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BACKGROUND: Studies have reported that ambient air pollution is associated with an increased risk of developing or dying from coronavirus-2
(COVID-19). Methodological approaches to investigate the health impacts of air pollution on epidemics should differ from those used for chronic dis-
eases, but the methods used in these studies have not been appraised critically.
OBJECTIVES: Our study aimed to identify and critique the methodological approaches of studies of air pollution on infections and mortality due to
COVID-19 and to identify and critique the methodological approaches of similar studies concerning severe acute respiratory syndrome (SARS).
METHODS: Published and unpublished papers of associations between air pollution and developing or dying from COVID-19 or SARS that were
reported as of 10 May 2020 were identified through electronic databases, internet searches, and other sources.
RESULTS:All six COVID-19 studies and two of three SARS studies reported positive associations. Two were time series studies that estimated associ-
ations between daily changes in air pollution, one was a cohort that assessed associations between air pollution and the secondary spread of SARS,
and six were ecological studies that used area-wide exposures and outcomes. Common shortcomings included possible cross-level bias in ecological
studies, underreporting of health outcomes, using grouped data, the lack of highly spatially resolved air pollution measures, inadequate control for
confounding and evaluation of effect modification, not accounting for regional variations in the timing of outbreaks’ temporal changes in at-risk popu-
lations, and not accounting for nonindependence of outcomes.
DISCUSSION: Studies of air pollution and novel coronaviruses have relied mainly on ecological measures of exposures and outcomes and are suscepti-
ble to important sources of bias. Although longitudinal studies with individual-level data may be imperfect, they are needed to adequately address
this topic. The complexities involved in these types of studies underscore the need for careful design and for peer review. https://doi.org/10.1289/
EHP7411

Introduction
Recent reports in the media have suggested that exposure to am-
bient air pollution increases the risk of death among individuals
infected with severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2 or COVID-19) (Carrington 2020a, 2020b, 2020c;
Friedman 2020). For COVID-19, there has been a rush to dissem-
inate these findings, and many papers have not been peer-
reviewed, yet they appear to be shaping the proposed environ-
mental policies of several prominent politicians (Grandoni and
Firozi 2020; Griffiths 2020; Laing 2020; O’Sullivan 2020).

It is recognized widely that exposure to air pollution has a
substantial impact on human health. Ambient air pollution has
been estimated to be responsible for 4.2 million deaths worldwide
annually (Cohen et al. 2017). Past exposures to fine particulate
matter with aerodynamic diameter ≤2:5 lm (PM2:5) and other
criteria air pollutants are recognized to increase the risk of cardi-
orespiratory disease (Brook et al. 2010; Hoek et al. 2013) and
possibly diabetes (Yang et al. 2020). Air pollution is considered
by the World Health Organization to be a human carcinogen
(IARC 2016). Although both chronic and acute exposures to air

pollution adversely affect human health, exposures that have
occurred in the more distant past appear to have larger harmful
impacts (Pope 2007).

Several biologically plausible pathways have been proposed
to explain the apparent associations between incidence or mortal-
ity from COVID-19 with past or current exposure to air pollution
(Conticini et al. 2020; Dutheil et al. 2020; Martelletti and
Martelletti 2020). Chronic exposure to air pollution may increase
the risk of severe sequelae by increasing the prevalence of diabe-
tes, atherosclerosis, and other comorbid conditions associated
with higher mortality in patients infected with COVID-19 (Yan
et al. 2020; Zhou et al. 2020). Exposure to air pollution may also
influence immune responses (Tsai et al. 2019) and alter host im-
munity to respiratory infections (Ciencewicki and Jaspers 2007).
Findings from time series and case-crossover studies indicate that
short-term fluctuations in air pollution may be relevant, and peo-
ple with existing health conditions are more vulnerable. For
example, individuals with underlying chronic health conditions
such as diabetes and cardiorespiratory conditions were at greater
risk of death or hospitalization for stroke with daily increases in
air pollution (Goldberg et al. 2013; Villeneuve et al. 2012). It has
also been suggested that increased concentrations of PM2:5
increase the rate of COVID-19 transmission by facilitating virus
survival and transport over larger distances (Martelletti and
Martelletti 2020).

The possibility that air pollution may increase the severity
of COVID-19 infections has substantial public health implica-
tions and has attracted considerable media and political atten-
tion. However, accurately estimating the effects of air pollution
on COVID-19 while the pandemic is still underway poses a
number of challenges. To highlight these challenges, we con-
ducted a review of research related to ambient air pollution and
incidence and mortality due to COVID-19 and the original
SARS virus outbreak in 2003 (WHO 2020). Our primary goals
were to identify the strengths and limitations of these studies
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and provide recommendations for the design and implementa-
tion of future epidemiological studies of the effects of air pollu-
tion on the severity of communicable respiratory diseases and
resulting mortality.

Methods
We sought to identify research articles relevant to the hypothesis
that exposure to ambient air pollution affects the risk of developing
COVID-19 or SARS or the hypothesis that ambient pollution wor-
sens the prognosis of individuals with these conditions. For peer-
reviewed publications, we searched the OVID and PUBMEDdata-
bases through 10 May 2020 using the search terms: {Coronavirus
Infections/ep, et, mo, pa [Epidemiology, Etiology, Mortality,
Pathology]; OR COVID-19.m_titl; OR SARS-CoV-2.m_titl} and
{air pollution.mp. or Air Pollution/} and {SARS Virus/or Severe
Acute Respiratory Syndrome/OR sars.m_titl} and {air pollution.
mp. or Air Pollution/}. We also used Google Scholar to search for
other papers using the search strategy “coronavirus and air pollu-
tion” or “COVID-19 and air pollution” and “SARS and air pollu-
tion.” We also searched through the reference lists of the papers
retrieved.

Because of themedia attention given to some nonpeer reviewed
papers and in the hope that these studies may provide insights on
methods, but not necessarily on results, we included a selected
number of nonpeer reviewed papers.We did not conduct a system-
atic search of the Internet for these papers, and we did not search
preprint servers but relied on media reports and private communi-
cations with individuals.

As of 10 May 2020, our search of OVID, PubMed, and Google
Scholar retrieved 53 peer-reviewed publications concerning SARS
and COVID-19. Of these, we selected only those studies that pre-
sented some form of statistical analysis relevant to the hypothesis.
We excluded published studies that discussed only the hypothesis
(Conticini et al. 2020; Dutheil et al. 2020; Martelletti and
Martelletti 2020) and papers that had no bearing on the research
question, which included, for example, control strategies (Chen
et al. 2006), travel (WHO 2005), and perspectives of physicians
(Misra et al. 2020; Gori et al. 2020).

For SARS, we found three peer-reviewed papers (Cai et al.
2007; Cui et al. 2003; Kan et al. 2005) that were eligible for the
present review of methods. The design of these studies was an ec-
ological study of case–fatality rates (Cui et al. 2003), a time se-
ries study of mortality (Kan et al. 2005), and a cohort study of
secondary attack rates of index cases (Cai et al. 2007).

