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Abstract

Latent Differential Equations (LDE) is an approach using differential equations to analyze time 

series data. Due to its recent development, some technique issues critical to performing an LDE 

model remain. This article provides solutions to some of these issues, and recommends a step-by-

step procedure demonstrated on a set of empirical data, which models the interaction between 

ovarian hormone cycles and emotional eating. Results indicated that emotional eating is self-

regulated. For instance, when people have more emotional eating behavior than normal, they will 

subsequently tend to decrease their emotional eating behavior. In addition, a sudden increase will 

produce a stronger tendency to decrease than a slow increase. We also found that emotional eating 

is coupled with the cycle of the ovarian hormone estradiol, and the peak of emotional eating 

occurs after the peak of estradiol. Self-reported average level of negative affect moderates the 

frequency of eating regulation and the coupling strength between eating and estradiol. Thus, 

people with a higher average level of negative affect tend to fluctuate faster in emotional eating, 

and their eating behavior is more strongly coupled with the hormone estradiol. Permutation tests 

on these empirical data supported the reliability of using LDE models to detect self-regulation and 

a coupling effect between two regulatory behaviors.
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Introduction

The reality we inhabit is full of changes. In many cases a pattern of change can be detected 

that involves fluctuation around some equilibrium or “typical” value; examples include the 

swing of a pendulum in physics, the fluctuations of prices in economics, or the rise and fall 

of emotion in psychology. This type of change is frequently treated as error which is 

independently distributed around the equilibrium. However, observations in the time series 

often are not independent of each other. Our current state may depend on our previous state, 

and our upcoming state may, to some extent, be determined by our current state. One method 

to estimate the time-dependency information in the time series data is differential equation 
modeling.

In the quantitative psychology literature, several methods are used to describe change, such 

as multivariate analysis of variance (McCall & Appelbaum, 1973), hierarchical linear 

modeling (Raudenbush & Bryk, 2002), time series (Box, Jenkins, & Reinsel, 1970) and 

growth curve modeling (Duncan, Duncan, Strycker, Li, & Alpert, 1999). However, most of 

these methods are not designed to reveal fluctuations. Time series analysis1 such as the 

autoregressive model is able to describe trajectories, but it cannot solve the phase problem 
(Boker & Nesselroade, 2002) as described below. The fluctuation of each individual is often 

not synchronized with other people. Individuals may have randomized phases: at any one 

moment, some may be at a peak, some may be in a valley, some may be increasing, some 

may be decreasing. So even though different individuals’ patterns of change might be the 

same, methods such as time series that estimate average trajectories frequently cannot detect 

it. The phase problem can be avoided by using differential equation modeling, which is 

defined as “expressing effects within a system in terms of the derivatives as well as in terms 

of the values of the variables themselves” (Boker & Graham, 1998, p. 481). Compared with 

methods describing trajectories, differential equation modeling examines the relationship 

between variables and their derivatives that are stable, regardless of phase.

There is a long history of using differential equations to describe the behavior of complex 

dynamical systems in physics, engineering, biomechanics and some social science areas 

(e.g., Hajek, 1968; Beltrami, 1987; Beek, Schmidt, Morris, Sim, & Turvey, 1995; Amazeen, 

Amazeen, & Turvey, 1998). In the recent decade, research in psychology applying 

differential equation modeling is growing quickly. This method has been used to study self-

regulations in adolescent substance use (Boker & Graham, 1998), the well-being of recently 

bereaved older adult widows (Bisconti, Bergeman, & Boker, 2004), arm movements (Butner, 

Amazeen, & Mulvey, 2005), emotion regulation (Chow, Ram, Boker, Fujita, & Clore, 2005), 

resilience in adulthood and later life (Montpetit, Bergeman, Deboeck, Tiberio, & Boker, 

2010; Ong, Bergeman, & Boker, 2009), violent behavior in psychiatric patients (Odgers et 

al., 2009), oscillations in daily pain prediction (Finan et al., 2010) and other longitudinal 

processes.

As a result of years of development, differential equation modeling is now becoming a 

mature longitudinal data analytic technique. However, some practical issues remain. The 

1The time series analysis referred to here is not dynamical time series analysis.
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present article will show how to implement differential equation modeling in an SEM 

framework, i.e., latent differential equation (LDE, Boker, Neale, & Rausch, 2003), and solve 

the related technique issues. The article is organized in the following manner. First, 

background for LDE is introduced, including theory, terms, model and important 

parameters. Second, several related technique issues and our solutions are presented, and 

simulations are conducted to verify each solution. Then, a recommended LDE procedure is 

applied to a set of empirical data, which measures daily changes in eating behavior, hormone 

levels and negative affect.

Latent Differential Equations (LDE)

Second Order Differential Equations

Differential equations specify relationships between variables and their derivatives. Given a 

variable x, for example, positive affect, the first derivative ẋ expresses the velocity of 

change, which is the amount of change in positive affect per unit of time. The second 

derivative ẍ expresses the acceleration of change, which is the rate at which positive affect 

changes its velocity. A second order differential equation, in which the highest order of 

derivatives is 2, is sufficient to describe a damped linear oscillation. A linear oscillation 

stands for a system that has a restoring force that varies linearly with position. A damped 

linear oscillation adds some resistance to the linear oscillation thus energy will be drained 

from the system to overcome the resistive force. In a damped linear oscillatory system, we 

will see a periodic fluctuation around a central point (equilibrium) with the peaks or the 

amplitude of the fluctuation decreasing with time.

Equation 1 is a second order Differential equation representing a damped linear oscillation, 

where x is the displacement of a variable from its equilibrium, ẋ is the first derivative of the 

variable, ẍ is the second derivative of the variable, η is the regression coefficient of x on ẍ, 

and ζ is the regression coefficient of ẋ on ẍ.2

ẍ = ηx + ζẋ + e (1)

The parameters η and ζ have substantive meanings. The parameter η is called the frequency 
parameter, which mainly determines the frequency of the oscillation. In a self-regulation 

system, η is a negative number, indicating that when the system is away from its 

equilibrium, it will accelerate towards the equilibrium. If η is a positive number, no 

regulation occurs, since the system tends to accelerate father away when it leaves the 

equilibrium. The parameter ζ is called the damping parameter, which determines the 

amplitude of the oscillation. If ζ < 0, when ẋ is a positive number, that is the value of 

variable x is increasing with time, the person will tend to move in the opposite direction, that 

is to decrease the value of x, no matter whether the current location of x is above or below its 

2In the motor coordination and physics literature, Equation 1 is written as 
d2x
dt2

= − ηx − bdx
dt . We use ẍ and ẋ to represent 

d2x
dt2

 and 

dx
dt , and drop the signs for both η and b to facilitate the use of this equation in regression and structural equation models. We also 

change the notation of b to be ζ in order to be systematic with η.
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equilibrium. So the oscillation would fade away with time if no outside force were to be 

working on it. In other words, the amplitude of the oscillation will decrease with time. If ζ = 

0, whether x is increasing or decreasing will not influence one’s tendency. So the amplitude 

of the oscillation will be constant. And if ζ > 0, when x is increasing, one tends to accelerate 

the increase. As a result, the amplitude of the oscillation will increase with time. In fact, to 

form an oscillation requires that η < 0 and η + ζ2/4 < 0. The length of oscillating period in 

number of measures, λ (one over the frequency), can be calculated by Equation 2. Note that 

using differential equations to describe a dynamic system does not require that the system 

must be a self-regulation system with oscillations.

