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Neuroendocrine Mechanisms Governing Sex Differences in
Hyperalgesic Priming Involve Prolactin Receptor Sensory
Neuron Signaling
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Many clinical and preclinical studies report higher prevalence and severity of chronic pain in females. We used hyperalgesic
priming with interleukin 6 (IL-6) priming and PGE, as a second stimulus as a model for pain chronicity. Intraplantar IL-6
induced hypersensitivity was similar in magnitude and duration in both males and females, while both paw and intrathecal
PGE, hypersensitivity was more persistent in females. This difference in PGE, response was dependent on both circulating
estrogen and translation regulation signaling in the spinal cord. In males, the duration of hypersensitivity was regulated by
testosterone. Since the prolactin receptor (Prlr) is regulated by reproductive hormones and is female-selectively activated in
sensory neurons, we evaluated whether Prlr signaling contributes to hyperalgesic priming. Using APRL, a competitive Prlr
antagonist, and a mouse line with ablated Prir in the Nav1.8 sensory neuronal population, we show that Prlr in sensory neu-
rons is necessary for the development of hyperalgesic priming in female, but not male, mice. Overall, sex-specific mechanisms
in the initiation and maintenance of chronic pain are regulated by the neuroendocrine system and, specifically, sensory neu-
ronal Prlr signaling.
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Females are more likely to experience chronic pain than males, but the mechanisms that underlie this sex difference are not
completely understood. Here, we demonstrate that the duration of mechanical hypersensitivity is dependent on circulating
sex hormones in mice, where estrogen caused an extension of sensitivity and testosterone was responsible for a decrease in
the duration of the hyperalgesic priming model of chronic pain. Additionally, we demonstrated that prolactin receptor expres-
sion in Navl.8" neurons was necessary for hyperalgesic priming in female, but not male, mice. Our work demonstrates a
female-specific mechanism for the promotion of chronic pain involving the neuroendrocrine system and mediated by sensory
neuronal prolactin receptor. j
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Persistence of hyperalgesic priming is greater in female mice. A, Schematic of the IL-6-induced hyperalgesic priming model. BL, Baseline measurements. Brown arrows indicate

injection time points. Blue arrows indicate post-PGE, mechanical nociception measurement time points. B, Hyperalgesic priming model: IL-6 priming into paw and PGE, injection into paw of
female and male (57BL/6 mice. C, Hyperalgesic priming model: IL-6 priming into paw and PGE, injection into SC of female and male C57BL/6 mice. D, The same model as in C in female and
male Institute of Cancer Research (ICR) mice. Arrows indicate injection time points for IL-6/Veh and PGE,. Repeated-measures ANOVA with Bonferroni post hoc test: C, IL-6 male compared with
Veh-female: ****p << 0.0007; IL-6 female compared with Veh-female: vk vievkevp << 0.0001; Je vk vep < 0.007; all others: *p << 0.05; ****p < 0.0001. n =5-8.

chronic pain development in males and females, but the precise
mechanisms governing this plasticity are increasingly recognized
as sex dimorphic and are still largely unknown. Nevertheless,
recent progress was made in understanding underlying mecha-
nisms for sex-dependent mechanisms of nociceptive plasticity
(Mogil et al,, 2011; Sorge et al., 2011, 2015; Rosen et al., 2017;
Martin et al., 2019). These findings on sex differences in nocicep-
tive plasticity mechanisms, combined with abundant clinical and
rodent data on the effects of gonadal hormones on pain, indicate
a critical role for gonadal hormones in regulation of pain chroni-
fication (Fillingim et al., 2009; Traub and Ji, 2013).