For COVID-19, only one published study (ecological design)
met the eligibility criteria for this analysis (Ogen 2020), but just
after our initial submission of the present paper, on 11 May 2020,
we found a published time series study (Zhu et al. 2020).

As of 29 April 2020, we identified four nonpeer reviewed eco-
logical studies of air pollution and COVID-19 infections or mortal-
ity that, as of 10 May 2020, had not been published in peer-
reviewed journals. Three were posted on the medRxiv preprint
server: Wu et al. (2020) (United States, including the originally
posted version from 7 April 2020, and an updated version posted
27 April 2020), Travaglio et al. (2020a) (Italy, version 2 posted 20
April 2020 used herein), and Yao et al. (2020) (China, posted 10
April 2020). The fourth nonpeer reviewed study (Andrée 2020)
was a policy working paper published by the World Bank (data
from theNetherlands, posted inApril 2020).

We provide below a brief review of each study but focus on
their strengths and limitations. We also abstracted from each
study details on the study design, location, time period, methods
used to characterize exposure and health outcomes, and covari-
ables (Tables 1 and 2). A listing of the strengths and weaknesses
of each of these studies is provided in Table 3. T
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Results

Air Pollution and SARS

Cui et al. (2003) conducted an ecological study to determine the
association between air pollution and case–fatality rates from
SARS (reported deaths/probable cases) in five regions in China
with 100 or more cases. Deaths and incident cases were extracted
from a publicly available source (Chinese Center for Disease
Control and Prevention). The maximum Air Pollution Index
(API; Chinese National Environmental Protection Agency),
which combined concentrations of inhalable particles with aero-
dynamic diameter of ≤10 lm (PM10), SO2, NO2, CO, and ozone
for each of the five areas, was used. A summary measure of the
API was derived for the two time periods April–May 2003 and
June 2000–October 2002. The former period was considered rep-
resentative of “short-term” exposures and corresponded to the
time when the majority of cases were diagnosed. In contrast, the
latter period was used to represent “longer-term,” average expo-
sure. A total of 349 deaths were reported among 5,327 probable
SARS cases in the five study regions. Ordinary linear regression
was used to estimate the slope of the linear relationship between

the case–fatality percentages for SARS and the API across the
five cities, with a slope of 0.001 (no measure of precision was
provided) per unit increase in the API. Categorizing the API into
three categories (>100, 75–100, <75) yielded for the two highest
categories (relative to the lowest) a rate ratio of 2.18 [95% confi-
dence interval (CI): 1.31, 3.65] and 1.84 (95% CI: 1.41, 2.40),
respectively, for API during April–May 2003, whereas the corre-
sponding ratios for average API during June 2000–October 2002
were 1.71 (95% CI: 1.34, 3.33) and 2.26 (95% CI: 1.53, 3.35).
The authors acknowledged that they did not account for potential
confounding factors such as age, sex, sociodemographic status,
or regional differences in the quality of care.

Kan et al. (2005) employed a time series analysis, using gen-
eralized additive models (GAMs; Hastie and Tibshirani 1993), to
determine whether daily fluctuations in ambient concentrations of
PM10, SO2, and NO2 in Beijing were associated with daily mor-
tality from SARS from 25 April to 31 May 2003 (37 d). The
authors indicated that they adjusted for trends for day of observa-
tion using splines as well as including a term for day-of-the-
week. The authors reported an average of 3.8 SARS deaths per
day over a span of 37 d (141 deaths, total). Daily mean ambient
pollution concentrations (averaged over 12 fixed-site monitoring

Table 3. Summary of principal strengths and weaknesses of studies estimating associations between exposures to ambient air pollution and incidence or mortal-
ity from SARS or COVID-19.

Strengths Weaknesses

SARS studies
Cui et al. 2003 Population-based Ecological study designa

Case-fatality rates Exposure index: API
No adjustment for potential confounding factors

Kan et al. 2005 Average daily concentrations of pollutants from 12
fixed-site monitoring stations

Short-time period to assess
trends

Generalized additive models Few deaths per day (average of 3.8)
Accounted for time trends and weather Possible concurvity and convergence issues with this

version of the models
Cai et al. 2007 Individual data for index cases and contacts Exposure index: API and not clear how computed

Incidence of SARS for contacts
Adjusted for weather, area, and time of onset

COVID-19 studies
Ogen 2020 Population-based Ecological study designa

Adequate spatial resolution of air pollutants No statistical analyses

Travaglio et al. 2020a National-level analyses of administrative data from
Public Health England (incidence) and UK National
Health System (mortality)

Ecological study designa

Underestimates of incident infections and deaths attrib-
uted to COVID-19

No statistical analyses other than correlation
coefficients

Yao et al. 2020 Mortality from COVID-19 Underestimates of incident infections and deaths attrib-
uted to COVID-19

Exposure period not stated
No statistical analyses other than correlation

coefficients
Andrée 2020 Spatially interpolated measures of PM2:5 Ecological study designa

Adjustment for many area-wide variables Multiple linear regression of rates
Zhu et al. 2020 Generalized additive models Normal instead of Poisson errors in the statistical

models
Average daily concentrations of pollutants Short-time period to assess trends
Accounted for time trends and weather Unclear what the final models were (e.g., how the

weather variables were included in the final models)
Wu et al. 2020 (posted 5 April 2020) Large sample size Ecological study designa

Adjustment for a range of contextual variables Underascertainment of mortality
Counties as the unit of observation
Air pollution data only available through 2016
Regional differences related to timing on pandemic

curve and protective measures not accounted for
Wu et al. 2020 (posted 27 April 2020) National-level analyses with large sample size Same as above

Adjustment for a range of contextual variables
Consideration of contextual variables related to physical

distancing

Note: API, Chinese Air Pollution Index.
aAll studies of COVID-19 are prone to biases related to the undercounting of COVID-19 incident cases, and deaths as well as the potential biases listed in the “Discussion” section.

Environmental Health Perspectives 095001-4 128(9) September 2020



stations) were: 149:1lg=m3 for PM10; 60lg=m3 for NO2; and
37lg=m3 for SO2. The authors estimated associations with a va-
riety of exposures lagged from 0 to 5 d using log-linear models
adjusted for day of the week, daily temperature, dew point, and
relative humidity. Relative increases of SARS mortality counts
with a 10-lg=m3 increase in the 5 d moving average of PM10,
SO2, and NO2 were 1.06 (95% CI: 1.00, 1.12), 0.74 (95% CI:
0.48, 1.13), and 1.22 (95% CI: 1.01, 1.48), respectively.