λ = 2π
− η + ζ2/4 (2)

Time Delay Embedding

One way to estimate derivatives (ẋ and ẍ) involves cutting time series data into short 

segments. Then, the derivatives at the middle point of each short segment can be estimated 

by local linear approximation (Boker & Graham, 1998), which uses a triplet of observations 

to estimate derivatives at the middle point. In this method, the interval between observations 

in the triplet is called the smoothing parameter τ. The value of τ determines the degree of 

smoothing. When τ is too large, it might smooth over the signal. If τ is too small, high 

frequency noise reduces the reliability of the signal. We could use this method to estimate 

derivatives. However, human behavior data includes a lot of noise and using only three 

observations to estimate derivatives becomes unreliable. More local observations should be 

considered in order to obtain a better estimation. We use a parameter D to denote the number 

of local observations used to estimate derivatives, and a parameter s to denote the time 

interval between two observations, which is predetermined by data. Thus (D − 1) × s is the 

length of the short segment used to estimate derivatives, which determines the degree of 

smoothing. In comparison, in the method using three observations to estimate derivatives, τ 
× 2 is the length of the time segment. Figure 1 shows a time series with three example 

segments estimating derivatives at T1, T2 and T3 respectively. The time segment D = 3 is 

the same length as the time segment τ = s, D = 5 is the same length as τ = 2s, and D = 7 is 

the same length as τ = 3s, but differently, our time segments include more than three 

observations. The setting of D is important to estimate differential equation models, and will 

be elaborated later.

Cutting time series into short segments can be implemented by constructing a time-delay 

embedding (Noakes, 1991), which uses overlapping samples to increase the precision of 

parameter estimation (Von Oertzen & Boker, 2010). Equation 3 is an example of a time-

delay embedding data matrix for D = 5 segments. Please note that we use D = 5 here just for 

demonstration. The value of D does not necessarily need to be 5. We will show how to select 

the value of D later. The example matrix includes n persons with p observations each, where 

x(i,j) stands for the observation obtained from person i at time j. Each row stands for a time 

segment including five observations. In standard terminology, we call this “a five 

dimensional time-delay embedding”.
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X 5 =

x(1, 1) x(1, 2) x(1, 3) x(1, 4) x(1, 5)
x(1, 2) x(1, 3) x(1, 4) x(1, 5) x(1, 6)

⋮ ⋮ ⋮ ⋮ ⋮
x(1, p − 4) x(1, p − 3) x(1, p − 2) x(1, p − 1) x(1, p)

x(2, 1) x(2, 2) x(2, 3) x(2, 4) x(2, 5)
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

x(n, 1) x(n, 2) x(n, 3) x(n, 4) x(n, 5)
x(n, 2) x(n, 3) x(n, 4) x(n, 5) x(n, 6)

⋮ ⋮ ⋮ ⋮ ⋮
x(n, p − 4) x(n, p − 3) x(n, p − 2) x(n, p − 1) x(n, p)

(3)

A time-delay embedding data set X(5) can be used to estimate the first order and second 

order derivatives. Let Y be a matrix with 3 columns respectively representing the 

displacement (x), the first order derivative (ẋ) and the second order derivative (ẍ)

Y =

x(1, 3) ẋ(1, 3) ẍ(1, 3)
x(1, 4) ẋ(1, 4) ẍ(1, 4)

⋮ ⋮ ⋮
x(1, p − 2) ẋ(1, p − 2) ẍ(1, p − 2)

x(2, 3) ẋ(2, 3) ẍ(2, 3)
⋮ ⋮ ⋮

x(n, 3) ẋ(n, 3) ẍ(n, 3)
⋮ ⋮ ⋮

x(n, p − 2) ẋ(n, p − 2) ẍ(n, p − 2)

and L be the loading matrix

L =

1 −2sτ ( − 2sτ)2/2

1 −1sτ ( − 1sτ)2/2
1 0 0

1 1sτ (1sτ)2/2

1 2sτ (2sτ)2/2

Then we model X(5) as

X(5) = Y LT

where LT is the transpose of the loading matrix L (Boker et al., 2003).

Structural Equation modeling of Differential Equations

Latent Differential Equation (LDE) uses structural equation modeling (SEM) to estimate 

differential equations. Specifically, the derivatives Y are treated as latent variables, and the 
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dimensions of the time-delay embedded data X(5) are treated as manifest variables. Figure 2 

shows an LDE model using 5 dimensional time-delay embedded data, in which the loadings 

of the time-delay embedded data set on the derivatives are fixed to be the L matrix, and the 

relationship between derivatives (η and ζ) is estimated. With the time-delay embedded data 

X(5) and the factor loadings L, one can estimate a differential equation as an ordinary SEM 

model. A reasonable concern is that the rows in the time-delay embedded data are not 

independent, which might result in alpha inflation. Counter to intuition, Von Oertzen and 

Boker (2010) demonstrated by mathematical derivation and simulation that instead of alpha 

inflation, using overlapping samples in this way can improve estimation and produce a 

smaller actual standard error in parameter estimation for linear second order differential 

equation models.

LDE is also capable of estimating the relationship among several dynamic processes 

simultaneously. Figure 3 shows a coupled LDE model, which includes two single LDE 

models and the coupling effect between them. Besides the parameters η and ζ, the coupled 

LDE model has several coupling parameters γ. These parameters estimate the intrinsic 

regulation of each variable, as well as the extrinsic drive from the other variable in the same 

system. The substantive meanings of these coupling parameters may be obscure to many 

readers. We will elaborate it in the next section.

Related Technical Issues

The Issue of Centering

Whether to center data before analysis is an important consideration. According to Equation 

1, x is the displacement of a variable from its equilibrium. So the effect on the second 

derivative is the deviation from the equilibrium rather than a raw score. Thus, we 

recommend conducting within-person centering around their equilibrium. If the equilibrium 

is known, the equilibrium value should be subtracted from each score. If the equilibrium is 

unknown, one reasonable alternative is to use an individual’s mean as an estimate of his or 

her equilibrium. By this procedure, the equilibrium or the estimated equilibrium is removed 

from analysis and leaves only fluctuations. Not centering data could result in serious bias in 

estimation, especially when there are large individual differences in equilibrium. The 

following simulation shows how centering improves estimation when there are individual 

differences in equilibrium.

