to specific 

motif within the cytoplasmic carboxy-terminal of AT2R and enables its plasma membrane 

transport and anti-proliferative effects [88]. Carey’s group also have reported that most of 

the renal AT2Rs are located within the cytosolic compartments and translocate to the plasma 

membrane upon agonist exposure of the proximal tubules [20]. Whether it is the dimer that 

translocates to the plasma membrane in response to the AT2R agonist and thus enhances the 

cellular signaling and response remains unknown.

Co-localization of the AT2R-MasR is also observed in hypothalamic paraventricular (PVN) 

region of high-fat diet-fed male C57BL/6j mice (Fig. 2). The hypothalamus is an integrative 

center for numerous physiological events and hypothalamic RAS not only is involved in 

cardiovascular homeostasis and fluid balance [89, 90•] but also is implicated in 

neurohumoral [91], behavioral [92], cognitive [93], and metabolic aspects [94].

Interactions of the AT2R and the MasR with the AT1R

Since the AT2R and the MasR have been designated as functional antagonist of the AT1R, it 

is important to discuss their interaction, highlighting the functional complexity that seems to 
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exist. The AT2R interacts with the AT1R at both on the plasma membrane and intracellularly. 

Several reports show ligand-independent physical interaction between the AT2R and the 

AT1R and their functional cross talk [10, 18, 95, 96]. The AT2R and the AT1R exists as 

homodimers as well as heterodimers [18, 95]. It is not clear whether the AT2R inhibits the 

AT1R function via homodimerization and post-receptor signaling [96]. However, the role of 

heterodimerization of the AT2R with the AT1R is evidently shown to inhibit the AT1R 

function, independent of AT2R activation or signaling [10]. Upon upregulation of the AT2R, 

it may heterodimerize with and inhibit the AT1R. For instance, normotensive pregnancy is 

linked to higher AT2R-AT1R dimers as compared to pre-eclampsia wherein the AT1R 

predominates [97]. Thus, it can be reasoned that the AT2R-AT1R heteromer is protective and 

the number of the AT2R-AT1R heteromer as compared to their respective monomer may 

regulate BP. However, ligand stimulation has been recently shown to enhance the AT2R-

AT1R heteromerization resulting in change of conformation, co-internalization, and 

subsequent endosomal sorting of the AT2R with AT1R heteromer [98••] reducing the 

exposure of the AT1R to its ligand ang-II. Besides, the AT2R-AT1R heteromer may reduce 

availability of extracellular ang-II levels by inducing ang-II internalization as a complex 

with the AT2R-AT1R heteromer [99]. And intracrine RAS may counteract and modulate 

deleterious effects of extracellular paracrine RAS [100]. Activation of the intracrine AT1R is 

associated with increase in the expression of the AT2R which may increase the AT2R-AT1R 

heteromers at the cell surface and initiate positive feedback loop. These findings provide 

new insights into an important regulatory aspect of the AT2R in reducing the ang-II/AT1R 

signaling at the cell surface. Conversely, prolonged exposure of the AT1R to its ligands (ang-

II, AT1R auto-antibody) has been associated with reduced AT1R internalization, sustained 

AT1R signaling, and hypertension [101].

The MasR has been shown to constitutively heterodimerize with the AT1R and to interfere 

with the ang-II/AT1R signaling [11]. The constitutively active MasR through activation of 

Gq/11 may sort the AT1R to the Golgi apparatus [102], plausibly reducing the ang-II-AT1R 

signaling. Likewise, the MasR is also internalized upon stimulation; however, it is not 

known whether the MasR is co-internalized with the AT1R [44]. Moreover, the 

pharmacologic activation of the MasR reduces the expression of the AT1R in the kidney 

[103, 104]. The native MasR-AT1R interactions [105] as well as opposing influence of the 

ang-(1–7)/MasR on the ang-II/AT1R effects have been reported [76]. The vasodepressor 

effects of ang-(1–7) is unmasked in the presence of the AT1R antagonist losartan, while 

ang-(1–7) increases perfusion pressure in the presence of the AT2R antagonist PD123319 

[76] and this increase is not sensitive to the MasR antagonist A779. This suggests a shift in 

ang-(1–7) functional behavior when the AT2R has been blocked. Overall, it may be 

suggested that, in addition to monomers of the MasR, AT1R, and AT2R, a native existence of 

the oligomeric complex of MasR-AT1R-AT2R is a likely scenario.

Perspective

Dimerization of receptors can remarkably alter their ligand-binding properties, 

conformation, activation, and trafficking, which has (patho)physiological relevance [10]. In 

an essence, dimerization of RAS receptors still is an ill-defined, yet a central event in cross 

talk among these receptors and is increasingly being appreciated for the regulation of 
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receptor function. Based on above discussion, the existence of angiotensin receptors as 

subset in the forms of monomer, dimer, or higher-order oligomer (Fig. 3) is a likely 

phenomenon, which appears to be dependent on the cellular distribution, density of the 

individual receptors, and pathological versus normal conditions. Unfortunately, members of 

GPCR undergo dimerization in uncontrolled manner. Thus, screening for disease-specific 

receptor complexes and of receptor complex-specific dimeric ligands should be part of the 

future drug discovery targeting hypertension and associated cardiovascular morbidities.
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Fig. 1. 
a The immunostaining of MasR (green, upper left) and AT2R (red, lower left) with nuclear 

stain DAPI (blue, upper right) and merged image showing their colocalization (yellow 

puncta, lower right) in kidney of lean (left) and obese (right) Zucker rat and b the number of 

their dual-labelled puncta
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Fig. 2. 
The co-localization of AT2R and MasR in paraventricular region of hypothalamus of 

C57BL/6j mice fed high-fat diet for 8 weeks
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Fig. 3. 
The proposed plausibilities among AT2R, MasR, and AT1R to interact in regulation of blood 

pressure
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