A novel cohort design was used to investigate secondary attack
rates among individuals who were in contact with 350 probable
index cases diagnosed in China between 1 January and 31 May
2003 (Cai et al. 2007). This study identified health outcomes by
using individual-level data and relied on area-wide measures of
weather and air pollution. The study first identified 365 probable
SARS cases in mainland China. Close contacts were identified
using individual-level survey databases of these cases and other
contacts of these cases, SARS transmission chains in affected
areas, and hospital records. Telephone interviews were used to
confirm histories of the close contacts. This process resulted in the
identification of 6,727 close contacts for the time periods when the
corresponding probable case exhibited symptoms but had not yet
been admitted to hospital. Of these close contacts, 135 (2%) were
later diagnosed with probable SARS by 31 May 2003. For the pri-
mary cases, daily average values for weather and the API for the
period between the onset of symptoms and hospital admission
were modeled. Logistic regression was used to estimate the associ-
ations between the frequency of secondary attacks and these
weather and air pollutionmeasures. The API was based on individ-
ualmaximal pollution index—this was typically particulatematter.
The authors considered several daily average weather variables,
including temperature, relative humidity, air pressure, wind veloc-
ity, and hours of sunshine. The models incorporated both the
weather and air pollutant covariables and a binary variable to
denote whether the onset date for the primary casewas before or af-
ter 21 April 2003. This date corresponded to when major interven-
tion measures to control the epidemic were enacted. The
multivariable models included terms for the weather variables
(described above) and the API. For a unit increase in the API
(Mean±SD ¼ 87:9± 25:3, range from 34.3 to 260.3), the unad-
justed odds ratio (OR) was 0.99 (95% CI: 0.85, 1.17), and the
adjusted OR was 0.88 (95% CI: 0.76, 1.02). Stronger associations
were observed with weather variables including daily average tem-
perature, air pressure and relative humidity.

Air Pollution and COVID-19
An ecological study was undertaken with the objective to deter-
mine whether average exposure to NO2 was associated with mor-
tality (Ogen 2020). The study included 4,443 deaths attributed to
COVID-19 as of 19 March 2020 in 66 administrative regions in
Europe (Italy, Spain, France, and Germany) in relation to tropo-
spheric concentrations of NO2 derived from the Sentinel-5
Precursor satellite (spatial resolution of 5.5 km). These concen-
trations were averaged over a 2-month period (January–February
2020) before the COVID-19 outbreak in Europe. Ogen showed
scatterplots of counts of death against concentrations of NO2 for
these 66 data points, and these plots showed an increase in the
number of deaths with increasing concentrations of NO2, but no
quantitative measure of association was provided.

In a nonpeer reviewed paper, Travaglio et al. (2020a) estimated
for seven regions of England the correlation between presumed
mortality from COVID-19, until April 8, 2020. Their aim was to
investigate associations between annual ambient concentrations of
air pollution in 2018 and rates of infection and mortality from
COVID-19. Data for the daily number of infections for each region
were obtained from Public Health England. Similarly, the number

of deaths were extracted from national health data and included the
number of deaths of patients who died in hospitals who tested posi-
tive for COVID-19. The analyses excluded deaths that did not
occur in hospitals. Exposure comprised annual average concentra-
tions of NO2, NO, and ozone, and the English AQI measured at
120 fixed-site monitoring stations during the period 2018–2019.
The analysis comprised estimating Spearman’s and Pearson’s
correlation coefficients between pollutants and mortality from
COVID-19, and these statistics ranged from 0.32 to 0.67. Plots of
average concentrations of air pollution against the total number of
COVID-19 deaths across the regions were also presented.

A preprint byYao et al. (2020) presented a cross-sectional anal-
ysis of ecological data to determine whether city-specific measures
of PM2:5 and PM10 were associated with death rates of COVID-19.
They estimated spatial correlations in 49 Chinese cities between
case–fatality rates of COVID-19 and concentrations of PM2:5 and
PM10 on the day of death (time period not specified). Sixteen of
these cities were inside the province of Hubei, including Wuhan,
the apparent origin of the pandemic, and the remaining 33 cities
that were outside of Hubei. They also obtained per capita gross
domestic product (GDP), number of hospital beds, and population
size for each province, and it appears that values of these were
assigned to each city. The results for PM2:5 and PM10 were pre-
sented as scatterplots, and two ordinary linear regression lines
were shown for cities inside and outside Hubei. For PM2:5, the cor-
relation coefficient with case-fatality rates of COVID-19, adjusted
for temperature, relative humidity, GDP per capita, and hospital
beds per capita; for cities outside Hubei was 0.56 and for cities
inside of Hubei, excludingWuhan, it was 0.33.

In another posted study by theWorld BankGroup, Andrée con-
ducted an ecological analysis of incident COVID-19 cases against
annual average concentrations of PM2:5 across 355 municipalities
in the Netherlands (Andrée 2020). The analyses comprised 4,004
confirmed cases of COVID-19 until 22March 2020 for which resi-
dential addresses were available. For the main analyses, annual
spatially interpolated measurements of PM2:5 for 2017 at a 25-m
grid were derived from fixed-site monitors. Andrée (2020) also
modeled a remote sensing measure of PM2:5 derived using data
between 1998 and 2014 at a 10× 10 km resolution. Adjustment
was made for a number of area-wide variables (Table 1). Multiple
linear regression using a gaussian error term was used to model
COVID-19 cases (per 100,000) and, depending on the covariables
included, an increase of 1 lg=m3 of PM2:5 increased the number of
cases by between 3.5 and 10.2 cases per 100,000.

A published time series study by Zhu et al. (2020) made use of
daily confirmed cases of COVID-19 in 120 cities in China after the
lockdown started (observation period of 23 January to 29 February
2020). The objective of their study was to estimate associations
between 1-, 2-, and 3-wk measurements of ambient pollution and
confirmed incident cases of COVID-19. Using another GAM
framework (Wood 2006), the authors regressed logarithmically
transformed daily counts of cases (average of 12 deaths per day)
against daily mean concentrations that were used to create PM2:5,
PM10, SO2, CO, NO2, and O3 metrics for 0–7, 0–14, and 0–21 d
before death. They also adjusted for mean temperature, relative hu-
midity, air pressure, and wind speed. Count data usually require
Poisson or quasi-likelihood models, and often distributed lag non-
linearmodels are used (Gasparrini et al. 2012), but the authors used
a gaussian error term instead. All of the covariables were modeled
as thin plate splines [maximum of 3 degrees of freedom (df)].
Usually afilter is applied to remove any long-term trends in the out-
come as well as including day-of-the-week effects (Goldberg et al.
2003), but in this study only a categorical variable was included for
day of study and a first order autoregressive term. Their models
also included a fixed-effect term to capture variability by city. The
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pollutants were modeled as linear terms. The main results across
the 120 citieswere as follows: for amean 10lg=m3 increase across
lags of 0–14 d, the percent change in the number of counts were:
PM2:5, 2.24% (95% CI: 1.02, 3.46); PM10, 1.76% (95% CI: 0.89,
2.63); NO2, 6.94% (95% CI: 2.38, 11.51); O3, 4.76% (95% CI:
1.99, 7.52); and SO2, −7:79% (95%CI:−14:57 to−1:01).