Simulation.—We simulated a 200-occasion single oscillator with a frequency parameter η 
= −0.05 and damping parameter ζ = 0, separately for two persons. The difference between 

the equilibria of the two persons (Δequilibrium) was varied from 0.2 to 3.0 times the total 

variance. The simulation was repeated 100 times. The data were either centered or left 

uncentered before fitting a single LDE model (Figure 2). The mean and standard deviation 

of the 100 trials are presented in Table 1.

Result.—As shown in Table 1, when Δequilibrium is small, for example within 1.0 SD of 

the total variance, the estimated parameter based on uncentered data (−0.055, −0.053, 

−0.049, −0.045, −0.040) is close to the true value −0.05. However, as Δequilibrium 
increases, the bias in estimation grows. In contrast, the estimation based on within-person 
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centered data is not influenced by individual differences in equilibria, because these 

differences have already been removed by within-person centering. Within-person centering 

avoids bias induced by individual differences in equilibrium. There are other sources of bias, 

such as the amount of noise in data. So the estimated η is not exactly the same as the 

simulated value. A careful selection of smoothing parameter D can reduce bias induced by 

noise, which will be elaborated next.

The Issue of Smoothing

As mentioned before, the smoothing parameter D is critical in creating time-delay embedded 

data. Previously, the fit indices of LDE model, such as the Akaike information criterion 

(AIC) and the −2 log-likelihood (−2LL) have been recommended as criteria to set the 

parameter D (Boker & Nesselroade, 2002). Here we recommend a new criterion: if we plot 

the estimated frequency parameter η as a function of D, the optimal value for D occurs just 

after the estimated frequency parameter η becomes stable. The following simulation shows 

the details of this criterion and the advantage of using the estimated parameter value as a 

criterion compared with using fit indices.

Simulation.—A second order linear differential equation (as in Equation 1) with ζ = 0 and 

η set to −0.01, −0.05 or −0.01 was simulated with 200 observations. To investigate 

influences of noise in data, the signal-to-noise ratio (SNR) was set to 2:1, 1:1 or 1:2. SNR is 

a measure that compares the level of a signal of interest to the level of background noise. 

Here SNR is specified as the ratio of the variance of the simulated data to the variance of the 

normally distributed numbers added to the data. Then time-delay embedding matrices were 

constructed as in Equation 3, letting D vary from 3 to 30. A single LDE model was fitted 

separately for each time delay embedded matrix. Then the true and estimated η, model AIC, 

and −2LL were plotted against the embedding dimension D. Figure 4 shows the time series 

plot of the simulated data and how the estimated value of η, AIC and −2LL changed with 

the embedding dimension D. Figures 4(a), (b) and (c) plot η = −0.005 for all three SNR 

conditions, and (c) and (d) plot η = −0.01 with SNR = 1 : 1, and η = −0.001 with SNR = 1 : 

1.

Results.—As shown in the second column of Figure 4, under all simulation conditions, the 

accurate estimate of η occurs just after the estimated η becomes stable. For example, for 

condition (a), the optimal value of D is around 8, and for condition (e), this value is around 

13. However, in the plots of D against AIC and −2LL (see the third and the fourth columns 

of Figure 4), there is nothing special about these optimal values. Most of the time, AIC and 

−2LL are linear functions of D. The result that the model fit index (AIC and −2LL) is not a 

good criterion is not surprising, because theoretically it is a measure of the relative goodness 

of fit of a statistical model given a set of data. However, by altering dimensions of time delay 

embedding, what we actually do here is alter the number of rows of data used to fit a given 

model. So AIC and −2LL are not suitable criteria in this case. We recommend to use the 

estimated η as the criteria instead of the model fit index to select the value of D.

This simulation also shows how SNR and the value of η influences the choice of D. If we 

decrease the SNR, i.e., increase the noise, then only a narrow range of D values could 
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produce reasonable estimates of η. For example, from condition (a) to (c), the SNR 

decreases from 2:1 to 1:2, and the choice of D shrinks from a range with 8 as its lower 

bound to a range with 18 as its lower bound. This result implies that when there is more 

noise in the data, one must be more careful in choosing D, since the proper values of D are 

limited. As the true η becomes closer to zero, i.e., the frequency becomes slower, the value 

of D that produces the best estimate of η increases. For example, in condition (d), η = −0.01 

and the optimal D is around 6, in condition (b), η = −0.005 and the optimal D is around 12, 

and in condition (e), η = −0.001 and the optimal D is around 15. This result suggests that if a 

high frequency of fluctuations is expected, it is better to use a smaller D.

Simulation work supported our idea that the optimal D occurs when the estimated η 
becomes stable. Note that D values within the stable range are all acceptable. We suggested 

the starting value of the stable range because it is the smallest D to obtain an accurate 

estimation. A smaller D means a shorter time segment to calculate derivatives, which will 

give us more data to use. Also note that the width of the stable range varies under different 

conditions: sometimes wider, sometimes narrower, depending on the frequency of the 

oscillation and the amount of noise. In extreme cases, for example, very short oscillations, 

the “stable” state holds only at a single value of D, then the estimation goes into a 

precipitous decline. In those cases, “the inflection point” is a better term than “the start of 

the stable range”.

Knowing how to center and smooth data is enough for the need of implementing single LDE 

models. However, when the system becomes more complicated, we need to know more. The 

next two sections will deal with coupled systems and systems with moderators.

Coupled Systems

A coupled system is a system with two variables interacting with each other or where one 

influences the other. Figure 3 shows a bi-directional coupled LDE model, which includes 

two self-regulating systems and some coupling effect between them. The meaning of the 

frequency parameter η and the damping parameter ζ in the self-regulating systems have 

been explained before. However, the interpretation of the coupling parameters may be 

unclear to many readers. We now clarify the meaning of the coupling parameters by 

simulation.

To investigate how one variable influences the other variable in a coupled system, two 

variables x and y were simulated according to Equation 4, where γx and γẋ represent a 

unidirectional coupling effect of x and ẋ on ÿ.

ẍ = ηxx + ζxẋ + ϵx
ÿ = ηyy + ζyẏ + γxx + γẋẋ + ϵy

(4)

To illustrate the effects of unidirectional coupling, γx and γẋ were by turns set to zero and 

the results are plotted in Figure 5. Figure 5a shows that γx = 0 and γẋ > 0 indicates a phase 

synchronizing effect of x on y (0° offset), while γx = 0 and γẋ < 0 indicates a phase 

desynchronizing effect (180° offset). The absolute value of γẋ determines how fast y will be 

synchronized or desynchronized by x. A large absolute value indicates a strong effect of x 
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on y and will result in a quickly synchronizing and desynchronizing system. And a small 

absolute value will take a long time before y will be synchronized or desynchronized by x. 

Figure 5b shows that γẋ = 0 and γx > 0 indicates y is dragged back by x (270° offset), while 

γẋ = 0 and γx < 0 indicates y is pushed forward by x (90° offset). Again, the absolute value 

of γx determines how rapidly the system reaches a steady state.

Next both γx and γẋ were set to be nonzero in order to understand their synergistic effect. 

As Figure 5c shows, the combination results in some offset between x and y. The exact 

degree of offset depends on the sign and the relative size of γx and γẋ. It is hard to tell the 

differences between these conditions by eye. The next question is whether the coupled LDE 

models are able to estimate the coupling parameters accurately. Again, we will use 

simulation to answer this question.

Two 200-occasion coupled processes were simulated (x and y), where ηx = −0.05, and ηy 

was set to be one of the values: −0.01, −0.02, −0.03, −0.04, −0.05, −0.06, −0.07, −0.08, and 

−0.09. To test the coupling effect of x on ÿ, γx was set to a value from an equal interval 

sequence of length 100 with min = −0.05 and max = 0.05, and γẋ was set to zero. To test the 

coupling effect of ẋ on ÿ, γẋ was selected from an equal interval sequence of length 100 

with min = −0.2 and max = 0.2, and γx was set to zero. Table 2 is a summary of all 1800 

simulated conditions. The rationale for choice of the range of γx and γẋ will be explained in 

detail in the discussion part of this section.

Next, a coupled LDE model was fit to the simulated data. The true values of the coupling 

parameters from the simulation are plotted against the estimated values of the coupling 

parameters from the LDE model in Figure 6 and 7. The closer these points are to the 45° 

slope line, the closer the estimated values are to the true values.

As Figures 6 and 7 show, the accuracy of the estimation of γẋ and γx depends in part on the 

closeness of ηx and ηy. When ηx = ηy, the estimation breaks down. Upon reflection, the 

result that the coupling parameters cannot be estimated when the two variables have the 

same self-regulating frequency is not surprising. If the two variables have the same intrinsic 

frequency, it is impossible to determine whether there is an interaction between them or if it 

is the result of two same frequency self-regulations. Consider the motion of your legs while 

walking. If we only have the legs’ movement data, we cannot tell whether each leg has its 

own drive, whether they drive each other, or whether there is an external synchronizing 

driver. The equal frequency problem here is just like the collinearity problem in regression. 

We cannot put two completely correlated variables into one regression. However, human 

behavior is so complicated that behavioral variables are rarely perfectly phase locked and 

synchronized together with same frequency. So researchers in social science may encounter 

the equal frequency problem only rarely.

Next, notice that accurate estimation of both γẋ and γx happens only in a certain range of γ 
values in our simulation. For γẋ, this range is −0.1 ~ 0.1, which would vary depending on η 
and the difference between two ηs. Exceeding this range, the estimation becomes inaccurate. 

And for γx, the range is −0.02 ~ 0.02. Even within this range, the estimate of γx is 

systematically larger than the true value; the majority of the points are above the 45° line. 
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Also note that the range reported here may be specific to the particular simulated condition 

(η ≈ −0.05). In other frequency conditions, the range of accurately estimated γ might differ 

from that reported here. This simulation implies that some boundary restrictions on the 

relative value of coupling parameters γ in compared with the value of η are needed in order 

to obtain accurate estimations. However, considering the size of η, the range of γ is quite 

wide, indicating that the estimation fails only when the coupling effect (x → ÿ) is much 

larger than the regulating effect (y → ÿ). In that case, researchers may want to reconsider the 

relationship between two variables. Maybe they are not two coupled processes, but one is 

directly driving the other. In that case, they should be considered as one process. For 

example, measures of husband’s happiness and measures of wife’s happiness might be two 

coupled processes, and measures of husband’s happiness and measures of his self-esteem 

might be a single process with two entities.

Adding Moderators

Moderator variables are widely used in psychological research when studying multiple 

heterogeneous groups or multiple occasions of measurement. In dynamical system analysis, 

moderators are of particular importance since individuals could express individual 

differences in multiple ways: frequency and amplitude of intrinsic regulation, and pattern of 

coupling.

Equation 5 shows the logic of moderator analysis, in which x stands for a predictor variable, 

y an indicator variable, and z a moderator variable. The subscript i refers to person i, and j 
refers to occasion of measurement j. In Equation 5, b0i is set to be zero because we have 

centered all variables, and the intercept (i.e. equilibrium value) is thus fixed to zero. The 

residual part ∈1ixij + eij is represented by ∈ij .

yij = b0i + b1ixij + eij
b0i = μ0 + c0zi + ϵ0i
b1i = μ1 + c1zi + ϵ1i
yij = μ0 + c0zi + ϵ0i

0
+ μ1xij + c1zixij + ϵ1ixij + eij

ϵij
= μ1 + c1zi xij + ϵij

(5)

By substituting Equation 1, in which ẍ is the indicator, x and ẋ are the predictors, into 

Equation 5, a differential equation with moderator z can be formed (Equation 6). Note that 

the moderator z is not a repeated-measure variable, so it only has subscript i but not j. So for 

a person i with moderator zi, her individual frequency parameter should be η0 + η1zi, and 

her damping parameter should be ζ0 + ζ1zi. Since each person has a zi score, their 

oscillation will have an individualized frequency and damping.

ẍij = η0 + η1zi xij + ζ0 + ζ1zi ẋij + ϵij (6)

Figure 8 illustrates how Equation 6 is implemented in a single LDE model. D1 and D2 are 

placeholders, with zero mean and zero variance. The coefficient of the direct pathway from x 
to ẍ (η0) is estimated, the first coefficient of the indirect pathway is fixed to be the value of 
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the moderator (zi), and the second coefficient η1 is to be estimated. Thus the indirect 

pathway represents the moderating effect zi × η1. Some SEM programs, e.g., OpenMx 

(Boker et al., 2011), can specify the coefficient of a pathway to be values that are specific to 

each row in the data matrix. The same setting is made for the direct and indirect pathways 

from ẋ to ẍ. Significant η1 or ζ1 indicates a significant moderating effect.