The research that appears to have generated the most attention
in the media during the COVID-19 pandemic is an unpublished ec-
ological study that considered as the unit of observation data from
a total of 3,080 counties in the United States (Wu et al. 2020). We
found two versions of this manuscript online that used slightly dif-
ferent methods (Table 1), and in our view, it is important to provide
details on both versions, given that the original analyses generated
considerablemedia attention, and the latter version provided a lower
risk estimate. The aim of the study was to investigate whether
chronic exposure to ambient pollution, over 17 y, was associated
with increased risk of COVID-19 mortality. Deaths from COVID-
19 were obtained from the Johns Hopkins University Center for
Systems Science and Engineering Coronavirus Resource (Xu and
Kraemer 2020). The first report comprised mortality data up to 4
April 2020, and the second incorporated additional data until 22
April 2020. Reported counts of deaths from COVID-19 and total
estimates of the population for each countywere used. The summary
county data provided only aggregated COVID-19 death data and
therefore did not allow for these deaths to be tabulated by age group,
sex, race, or other sociodemographic characteristics. In the first
report, concentrations of PM2:5 were derived for the period from
2000 to 2016 using an exposure predictionmodel that conjoins satel-
lite, modeled, and monitored and has a resolution of about
0:01� ×0:01� (van Donkelaar et al. 2019). These values were com-
bined to represent county-level averages. County-specific rates of
mortality attributed to COVID-19 were regressed against average
county-specific concentrations of PM2:5 using a zero-inflated
Poisson model with a random effect for state. Adjustments included
16 county-level variables and the number of COVID-19 tests per-
formed in each state (Table 1). In the first version of the paper, a
number of counties were excluded because they lacked covariable
data or had a small number of identified COVID-19 deaths.
Specifically, the main analyses derived risk estimates using 1,783
counties, which represented 90% of all COVID-19 deaths identified
in the United States as of 4 April 2020. The authors reported that for
an increase of 1 lg=m3 of PM2:5, the rate ratio for COVID-19 mor-
tality was 1.15 (95%CI: 1.05, 1.25).

An updated version of this paper was posted online on
27 April 2020. These analyses differed in several ways from the
earlier version. First, the more recent preprint incorporated addi-
tional deaths that occurred up to 22 April 2020. A number of new
county-level risk factors were included: days since the first
COVID-19 case and days since the issuance of stay-at-home
orders. Some minor changes to other county-level factors were
made, which included capturing the percentage of the population
between the ages of 45–64 and 15–44 and the percent who were
obese [from mean body mass index (BMI) used in original analy-
sis]. The authors used a negative binomial mixed model instead
of a zero-inflated one. There were 3,087 counties from which
data were drawn from. The updated rate ratio for COVID-19
mortality in relation to 1 lg=m3 increase of PM2:5 was 1.08
(95% CI: 1.02, 1.15). The authors also pursued a large number
of sensitivity analyses and estimated the minimum magnitude
of the association between an unmeasured confounding variable
and the outcome and exposure that could entirely explain the
observed association (E-value). The E-value was estimated to
be 1.37, and the authors used this value to suggest that it was
unlikely that the findings could be explained by unmeasured
confounding.

Discussion
Our systematic review identified nine epidemiological studies,
and all but one paper reported positive associations between
ambient air pollution and the incidence or mortality from SARS
or COVID-19. This series of papers included several unpub-
lished studies. We acknowledge that these studies may change
in important ways as they proceed through the review process,
as already demonstrated by the more recent analyses of
Travaglio et al. (2020b) and Wu et al. (2020), although there is
no guarantee that they will all be published. That said, there are
common design features of these studies that are important to
consider. This section discusses the various sources of bias and
their possible impacts on findings obtained from different study
designs. We have structured our discussion to address critical
features that should be considered in epidemiological research
that investigates how air pollution is associated with COVID-
19–related health outcomes, and then we will discuss specific
types of epidemiological designs.

Specification of the Target Population
Most of the studies implicitly defined the target population to
include the population of an entire region or country, but their meth-
ods may not adequately capture relevant data for all segments of the
population who may be more vulnerable and who account for a
large portion of COVID-19 deaths. For example, the target popula-
tion for the Wu et al. (2020) paper was that of the entire continental
United States, but many of the county-level adjustment factors were
drawn from the Behavioral Risk Factor Survey that excluded insti-
tutionalized residents. For COVID-19, this is relevant because a
large number of deaths are likely to occur in institutionalized set-
tings, and the risk factor profile of these individuals would differ
from those not in institutions.

Even though many of the studies were designed to have broad
target populations, misclassification and underreporting may
make them nonrepresentative. For example, it is likely that a
large percentage of COVID-19 deaths in the United States, espe-
cially in nursing homes, may not have been counted (Perls 2020).
The same concern likely applies to other countries; for example,
in Canada, as of 6 May 2020, 82% of all deaths occurred in long-
term care homes for the elderly (MacCharles 2020). Media
reports have suggested that the corresponding estimates in the
United States are ∼ 40% (Coletta 2020) and that 99,000 deaths
occurred as result of individuals contracting the disease in
American jails (Pilkington 2020). On 16 June 2020, it was
reported that the five largest clusters of COVID-19 cases in the
United States were in correctional institutions (Williams et al.
2020). Although it is valid to define a target population that
excludes institutionalized individuals, this will not assist in
understanding the true impact of a pandemic.

Incidence and Mortality of SARS and COVID-19
With a novel infectious disease, there will be challenges with its
diagnosis (Arons et al. 2020; Li et al. 2020) and with the certifi-
cation of underlying causes of death, both these challenges will
lead to underascertainment of incidence and mortality. Especially
for COVID-19, during the first month in which cases were identi-
fied, most countries lacked adequate testing and many jurisdic-
tions were overwhelmed to treat COVID-19 patients; therefore,
many cases and deaths that should have been attributed to
COVID-19 were not identified (Arons et al. 2020; Li et al. 2020).
There have also been concerns about the sensitivity and specific-
ity of tests initially used to identify people with coronaviruses,
and the performance of these tests with respect to detection meth-
ods and automation procedures has improved over time (Carter
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et al. 2020). Furthermore, cases and deaths tended to cluster in
individuals with other underlying health conditions, in the elderly
or in noncommunity settings (e.g., long-term care homes, prisons,
and meat-packing plants), where testing may not have been gen-
erally available. People with other preexisting health conditions
would be more likely to have had their COVID-19 deaths mis-
classified. The extent of undercounting of COVID-19 deaths is
not trivial; for example, in New York State underestimation of
deaths could be as high as 22% (New York City Department of
Health Mental Hygiene (DOHMH) COVID-19 Response Team
2020). Ascertainment of COVID-19 deaths in long-term care
facilities is also incomplete in most jurisdictions, including the
United States, where only 33 states reported nursing home–
related deaths (Glenza 2020). A recent investigation by some
U.S. senators found that in assisted care facilities there was a
widespread lack of routine testing and reporting of COVID-19
cases and fatalities (Warren 2020).

It is our view that errors in case ascertainment and coding for
causes of death from COVID-19 are significant. Misclassification
of COVID-19 cases is likely related to levels of air pollution
because the ability to accurately determine these health outcomes
requires having sufficient resources to carry out testing and con-
tact tracing and the poorest areas of countries usually have fewer
resources. An inherent bias can occur in studies of air pollution
and COVID-19 because those poorer areas also tend to experi-
ence higher pollution levels (Clark et al. 2014; Hajat et al. 2015).
This tendency could attenuate a true positive association, but
many uncertainties in case ascertainment occur, especially at
small regional levels, and the resulting bias in the association
between air pollution and COVID-19 deaths could either be to-
ward or away from the null.