Data Source

LDE and Coupled LDE models are applicable to a variety of psychological phenomena and 

human dynamic systems. The example analysis will model the dynamics between the 

changes in ovarian hormones and the fluctuations in eating in a sample of young women to 

illustrate how an LDE model can be implemented with empirical data. Previous studies 

(Edler, Lipson, & Keel, 2007; Klump, Culbert, Edler, & Keel, 2008; Klump et al., 2012) 

have used primarily regression-based methods to show that changes in estradiol 3 are 

associated with changes in eating behavior across the menstrual cycle. These associations 

appear to be independent of daily changes in negative affect (Edler et al., 2007; Klump et al., 

2008), although no study to date has investigated the dynamic coupling between these 

variables, or examined the extent to which negative affect moderates (rather than mediates) 

these associations. An LDE coupled model analysis with moderators would shed light on 

these issues by estimating relationships between estradiol, eating, and negative affect and 

determining the nature and direction of associations between the variables.

The example data comes from an on-going study at Michigan State University (Klump et al., 

2012) that includes 198 female twins who provided 45-days of behavioral ratings and 

salivary hormone samples. Variables of interest for the current analysis include daily salivary 

estradiol levels and ratings of emotional eating (a measure of the tendency to eat in the 

presence of negative emotions, using the Emotional Eating subscale of the Dutch Eating 

Behavior Questionnaire, Van Strien, Frijters, Bergers, & Defares, 1986) and negative affect 

(Negative Affectivity subscale of Positive and Negative Affect Schedule, Watson, Clark, & 

Tellegen, 1988).

Step-by-Step Analysis and Results

Step 1: Centering data.—One hundred and ninety-eight participants completed the 

experiment. Of these, 181 participants had ovulatory menstrual cycles. Since ovulation is a 

key period of hormonal change during the menstrual cycle, and women who do not ovulate 

evidence minimal changes in estradiol levels, the data of those who did not ovulate were 

excluded from analysis. Table 3 presents the mean and the standard deviation of the 

variables of interest. Within-person centering was conducted to remove individual 

differences in equilibrium.

Step 2: Time delay embedding.—The parameters D in time-delay embedding can affect 

estimation of derivatives. To find an optimal embedded dimension D, we tried a range of 

values (5 ≤ D ≤ 15) and fit the single oscillator LDE model to the eating data for each value 

of D. We use the range 5 – 15 based on experience. Readers can try from 3 to the total 

number of measures in your own data. Figure 9 shows that the value of estimated η starts to 

become stable around 9. So the time-delay embedding dimension D was set to 9. Note that 
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Figure 9 is very similar to the simulation plot Figure 4a, which supports the utility of the 

simulation results for applications to real data.

Step 3: Fit a single LDE model.—If we use D = 9 to embed the data, we obtain 

parameter estimates η = −0.026 (p < .01), and ζ = −0.059 (p < .01). The significant negative 

η suggests that if a woman emotionally eats more than normal, there will be a self-regulation 

process driving her to eat less and back to the equilibrium; similarly when she emotionally 

eats less than normal, there will be also a force pushing her to eat more. The significant 

negative ζ suggests that a sudden increase in emotional eating will produce a stronger 

tendency to reduce emotional eating than a slow increase; similarly a sudden decrease will 

produce a stronger tendency to increase than a slow decrease. Substituting η and ζ into 

Equation 2 gives an estimated period of emotional eating oscillation of approximately 40 

days. The same procedure was conducted for estradiol. The estimated η = −0.039 (p < .01), 

and the estimated ζ = −0.027 (p > .05). The period of estradiol change is approximately 27 

days.

Step 4: Fit a coupled LDE model.—Two separate coupled LDE models were fit to test 

whether estradiol and negative affect have coupling effects on emotional eating. Results are 

presented in Table 4, in which the EAT-EST Model estimates the relationship between 

emotional eating and estradiol levels, and the EAT-NA Model estimates the relationship 

between emotional eating and negative affect. None of the coupling effects between eating 

and negative affect is significant, indicating that eating and negative affect are not coupled 

with each other. In comparison, the coupling effect between estradiol levels and eating is 

significant, γĖst = .049 (p < .05), and γĖat = −.062 (p < .05), indicating that estradiol levels 

and emotional eating are coupled with each other. Next, all γ parameters in the EAT-EST 

Model were set to zero to specify an uncoupled model. As shown in Table 5, compared with 

the completely coupled model, the uncoupled model fit worse, with higher AIC and Δχ2/Δdf 
= (17.2 + 0.6)/4 = 4.45 > 3.8. So the coupling effect between estradiol levels and eating was 

supported by AIC and also by the likelihood ratio difference test. There is no difference 

between the χ2 of the Coupled Models 1 and 2, Δχ2/Δdf = 0.6/2 = 0.3 < 3.8. So considering 

parsimony (AIC), Coupled Model 2 is the best model, in which estradiol level and eating are 

only coupled by their first derivatives. The results of model comparison are consistent with 

the significance test.

The coupled LDE model suggests that estradiol and emotional eating are coupled with each 

other. Since they are coupled by their first derivatives, as suggested by simulations, estradiol 

synchronizes eating, and eating desynchronizes estradiol, so the two regulation process are 

not completely phase locked. To illustrate the coupling effect between estradiol and 

emotional eating, we simulated two coupled time series using parameters in Table 4, and 

plot them on the left panel of Figure 10. On the right panel, we present the population 

aggregated mean of standardized estradiol level and emotional eating score in each phase of 

menstrual cycle (ovulatory, mid-luteal, premenstrual and follicular). As shown in the figure, 

emotional eating reaches its peak after estradiol reaches its peak. In the menstrual cycle, this 

is the time after ovulation but before the next menstruation. This result is consistent with 
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previous findings (Klump et al., 2012) that emotional eating scores were highest during the 

mid-luteal phase which occurs after ovulation but before next menstruation.

Step 5: Fit a moderated LDE.—The coupled LDE model suggested that negative affect 

has no coupling effect on emotional eating. It is possible, however, that negative affect 

influences eating indirectly as a moderator of the intrinsic regulation of eating or as a 

moderator of estradiol’s effect on eating. We consequently tested the moderator effect of the 

mean negative affect score (meanNA), which is an estimate of the average level of negative 

emotion across the 45 days of the study, in the Eating single LDE model, and in the Eating-

Estradiol coupled LDE model.

As shown in Table 6, the average level of negative affect has a significant moderating effect 

in the single LDE model, ηEat_1 = −.016 (p < .05). The significant negative ηEat_1 implies 

that higher average levels of negative affect are associated with faster frequency of 

emotional eating oscillation. Figure 11 plots the emotional eating regulation of two typical 

participants. The participant with meanNA=−1.15 has a lower frequency of oscillation, and 

the participant with meanNA=1.13 has a higher frequency of oscillation.

The moderating effect of meanNA on the coupling between two processes was also tested. 

The procedure was similar to testing the moderation of η, but instead influenced the 

coupling parameters γĖst and γĖat in Figure 3. Results from this moderated coupled LDE 

model suggest that meanNA has a significant moderating effect on the coupling between 

estradiol and eating, as show in Table 6, γĖst_1 = .590 (p < .01), the same direction with 

γĖst_0. This implies that a high NA person’s emotional eating behavior is more strongly 

coupled with hormone estradiol, whereas a low NA person’s emotional eating behavior is 

less affected by estradiol.