It is also important to account for the possibility that the
degree of undercounting may change over time, as well as correc-
tions to cause-of-death data (Rowe 2020). These delays in under-
counting can extend for some time as suggested by recent reports
that the coding of underlying cause of death data is several weeks
or months behind in many regions of the United States (Katz et al.
2020). For all these reasons, at a national level, even in developed
countries, it may take years before corrected data are available
for analysis. Also, as noted by Cai et al. (2007), there may be dif-
ficulties in the accurate reporting of case information, and these
difficulties could result in errors of assigning the correct date of
death. For time series studies, those errors could be an important
source of bias.

Timing on the Pandemic Curve
There are regional differences, particularly in larger countries,
regarding where cities lie along the pandemic curve. In the
United States, especially in early April 2020, counties were at
different stages on the epidemic curves. Unfortunately, as of July
2020 the decisions by some U.S. states, such as Florida and
Arizona, to abandon protective health measures in favor of
reopening businesses have led to more recent surges in COVID-
19 cases. Larger, more populous cities tend to have more people
traveling to and from international locations, which results in
increased opportunities for the spread of COVID-19, but such
cities also tend to have higher concentrations of air pollution
(U.S. EPA 2020). The practical implications are that there will be
a greater number of identified incident cases and deaths in those
cities that are further along the epidemic curve, and contrasting
regions that have different time patterns in mortality rates will
lead to bias that would be away from the null. Researchers must
therefore control for where each city is on this curve or capture
all COVID-19 deaths. It is unlikely that any of the studies on
COVID-19 were able to accomplish this. To complicate matters

further, the experience of the 1918 influenza epidemic suggests
that the pandemic curve may be multimodal and involve several
peaks and valleys (Ansart et al. 2009), thus suggesting analyses
of air pollution and any novel coronavirus can be addressed only
after the pandemic is over.

Physical Distancing and Other Public Health Interventions
A recent systematic review and meta-analysis provides evidence
that the use of physical distancing, face masks, and eye protection
greatly reduces the spread of COVID-19 in health care and com-
munity settings (Chu et al. 2020). The implementations of policies
that encourage physical distancing, which vary by jurisdiction,
have been shown to be successful in flattening the epidemic curve.
As of 1August 2020,NewZealandwas at the forefront of countries
in essentially eliminating infection (Baggaley 2020). In contrast, in
March 2020 in the state of Georgia, areas that did not adopt physi-
cal distancing practices experienced higher incidence and mortal-
ity from COVID-19 when compared with other areas in the state
that did (Bethea 2020). Cities in California that tend to have higher
levels of fine particulate matter first adopted stay-in-place policies
earlier (20March 2020) than other regions (Karimi 2020). Because
these policies differed by regional air pollution levels, including ru-
ral and urban areas, they can distort associations between air pollu-
tion and COVID-19 mortality, and these differences must be taken
into account in the analyses. It is also important to note that the
implementation of physical distancing practices and work restric-
tions may directly contribute to lower pollution levels through
decreased reliance on vehicular and public transportation. A major
difference between the two versions of the paper by Wu et al.
(2020) was that the more recent version of the paper also adjusted
for the time since each state issued a stay-at-home order and the
time since the beginning of the outbreak. The consideration of
these two ecological measures and additional deaths identified
with just another 18 d of follow-up, and possibly use of the nega-
tive binomial instead of a zero-inflated Poisson model, may have
resulted in a reduced estimate of excess mortality attributable to
PM2:5 from 15% to 8% (per increase of 1 lg=m3).

Spatiotemporal Assignment of Air Pollution
Many of the studies relied on concentrations of air pollution that
spanned large geographical areas, thus leading to misclassified
estimates. For example, in the ecological study by Ogen (2020)
averaged, highly resolved (5:5× 5:5 km) estimates of NO2 were
used to derive a singular exposure measure for each of 66 large,
heterogeneous administrative regions in four large European coun-
tries. Counties in the United States are also heterogeneous, being
highly irregular in area, population, and other characteristics. In
the paper byWu et al. (2020), air pollutionwas assigned at a county
level. To illustrate the heterogeneity in U.S. counties, Cook
County, which includes the city of Chicago, is the second-most-
populous county in the United States, with a population of approxi-
mately 5.1 million in 2019 and a land area of 1,635 square miles
(U.S. Census Bureau 2020). In contrast, Mississippi, one of the
poorest states, has 82 counties. One such county, AdamsCounty, is
only 462 squaremiles and had a population of 30,693 in 2019 (U.S.
Census Bureau 2020), which is similar to other counties in that
state. Because a single air pollution value was assigned to each
county in the United States calculated over a 17-y period, poten-
tially relevant differences in exposure across space and time were
not captured, especially in larger, more populous counties; this ex-
posure measurement error may be an important source of bias.
Similarly, in the time series studies of mortality, misclassification
of underlying causes of death and the date of death is a concern,
and thesemay bemagnified for COVID-19.
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Specifying the relevant time period for assigning exposure is
also essential. The studies undertaken to date used a variety of
exposure definitions that cover varying time periods before diag-
nosis or death (Table 1). For epidemiological studies of chronic
exposure to air pollution, ecological-level measures of pollution
are employed to rank areas according to some estimate of
“chronic” concentrations. The subsequent analyses often assume
that the rank ordering remains constant in time. An understanding
of the relevant etiological exposure period is important to reduce
exposure measurement error. Methodological approaches such as
the distributed lag models (Gasparrini et al. 2012) can offer
insights.

Clustering of Cases and Deaths
Unlike studies of past exposure to air pollution and chronic disease
where deaths can reasonably be assumed to be independent,
COVID-19 cases and deaths occur in clusters (Cha 2020;Dyal et al.
2020; Hamner et al. 2020; McMichael et al. 2020; Park et al.
2020). Events occur together in high-risk groups, such as in retire-
ment residences and certain occupational settings. For example, in
South Dakota, half of the state’s identified COVID-19 cases come
from the Smithfield pork-processing plant (Wiener-Bronner
2020). Statistical approaches used to characterize the association
between air pollution and infectious diseases must account for
these strong correlations in the data.

Spatiotemporal Variations in the Strains of COVID-19
Disentangling possible associations between exposure to ambient
air pollution and COVID-19 might be complicated by regional
variations in the genetic variants or by mutations of the virus that
occur over time that could change its virulence. Given that the
pandemic only began in early 2020, the manner in which
COVID-19 mutates is not yet well understood. Analyses of
global tracking data have shown that the prevalence of the
D614G genome mutation variant of COVID-19 has risen over
time, and the increased viral load associated with this type may
increase the transmissibility of the virus (Korber et al. 2020). To
the extent that strains of COVID-19 vary geographically and by
disease severity, these variations in strains could introduce bias
in studies of air pollution and COVID-19 transmission and
mortality.

Other Determinants of COVID-19 Mortality
In most ecological studies, adjustment for individual risk factors
is not possible. In the study by Wu et al. (2020), for example,
deaths were not classified by age, sex, or race. Gender-based dif-
ferences in time-activity pattern contribute to different levels of
exposure for men and women, and women may be more suscepti-
ble to the adverse health effects from air pollution (Bell et al.
2015; Colais et al. 2012). Although ecological studies can incor-
porate regional measures of some of these risk factors, such as
using percent of the population older than 65 years of age, these
types of adjustments often perform poorly (Greenland and
Robins 1994; Morgenstern 1995; Wakefield 2008). Occupation is
also a seemingly overlooked risk factor because those who pro-
vide medical care and other essential workers, including people
who work in food processing, have increased risks of developing
and, by extension, dying from COVID-19.

In the United States, it is also important to recognize that disad-
vantaged people (e.g., lacking health insurance, living undernour-
ished, having underlying and not well-managed health conditions,
such as cardiovascular conditions and/or diabetes) have a greater
susceptibility for both contracting and dying from COVID-19.
This aspect was pointed out by Yancy (2020), who indicated that

myriad social and economic reasons led to high rates of infection
and put individuals at higher risk from adverse health outcomes of
COVID-19 (Yancy 2020). As well, Chowkwanyun and Reed
(2020) indicated that disparities in COVID-19-related health
effects need to be assessed after accounting for deprivation, espe-
cially race and socioeconomic conditions. We contend that all
these factors (e.g., occupation, race, socioeconomic status, avail-
ability of health insurance) need to be carefully considered when
estimating associations between air pollution and incidence and
mortality of COVID-19. Misclassification of exposure and out-
comes likely vary across these factors, and moreover, they may ei-
ther confound or be effect modifiers of associations between air
pollution and COVID-19 incidence, survival, or mortality.

The etiology of COVID-19 remains poorly understood, and
other risk factors may be identified going forward. Such risk fac-
tors may also be related to pollution levels, and therefore, there is
the potential for residual confounding in any studies published
before that time. For example, recent work suggest that previous
vaccinations may confer a reduced risk of becoming infected
with COVID-19 (Sette and Crotty 2020).

It is possible that additional stratified analyses of ecological
data could be conducted to shed light on some of these factors.
For example, death certificates will have age, gender, and often
race or ethnicity, so that even in an ecologic study, stratum-
specific estimates of risk could be determined. However, it is
likely that underascertainment of COVID-19 cases and mortality
varies across race and socioeconomic conditions because testing
is differentially available. Regardless, it is our view that it is not
possible using these heterogeneous geographical units to over-
come the influences arising from heterogeneity in terms of areas
of deprivation and affluence within regions.

Statistical Methodology
The studies by Andrée (2020), Cui et al. (2003), Ogen (2020),
Travaglio et al. (2020a), Yao et al. (2020), and Zhu et al. (2020) did
not follow generally accepted methods of epidemiological analy-
sis, and it is our view that their estimates of association are not
valid. In particular, the studies by Andrée (2020), Cui et al. (2003),
Travaglio et al. (2020a), Yao et al. (2020), and Zhu et al. (2020)
used regression models with normally distributed errors that are
typically inappropriate for count data. Although the normal distri-
bution can be used to provide a reasonable approximation of count
data when there is a large number of counts, many of these studies
relied on small numbers of cases within the regional areas that
were studied. Moreover, when modeling rates, overdispersion
needs to be accounted for using for example quasi-likelihood
Poisson models, negative binomial, or zero-inflation models, with
population size included as an offset variable. Not using these
methods may result in overstating precision. Nonlinearity and lags
in response functions can also be assessed, such as using distrib-
uted lag nonlinear models (Gasparrini et al. 2012; Imai et al. 2015).

Study Designs
In addition to the generic issues related to these pandemics, we
describe additional points for the specific types of studies below.
These designs each have inherent possible biases that need to be
considered when interpreting findings.

Ecological studies. Most studies that investigated chronic ex-
posure to air pollution and COVID-19 used an ecological design
(Andrée 2020; Cui et al. 2003; Ogen 2020; Travaglio et al.
2020a; Wu et al. 2020). Ecological studies have a long history in
epidemiology, and started with John Snow’s investigation of
cholera in London in the mid-1800s (Snow 1856). Much has
been written about potential biases that may arise from these
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designs, especially the ecological fallacy, or cross-level bias
(Greenland and Robins 1994; Morgenstern 1995; Piantadosi et al.
1988; Piantadosi 1994; Wakefield 2008). A classic example is an
ecological assessment of the association between rates of lung
cancer and exposure to radon gas in the United States (Cohen
1995), which found an inverse association in comparison with
positive associations from occupational cohort studies and
population-based case–control studies (NRC 2006); the spurious
association was due to a number of biases related to the ecologi-
cal design (Greenland and Robins 1994).

In addition, ecological studies of chronic exposure to air pol-
lution and COVID-19 are unable to account for residential mobil-
ity. This aspect may introduce exposure measurement error
because these studies may not be able to accurately characterize
exposures over time periods that span several years. Some stud-
ies, such as Wu et al. (2020), assigned air pollution exposures
based on concentrations between 2000 and 2016 to deaths from
COVID-19 that occurred in 2020. Those who died in 2020 may
well have been living somewhere else in 2016, and therefore, ex-
posure may be misclassified.

A critical review of the ecological study design concluded that
“The only way to overcome such bias, while avoiding uncheckable
assumptions concerning the missing information, is to supplement
the ecologic with individual-level information” (Wakefield 2008).
Most epidemiologists recognize that ecological studies cannot pro-
vide the evidence needed to inform causal associations. Agencies
such as the U.S. Environmental Protection Agency and the
International Agency for Research on Cancer, when evaluating
environmental harms to human health, give greater scrutiny to
findings derived from case–control and cohort studies that incorpo-
rate individual-level data. The findings from these stronger obser-
vational epidemiological studies, the consideration of some of the
guidelines put forward by Hill (1965), and the careful weighing of
all of the evidence, including experimental studies, is generally
how causality is assessed.

We also have concerns that the ecologic studies that have inves-
tigated air pollution andCOVID-19 incidence ormortality aremix-
ing two potential phenomena. The first phenomenon is the extent
to which air pollution may increase an individual’s susceptibility
to becoming infected with COVID-19 because either the virus is
being transmitted via particulate matter pollution, or past air pollu-
tion exposure may have altered immune function. The second phe-
nomenon relates to the extent that air pollution may affect the
survival of those who have already been infected with COVID-19.
Although it is our impression that most of the ecological studies
have focussed on the latter phenomena, with an ecological study
design it is impossible to differentiate between the two. To be fair,
longitudinal studies with individual-level data would also be chal-
lenged to differentiate between these two phenomena unless they
had very granular data for incident COVID-19 cases.

Poisson models are appropriate for analyzing count data. For
example, Wu et al. (2020) used a zero-inflated Poisson model with
the observed number of deaths as a count variable and that can take
account of the population size of each area, as well as overdisper-
sion and zero counts. Unfortunately, during a pandemic, events are
not independent andwill cluster in time and space, and the standard
methods of analysis may lead to biased estimates of association
with understated precision. Spatial clustering may also be an issue;
for example, Wu et al. (2020) included a random intercept for state
in both their analyses , but it is unlikely that would capture similar-
ities of counties that border on adjoining states.