Can we trust this Differential equation model?

With the help of an LDE model, we found some interesting relations between variable 

derivatives. Yet there exist some potential doubts: are these results an artifact of the method 

that we employed to calculate the derivatives rather than a property of the data? Can we trust 

that these findings are not just numerical coincidence? To address these questions, we 

employed permutation tests (Fisher, 1935; Welch, 1990), frequently called surrogate data 

tests (Theiler, Eubank, Longtin, & Galdrikian, 1992) in the dynamical systems literature, 

using two ways of shuffling data.

Within-person Shuffling was used to remove the time dependent information in the time 

series. We randomly rearranged the order of observations for each person. This removes the 

time dependent information in the time series (Schreiber & Schmitz, 2000). In this way, we 

guarantee that a null hypothesis of no internal dynamic process is true, and therefore a 

significant η should only be detected at approximately the rate specified by the chosen α 
level. Data were shuffled in this way 1000 times and a single LDE model was fitted to the 

shuffled data. Thus, we obtained 1000 estimates of the η parameter when the null hypothesis 

was true. Among these 1000 models, 890 did not converge, 67 converged but had a positive 

η which indicates no oscillation and self-regulation. Thus, the probability of obtaining a 

negative estimate of η is 1 − (895 + 67)/1000 = 3.8% < 5%. In summary, in the un-shuffled 
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data, the LDE model detected a significant negative η; and when the dynamics were 

destroyed, the model did not detect it. Within-person shuffling supported the use of LDE 

models to estimate self-regulation.

Between-person Shuffling was used to remove the interaction between two dynamic 

processes. We used one randomly selected person’s hormone levels to predict another 

randomly selected person’s emotional eating scores (we made sure they were not twins), 

without changing the order of observations within person. In this way, we guaranteed that 

the null hypothesis of no coupling between estradiol levels and emotional eating was true, 

while the self-regulation of each process was retained. Thus after shuffling, the coupled LDE 

model should estimate η and ζ the same as before, while γs should be distributed around a 

mean of zero, implying no coupling effect. Data was shuffled in this way 1000 times and a 

coupled LDE model was fitted to the shuffled data. Thus, we obtained 1000 estimates for 

each parameter in the coupled LDE model. Figure 12 plots the distribution of these 1000 

parameter estimates from the shuffled data, the dashed vertical line marks its 95% 

confidence interval around zero, and the solid vertical line marks the parameter estimate 

from the original un-shuffled data. As expected, all η and ζ stayed the same after shuffling, 

while the γs had a peak at zero with a confidence interval excluding the significant effect we 

found from the original data. Between-person shuffling supported the use of coupled LDE to 

estimate coupling effects between two regulating behaviors.

Data shuffling enhanced our confidence in LDE models: they were unlikely to find 

dynamics in time series that did not have dynamics and they were unlikely to find coupling 

between two unrelated variables.

Discussion

The present study used simulations and a set of real data to explore several issues related to 

differential equation models. We recommended an innovative way to find the proper time-

delay embedding dimension D, investigated the conditions for accurate coupling parameter 

estimation, explored the use of a moderated LDE model in real data, and created a between-

person shuffling method to test the coupled LDE models under the null-hypothesis.

This article demonstrated a procedure for implementing basic LDE models. Readers might 

have some concerns about the real situations, such as “what if there is no oscillation”,“what 

if phase and amplitude frequently reset”, and so on. In fact, LDE models can handle these 

concerns. They specify the relationship between derivatives, and thus shed light on a 

system’s change in velocity given its current location and velocity. Implementing an LDE 

model does not require a full period of oscillation or even any oscillation at all. For example, 

the study on the well-being of recently bereaved widows (Bisconti et al., 2004) does not 

include a periodical oscillation, since this kind of situation cannot happen again and again. 

Also phase and amplitude resetting does not matter, since the relationship between 

derivatives would not change because of resetting (Deboeck, Boker, & Bergeman, 2008). 

This is an advantage of differential equation modeling over other trajectory estimation 

methods.
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Another concern readers might have is the sufficient number of measures for implementing 

this method. To calculate a second order derivative requires a minimum of three observations 

(Deboeck, Montpetit, Bergeman, & Boker, 2009). However, it has been proved that using 

only three occasions of measurement to estimate the derivatives might have biased estimates 

of the dynamical parameters, and measurement error can be mistaken as high frequency 

signal (Boker & Nesselroade, 2002). So usually more than three occasions of measurement 

are recommended, with the interval between occasions less than 1/8 of the length of a single 

period of oscillation (Boker et al., 2003). With a large number of measures, each participant 

would have several rows of data, which allows a random effect of individual in parameter 

estimation. In other words, each participant could have his or her own dynamical parameters. 

However, if each participant only has few occasions of measurement, we must aggregate 

people together to estimate an average value of each parameter.

Besides these basic concerns, some readers might want to explore advanced topics. For 

example, the equilibrium might not be constant. In that case, researchers can first construct a 

model for equilibrium change. The type of model will depend on their theory for the 

system’s equilibrium. Then an LDE model can be used to model the residuals from the 

equilibrium model (Boker & Bisconti, 2006). Another expansion of LDE models is LDE 

models with random effects. Individuals might have distinct dynamics, such as personalized 

frequency parameters and damping parameters. Advanced users can specify the parameters 

of LDE models with random effects of individual differences. Another concern is that the 

linear differential equation introduced here might not be sufficient to describe 

nonstationarities in the data. For example, the η and ζ parameters may change along with 

time. The issue of nonstationarity is beyond the scope of this article. People who are 

interested can read some articles mainly focused on non-linear and nonstationary dynamical 

systems (e.g., Busemeyer & Townsend, 1993; Boker & Graham, 1998; Boker, Xu, Rotondo, 

& King, 2002; Butner et al., 2005; Chow, Ferrer, & Nesselroade, 2007; Finan et al., 2010).

Limitations and Future Directions

The example data only include 45 days of observations. The total interval of observation is 

shorter than two complete cycles, which is often regarded as a strengthening condition for 

the period analysis. For the menstrual cycle, we know it is around 28 days, which is close to 

our estimation. For emotional eating behavior, we have no independent confirmation that it 

follows a periodic cycle of 40 days. However, what we can conclude is that emotional eating 

behavior is a self-regulating system. People adjust their future behavior based on their 

current state.

Another limitation is related with the coupled LDE models. As we discussed in the issue of 

coupling, the coupled LDE model still needs to be explored, especially with respect to 

restrictions on parameter setting, such as boundaries for γ parameters, and the difference 

between two ηs. This study explored several conditions and found the approximate 

boundaries under those conditions. More general conclusions and an algebraic proof of this 

requirement are needed.