Time series studies of the acute effects of air pollution on
SARS and COVID-19. The time series analyses of Kan et al.
(2005) andZhu et al. (2020)were used to determinewhether changes
in daily concentrations of air pollutants were associated with daily

counts of deaths from SARS or COVID-19. The underlying hypoth-
esis of these studies is that “acute” exposures increase mortality. The
time series study design is a widely accepted approach to estimate
immediate health effects associated with acute exposures because it
does not suffer from the ecological fallacy, and confounding can
occur only if there are rapidly varying confounders.

Time series studies also typically span several years and com-
prise thousands of deaths so that seasonal trends and other longer-
term signals can be reasonably taken into account and so that risk
estimates with a reasonable degree of precision can be estimated.
Controlling for meteorological and seasonal effects presents a
methodological challenge for time series studies of air pollution
applied to infectious disease epidemics over a relatively short pe-
riod of time. Notably, the study of Kan et al. (2005) had only 141
deaths over a 1-month period, and one may question the stability
and validity of the model. The short time frame also introduces
other concerns given that it is not long enough to reasonably repre-
sent the time since infection and time of death. This highlights the
general challenge for these studies, namely that the progression of
the epidemic is not easily teased apart from other factors related to
secular changes. Individuals with severe infections would have
been isolated to prevent the spread to others, and their exposure to
ambient air pollution would be minimal because they would be
spending a large portion of their time indoors. Time series studies
also need to try to account for other important time-related
changes, and for COVID-19 there are a large number of considera-
tions, such as changes in public health policy (e.g., testing, physical
distancing, hand washing, wearing of facemasks, opening of busi-
nesses), availability of health care resources for detecting and treat-
ment, and changes in spatial clustering of cases.

Although we acknowledge the possible biological mecha-
nisms for which daily increases in pollution may increase the risk
of death among people with coronavirus, we are skeptical about
the etiological relevance of these acute exposures. The time from
initial infection to death can be quite lengthy, and preliminary
estimates suggest it could be on average about 18 d (Verity et al.
2020). However, this interval can be much longer, as demon-
strated by a number of deaths from SARS and COVID-19 that
occurred more than 2 months after initial diagnosis (Chan et al.
2003; Chu et al. 2004).

There are also issues related to whether individuals with
COVID-19 were exposed to air pollution in the days that pre-
ceded their deaths. For example, many who died of COVID-19 in
hospitals from March to April 2020 were on ventilators [e.g., in
New York State, 20% of hospitalized people were put on ventilators,
and 25% of them died (Richardson et al. 2020)]. Concentrations of
ambient pollution near the time of their death would not represent a
relevant exposure for people who required ventilators to assist with
their breathing. Moreover, individuals with COVID-19 may have
been in environments in hospitals or at home that were air condi-
tioned, and air conditioning reduces exposures to many air pollutants.
Individuals who died from coronavirus while at home, in prison or
jail, or in a long-term care facility likely also experienced significant
distress over the days immediately preceding death, and thus indoor
exposures would be expected to be far more relevant than ambient
exposures.

A critical aspect of any time series study—and this is also true
with all other designs—is the exact methods of statistical analyses,
and we have concerns about the two studies that used this design. A
possible limitation in the study by Kan et al. (2005) was the use of
one version of the GAMs (Hastie and Tibshirani 1993) that was
found subsequently to be subject to bias from concurvity (Ramsay
et al. 2003) and insufficiently stringent convergence criteria
(Katsouyanni et al. 2002); in addition, it is not clear whether that
study used updated software. Zhu et al. (2020) made use of another
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GAM framework (Wood 2006). Instead of using quasi-Poisson
regression, the authors used a gaussian error term.

We mentioned the lack of stability of the population during a
pandemic above and noted that the key methodological aspects
that need to be accounted for are the rapidly changing at-risk pop-
ulations, strong serial autocorrelation from the transmission of
disease, overdispersion that may require nonstandard Poisson
models, and complex lag structures that may also vary in time
(Imai et al. 2015). As made clear by Imai et al. (2015), standard
time series methods are not suitable for these pandemics.

These limitations, in our view, do not allow for effects of day-
of-week and other time-varying covariables including effects of
weather to be taken into account adequately. As well, this design
would not be capable of disentangle the shape of the epidemic
curve from deaths that would arise from seasonal changes in air
pollution.

Effects of air pollution on secondary attack rates. The study
by Cai et al. (2007) was the only study in which secondary attack
rates in a group of individuals in contact with 350 probable SARS
cases were estimated, and they did not find associations with air pol-
lution. The design is exceedingly interesting because it provides a
method for investigating contributing factors and not just air pollu-
tion or weather. Secondary cases (6,727) were identified from 350
primary cases, and although an evaluation determined that the pri-
mary cases were independent from each other, the design ensures
that the secondary cases are not independent from each other.
Therefore, a matched analysis or other approach that accounted for
the correlations would be advised. Another important design issue
relates to the geographical proximity of participants so that one
would expect small differences from relatively spatially homoge-
nous exposures, such as fine particulates.

In that study, Cai et al. (2007) appeared to have used uncondi-
tional logistic regression with each secondary case classified
dichotomously as having developed SARS or not. The authors
acknowledged that they were unable to account for individual-
level differences in social behaviors that would affect the number
of people at risk for secondary attacks (i.e., clustering within
cases). The analyses also sought to estimate associations with
meteorological factors and the spread of SARS, and they reported
stronger associations for these factors than they did for air
pollution.

Over such a short time period (5 months), it is difficult to isolate
the respective associations due to meteorology, air pollution, and
season given that individuals, on learning of the dangers, take more
precautions to reduce their risk, and these behaviors coincide with
seasonal changes. Epidemiological studies that investigate how air
pollution influences secondary spread of disease must account for
individual-level behaviors of physical distancing, the use of face
masks, hand washing, and other precautions that communities take
to prevent spread. They also require spatial-temporally resolved
measurements of specific pollutants. The paper provided scant
details about the spatial resolution of the fixed-site air pollution
monitors, and therefore, exposure misclassification error due to the
use of large area API measures may be an important source of bias.

Summary of Methodological Limitations of Using
Observational Studies during Pandemics
The hypothesis that air pollution is a factor in not only mortality
from SARS and COVID-19 but also from other serious complica-
tions of infection is plausible, and a number of authors have dis-
cussed possible mechanisms (Conticini et al. 2020; Dutheil et al.
2020; Martelletti and Martelletti 2020).

In our analyses of these studies, we have touched on a number
of key epidemiological issues that can lead to serious biases in
epidemiological investigations during the time of a pandemic. Of

particular importance is the lack of a steady state in study popula-
tions, and this is magnified as the pandemic unfolds and environ-
mental and social conditions change dramatically. The upshot of
this, especially when one makes use of administrative data to
identify health states, is the underreporting of events that will
vary spatially and temporally. Heterogeneity in the rates of infec-
tion and sequelae will vary by region and over time. Clustering
of events is also an important problem that is difficult to account
for, as well as considerable confounding by time and space. This
problem is especially evident when analyses are conducted in the
middle of an active pandemic. Pandemics lead to chaos in social,
economic, political, and administrative realms and especially in
the health care system. Thus, the use of administrative data for
identifying health events during a pandemic is problematic.