Hu et al. Page 15

Psychol Methods. Author manuscript; available in PMC 2020 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

Funding for this work was provided in part by NIH Grant No. 5R01MH082054.

References

Amazeen PG, Amazeen EL, & Turvey MT (1998). Timing of behavior: Neural, computational, and 
psychological perspectives In Rosenbaum DA & Collyer CE (Eds.), Dynamics of human 
intersegmental coordination: Theory and research. Cambridge, MA: MIT Press.

Beek PJ, Schmidt RC, Morris AW, Sim M-Y, & Turvey MT (1995). Linear and nonlinear sti ness and 
friction in biological rhythmic movements. Biological Cybernetics, 73 , 499–507. [PubMed: 
8527496] 

Beltrami EJ (1987). Mathematics for dynamic modeling. NY: Academic Press.

Bisconti TL, Bergeman CS, & Boker SM (2004). Emotional well-being in recently bereaved widows: a 
dynamical systems approach. Journal of Gerontology: Psychological Sciences, 59 (4), 158–167.

Boker SM, & Bisconti TL (2006). Dynamical systems modeling in aging research In Bergeman CS & 
Boker SM (Eds.), Methodological issues in aging research (p. 185–229). Mahwah, NJ: Lawrence 
Erlbaum Associates, Inc.

Boker SM, & Graham J (1998). A dynamical systems analysis of adolescent substance abuse. 
Multivariate Behavioral Research, 33 (4), 497–507.

Boker SM, Neal M, Maes H, Wilde M, Spiegel M, Brick T, et al. (2011). Openmx: An open source 
extended structural equation modeling framework. Psychometrika, 76 (2), 306–317. [PubMed: 
23258944] 

Boker SM, Neale MC, & Rausch JR (2003). Latent differential equation modeling with multivariate 
multi-occasion indicators In van Montfort HOK & Satorra A (Eds.), Recent developments on 
structural equation models: Theory and applications (p. 151–174). Amsterdam: Kluwer.

Boker SM, & Nesselroade JR (2002). A method for modeling the intrinsic dynamics of intraindividual 
variability: Recovering the parameters of simulated oscillators in multi-wave panel data. 
Multivariate Behavioral Research, 37 (1), 127–160. [PubMed: 26824172] 

Boker SM, Xu M, Rotondo JL, & King K (2002). Windowed cross–correlation and peak picking for 
the analysis of variability in the association between behavioral time series. Psychological 
Methods, 7 (1), 338–355. [PubMed: 12243305] 

Box GEP, Jenkins GM, & Reinsel GC (1970). Time series analysis: Forecasting and control (4th ed.). 
A John Wiley and Sons, Inc., Publication.

Busemeyer JR, & Townsend JT (1993). Decision field theory: A dynamic cognition approach to 
decision making. Psychological Review, 100 , 432–459. [PubMed: 8356185] 

Butner J, Amazeen PG, & Mulvey GM (2005). Multilevel modeling of two cyclical processes: 
extending differential structural equation modeling to nonlinear coupled systems. Psychological 
Methods, 10 (2), 159–177. [PubMed: 15998175] 

Chow S-M, Ferrer E, & Nesselroade JR (2007). An unscented kalman filter approach to the estimation 
of nonlinear dynamical systems models. Multivariate Behavioral Research, 42 , 283–321. 
[PubMed: 26765489] 

Chow S-M, Ram N, Boker SM, Fujita F, & Clore G (2005). Emotion as a thermostat: representing 
emotion regulation using a damped oscillator model. Emotion, 5 (2), 208–225. [PubMed: 
15982086] 

Deboeck PR, Boker SM, & Bergeman C (2008). Modeling individual damped linear oscillator 
processes with differential equations: Using surrogate data analysis to estimate the smoothing 
parameter. Multivariate Behavioral Research, 43 (4), 497–523. [PubMed: 19829740] 

Deboeck PR, Montpetit MA, Bergeman CS, & Boker SM (2009). Describing intraindividual variability 
at multiple time scales using derivative estimates. Psychological Methods, 14 (4), 267–386.

Duncan TE, Duncan SC, Strycker AL, Li F, & Alpert A (1999). An introduction to latent variable 
growth curve modeling: Concepts, issues, and applications. New Jersey, Mahwah: Lawrence 
Erlbaum Associates, Inc.

Hu et al. Page 16

Psychol Methods. Author manuscript; available in PMC 2020 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Edler C, Lipson SF, & Keel PK (2007). Ovarian hormones and binge eating in bulimia nervosa. (Vol. 
37) (No. 1). Department of Psychology, University of Iowa, IA 52242, USA..

Finan PH, P. H., Hessler EE, Amazeen PG, Butner J, Zautra AJ, & Tennen H (2010). Oscillations in 
daily pain prediction accuracy. Nonlinear Dynamics, Psychology, and Life Sciences, 14 (1), 27–
46.

Fisher RA (1935). The design of experiment. New York: Hafner.

Hajek O (1968). Dynamical systems in the plane. Boston, MA: Academic Press.

Klump K, Culbert KM, Edler C, & Keel PK (2008). Ovarian hormones and binge eating: Exploring 
associations in community samples. Psychological Medicine, 38 (12), 1749–1757. [PubMed: 
18307829] 

Klump K, Keel PK, Racine S, Burt SA, Neal M, Sisk CL, et al. (2012, 8 13). The interactive effects of 
estrogen and progesterone on changes in binge eating across the menstrual cycle. Journal of 
Abnormal Psychology. Available from Advance online publication. doi: 10.1037/a0029524

McCall RB, & Appelbaum MI (1973). Bias in the analysis of repeated-measures designs:some 
alternative approaches. Child Development, 44 (3), 401–415.

Montpetit MA, Bergeman CS, Deboeck PR, Tiberio SS, & Boker SM (2010). Resilience-as-process: 
negative affect, stress, and coupled dynamical systems. Psychology and Aging, 25 (3), 631–640. 
[PubMed: 20853969] 

Noakes L (1991). The takens embedding theorem. International Journal of Bifurcation and Chaos, 4 
(1), 867–872.

Odgers L, Candice, Mulvey EP, Skeem JL, Gardner W, Lidz CW, & Schubert C (2009). Capturing the 
ebb and flow of psychiatric symptoms with dynamical systems models. The American Journal of 
Psychiatry, 166 (5), 575–582. [PubMed: 19369320] 

Ong AD, Bergeman CS, & Boker SM (2009, 12). Resilience comes of age: defining features in later 
adulthood. Journal of Personality, 77 (6), 1777–1804. [PubMed: 19807864] 

Raudenbush SW, & Bryk AS (2002). Hierarchical linear models: applications and data analysis 
methods (2nd ed ed., Vol. 1). Thousand Oaks: Sage Publications.