Other important issues include the lack of individual-level
data, especially as it relates to potential vulnerabilities, including
underlying health conditions, socioeconomic status, race, gender,
social support networks, and the like. We underscore that appro-
priate statistical methods should be used in analyzing any data
set.

Investigating the research question as to whether air pollution
increases mortality from COVID-19 is not trivial; it is complex
and challenging, and the potential for bias is high. Most of the
studies to date have used an ecological design that likely suffers
from severe biases, especially when arbitrarily defined adminis-
trative units, such as counties or census areas, are used. Not only
can there be cross-level bias that no amount of adjustment can al-
leviate, but heterogeneity in populations, especially those who
are at the greatest risk, and exposures cannot be accounted for
when broad areas are used as the unit of observation. For this rea-
son, it is our view that the application of an ecological study
design at this time is fundamentally flawed and may well produce
spurious results.

Moreover, for the reasons discussed, time series studies are
also problematic given the trajectory between infection, treat-
ment, and death and the relevance of exposure to ambient pollu-
tion during this period. It is important to note that the analysis of
these data would require special methods that have not been
well-developed (Imai et al. 2015).

Recommended Designs for Evaluating Impacts of Air
Pollution on COVID-19
Our recommended epidemiological design to investigate whether
air pollution increases the risk of COVID-19 mortality would be
a longitudinal study with individual-level data, in which those
diagnosed with COVID-19 would be followed through time. We
suggest that these studies should be done after the pandemic has
ended because of the challenges in detecting incidence and mor-
tality. That said, some jurisdictions that lack the public health
infrastructure may not be in a position to provide the high-quality
health data needed to study this topic.

The design would be extremely challenging to undertake. Of
course, defining the target population is very important. Selection
bias would be an important concern when assembling the cohort
if testing for COVID-19 was not done in a consistent way across
areas with different levels of air pollution. Bias could be intro-
duced if, for example, urban areas had more available testing that
would capture both mild and severe COVID-19 patients, whereas
in rural areas, with lower pollution levels, only the more severe
cases would be identified. This potential bias could potentially be
overcome with a carefully designed prospective cohort study, or
alternatively, with a retrospective study where testing has identi-
fied all people irrespective of their access to health care.
Knowing geographic coverage rates of testing could be used to
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adjust for selection bias, although it is not clear to us that cover-
age is easily estimable.

The study would compare people who died or who had severe
reactions from COVID-19 with those who did not. Mortality is
not the only health outcome, because we now appreciate that
many cases do not resolve easily or quickly (Tenforde et al.
2020). Furthermore, exposures to air pollutants should be esti-
mated as closely as possible to the personal level, e.g., using sat-
ellite data at 0:5× 0:5 km resolution or highly resolved land use
models. With this design researchers can investigate acute and
past effects of air pollution; for example, for the former objective,
individual-based, case-crossover analyses can be conducted
(Maclure and Mittleman 2008), and they can incorporate distrib-
uted lag nonlinear models (Guo et al. 2011). Moreover, this
design, if it were extended to sample the cohort from the base
population rather than just include those diagnosed with COVID-
19, could be used to determine how air pollution is associated
with the transmission of COVID.

Some key features of this design would entail use of personal
information, including accurate ascertainment of health outcomes
(e.g., having a specific definition of “severity” or minimizing
misspecification of the underlying cause of death), a longitudinal
component to follow individuals over time, a proper assessment
of underlying health conditions, sociodemographic characteristics
(e.g., age, sex, race, education, occupation, medical coverage,
resident of a nursing home), date of infection, spatially and tem-
porally resolved measures of air pollution, including near the
time of the health event; information about quality of care (e.g.,
hospital’s ability to deliver appropriate care), accounting for non-
independence of events (i.e., clustering in time and space), mode
of infection (e.g., travel of community spread), accounting for
time since beginning of the pandemic and possibly the time-
incidence pattern, and local policies to minimize the spread of
COVID-19, including, but not limited to, risk communication
activities, physical distancing, use of face masks, and closures of
businesses and restaurants. This design represents the only one
that can avoid the many biases of the ecological or time series
studies, but we caution that it would be highly complex, and it is
entirely possible that one cannot define a study that can answer
the question in an unbiased manner. Indeed, it may be case that
incident cases of COVID-19, as well as death, may not be able to
be adequately identified even retrospectively.

We would also like to draw attention to the fact that epidemio-
logical studies of air pollution and chronic disease have benefitted
from a number of studies that have assessed biases related to expo-
suremeasurement error due to time-activity behaviors (Ouidir et al.
2015), the role of indoor air quality (Ji and Zhao 2015; Ouidir et al.
2015), or methodology to indirectly control for possible confound-
ing (Shin et al. 2014). There are similar opportunities and needs to
conduct smaller exposure or methodological studies that could
inform or complement larger studies. For COVID-19, this is partic-
ularly important given the profound impacts that the pandemic has
had on human behaviors, reductions in ambient concentrations,
and temporal complexities in characterizing exposure and disease
risk due to seemingly ever-changing public health regulations. The
use of time-activity patterns, perhaps from cellular-phone data dur-
ing the pandemic represents an approach that could provide
insights on how the pandemic has affected individuals’ exposure to
ambient pollution.

Conclusions
It is plausible that both daily increases and chronic, historical
exposures to outdoor air pollution adversely impact prognoses
among those with SARS or COVID-19. Our review of the
design features of the studies that have disseminated their

findings indicates that all studies had significant weaknesses
that preclude them from providing insight about a causal associ-
ation between historical or current levels of ambient air pollu-
tion and rates of mortality or secondary infections in either the
SARS or COVID-19 pandemic.

Many of our concerns about the methodological limitations of
these studies have been echoed in a recently published editorial
(Heederik et al. 2020). We agree with the key message from that
commentary that a more thoughtful and “go slow to go fast”
approach is needed for researching the role of air pollution on
mortality from COVID-19. Indeed, we feel strongly that there is
no public benefit to conducting these analyses in the middle of an
active pandemic. There is already overwhelming evidence that
air pollution is a health hazard (Cohen et al. 2017; IARC 2016),
and we cannot envision any additional value that these studies
provide that further public health. In fact, we feel that the public
is not served well by these studies, many of which have not
undergone the scrutiny of peer review, especially because the
press are on the lookout for sensational stories (Carrington
2020a, 2020b, 2020c; Friedman 2020), and candidates in the
U.S. presidential election are prone to run with byline headlines.
All observational studies are not created equal, and the rush to
use a flawed design to investigate the association between air pol-
lution and mortality from COVID-19 jeopardizes the clear and
compelling evidence of chronic exposure to air pollution as a
threat to human health and deflects from the increased rates of
infection and health consequences caused by problems of social
and income disparities, overcrowding, and other societal issues.
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