Schreiber T, & Schmitz A (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142 , 346–
382.

Theiler J, Eubank S, Longtin A, & Galdrikian B (1992). Testing for nonlinearity in time series: the 
method of surrogate data. Physica D: Nonlinear Phenomena, 58 , 77–94.

Van Strien T, Frijters JER, Bergers GPA, & Defares PB (1986). Dutch eating behaviour questionnaire 
for assessment of restrained, emotional and external eating behaviour. International Journal of 
Eating Disorders, 5 , 295–315.

Von Oertzen T, & Boker SM (2010). Time delay embedding increases estimation precision of models 
of intraindividual variability. Psychometrika, 75 (1), 158–175. [PubMed: 23335820] 

Watson D, Clark LA, & Tellegen A (1988). Development of validation of brief measures of positive 
and negative affects: The panas scales. Journal of Personality and Social Psychology, 47 , 1063–
1070.

Welch WJ (1990). Construction of permutation tests. Journal of American Statistical Association, 85 , 
693–698.

Hu et al. Page 17

Psychol Methods. Author manuscript; available in PMC 2020 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Illustration of the meaning of smoothing parameter D and τ.
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Figure 2. 
Single Latent Differential Equation Model (Single LDE).
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Figure 3. 
Coupled Latent Differential Equation Model (Coupled LDE).
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Figure 4. 
Relationship between D and Estimated η, AIC and −2LL.

Note: In each condition (a, b, c, d, e), from left to right, the first plot presents the simulated 

time series, in which the horizontal axis stands for time and the horizontal dash line 

indicates the equilibrium; the second plot presents how the estimated η change with the time 

delay embedding dimension D, in which the horizontal dash line indicates the true value of 

η; the third plot presents model AIC against D; and the last plot presents −2LL against D.
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Figure 5. 
Demonstration of γ Parameters.

Note: The horizontal axis stands for time, the vertical axis stands for score, the solid line 

denotes x and the dashed line denotes y.
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Figure 6. 
The Estimated γẋ and the True Value of γẋ.

Note: The horizontal axis stands for the simulated value of γẋ and the vertical axis stands 

for the estimated value of γẋ.
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Figure 7. 
The Estimated γx and the True Value of γx.

Note: The horizontal axis stands for the simulated value of γx and the vertical axis stands for 

the estimated value of γx.
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Figure 8. 
Single LDE Model with Moderator.
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Figure 9. 
Time-delay Embedded D and Estimated η of Emotional Eating.
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Figure 10. 
Simulated and Aggregated Time Series of Emotional Eating and Estradiol.
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Figure 11. 
The Emotional Eating Regulation of Two Example Participants.
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Figure 12. 
Shu e Data Between Person and Fit a Coupled LDE.

Note: the density plot shows the distribution of 1000 estimated parameters based on the 

shuffled data, the dashed vertical line marks its 95% confidence interval, and the solid 

vertical line indicates the estimated parameters base on the original data.
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Table 1

Distance between two person’s equilibria and estimated frequency parameter using uncentered and centered 

data.

η Simulated η estimated with uncentered data η estimated with centered data

Δequilibrium = 0.2SD η = −0.05 −0.055(0.0011) −0.056(0.0010)

Δequilibrium = 0.4SD η = −0.05 −0.053(0.0013) −0.056(0.0012)

Δequilibrium = 0.6SD η = −0.05 −0.049(0.0015) −0.056(0.0011)

Δequilibrium = 0.8SD η = −0.05 −0.045(0.0012) −0.056(0.0011)

Δequilibrium = 1.0SD η = −0.05 −0.040(−0.0013) −0.056(0.0012)

Δequilibrium = 1.2SD η = −0.05 −0.035(0.0012) −0.056(0.0012)

Δequilibrium = 1.4SD η = −0.05 −0.031(0.0013) −0.056(0.0012)

Δequilibrium = 2.0SD η = −0.05 −0.021(0.0009) −0.056(0.0009)

Δequilibrium = 3.0SD η = −0.05 −0.012(0.0004) −0.056(0.0011)
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Table 2

Simulation conditions based on Equation 5.

test γx test γẋ

η Conditon ηx ηy γx γẋ γx γẋ

1 −0.05 −0.01 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

2 −0.05 −0.02 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

3 −0.05 −0.03 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

4 −0.05 −0.04 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

5 −0.05 −0.05 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

6 −0.05 −0.06 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

7 −0.05 −0.07 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

8 −0.05 −0.08 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

9 −0.05 −0.09 (−0.05 – 0.05) 0 0 (−0.2 – 0.2)

Note: (−0.05 – 0.05) stands for a value from an equal interval sequence of length 100 with min = −0.05 and max = 0.05; and (−0.2 – 0.2) stands for 
a value from an equal interval sequence of length 100 with min = −0.2 and max = 0.2
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Table 3

Descriptive statistics of variables of interest (n=181, measures=45)

Estradiol level (pg/ml) Eating Negative Affect

N 6328 7639 7634

Missing 1817 506 511

Mean 3.18 1.35 15.31

S.D. 2.12 0.49 5.56
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Table 4

Parameters estimation of coupled differential equation model.

EAT-EST Model EAT-NA Model

Parameter Estimation S.E. Parameter Estimation S.E.

ηEat −.025 .004 ηEat −.018 .006

ζEat −.069 .021 ζEat −.074 .004

ηEst −.037 .004 ηNA −.058 .008

ζEst −.026 .016 ζNA −.050 .023

γEst .002 .003 γNA −.014 .008

γĖst .049 .016 γṄA .022 .041

γEat −.002 .004 γEat .010 .006

γĖat −.062 .022 γĖat .011 .023
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Table 5

Fit indices for uncoupled model and coupled models.

Coupling parameters χ2 df Δ − 2LL Δdf AIC RMSEA

Coupled Model 1 γEst, γĖst, γEat, γĖat 2569.8 149 0 0 2271.8 0.049

Coupled Model 2 γĖst, γĖat 2570.4 151 0.6 2 2268.4 0.049

Uncoupled Model - 2587.6 153 17.2 2 2281.6 0.049
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Table 6

Moderating effect of average negative affect.

Model Parameter Estimation S.E.

EAT Single LDE with moderator meanNA ηEat_0 −.016 .004

ηEat_1 −.011 .003

ζEat −.046 .024

EAT-EST Coupled LDE with moderator meanNA ηEst −.035 .004

ζEst −.012 .022

ηEat −.008 .004

ζEat −.070 .023

γĖst_0 .427 .042

γĖst_1 .590 .045

γĖat_0 −.046 .025

γĖat_1 −.010 .018
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