Clearly, there are gonadal hormone-regulated mechanisms
that promote chronic pain in females, but these mechanisms
have not been thoroughly characterized. Prolactin (PRL) and its
receptor (Prlr) are prime candidates for this potential mecha-
nism, since responsiveness to PRL in a variety of cells, including
sensory neurons, is closely regulated by estrogen (Childs et al.,
1999; Pi and Voogt, 2002; Diogenes et al., 2006; Belugin et al.,
2013). Thus, Prlr signaling sensitizes pain-related ion channels
and causes increased excitability in nociceptors, specifically in
females (Diogenes et al., 2006; Patil et al., 2013b, 2019a,b; Liu et
al., 2016). Moreover, Prlr function in female nociceptors is gov-
erned by estrogen signaling via a nongenomic pathway that involves
sex-specific translation of Prlr mRNA (Patil et al., 2019b). Clinically,
high PRL levels are linked to migraine, and blocking PRL actions in
women with hyperprolactinemia resolves headache (Silberstein,
1992; Cavestro et al., 2006; Oliveira et al., 2020). Based on these pre-
vious studies, we hypothesized that Prlr signaling might differen-
tially contribute to female-specific regulation of chronic pain that
can be assessed by use of the hyperalgesic priming model (Aley et
al., 2000). Our work reveals that initiation, maintenance, and
magnitude of hyperalgesic priming are governed by estrogen-de-
pendent regulation of Prlr signaling in sensory neurons.
Therefore, PRL signaling to Prlr is a gonadal hormone-

dependent mechanism that promotes plasticity in the nociceptive
pathway, supporting development of chronic pain specifically in
females.

Materials and Methods

Animals. All animal experiments were approved by the University
Texas Health Science Center at San Antonio and University of Texas at
Dallas Institutional Animal Care and Use Committee. We followed
guidelines issued by the National Institutes of Health and the Society for
Neuroscience to minimize suffering and the number of animals used.

Key reagents and mouse lines. Eight- to 12-week-old female and male
mice were purchased from The Jackson Laboratory. Ovariectomized
(OVX) and gonadectomized (GdX) mice were purchased from The
Jackson Laboratory. The estrous phases in adult females were determine
by vaginal gavage as described by Caligioni (2009). Estrogen and testos-
terone replacement procedures to generate OVX-E-2 and GdX-T mice
were performed as previously described (Diogenes et al., 2006; Nettleship
etal., 2007). 17 B -Estradiol (E-2; 300 pg per injection) or testosterone (T;
300 pg per injection) was injected intraperitoneally 2 times a week for 3
weeks into OVX and GdX mice, respectively.

The Pri¥"? line was generated as previously described (Brown et al,,
2016). Prir"? line has inverse lox sites; hence, Cre recombination ablates
the Prlr gene and activates GFP in targeted cells.

Estrogen was purchased from Sigma Millipore (catalog #PHR1353-
1G) Testosterone was purchased from Sigma Millipore (catalog #T1875-
1G). 4EGI was purchased from Tocris Bioscience. Vehicle for IL-6,
PGE,, PRL, and A1-9-G129R-hPRL (APRL) was 0.9% saline or PBS.
Vehicle for 4EGI-1 was 0.1% DMSO in 0.9% saline.

Human PRL was generated in an Escherichia coli expression system
containing plasmid with human PRL (Goffin; Institut National de la
Santé et de la Recherche Médicale). Thus, PRL is fully processed,
unmodified (i.e., no glycosylation and phosphorylation), and has molec-
ular weight of ~23 kDa. The Prlr antagonist APRL (Rouet et al., 2010),
which is a modified PRL that binds to and blocks the function of Prlr in
rat, mouse, and human (Bernichtein et al., 2003), was also synthesized
by Goffin (Institut National de la Santé et de la Recherche Médicale).
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We and others thoroughly confirmed A
the specificity of APRL using in vitro

(Bernichtein et al., 2003; Scotland et al.,

2011), and in vivo studies (Rouet et al.,

2010), including using Prlr KO mice

(Belugin et al,, 2013).

RT-PCR. RT-PCR was performed on
hindpaw, L3-L5 DRG, and spinal cord (SC)
total RNA. Dissected tissue was stored in
RNA. Later at —20°C (QIAGEN). RNA
extraction was done using the QIAzol lysis
reagent and the RNAeasy Mini Kit
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kit (Invitrogen). Primers were as follows:
Prr-F  (5'-CCATTCACCTGCTGGTGGA B
ATCCT-3'), GFP-F (5-AAGGCTACGT
CCAGGAGCGCACCA-3"), GFP-R1 (5'-
CGTCCTCGATGTTGTGGCGGATC-3"),
and GFP-R2 (5'-TGGTGCGCTCCTGG
ACGTAGCCTT-3"). Amplification of tar-
get sequences was detected on 1 or 1.5%
agarose gel depending on band size.
Behavior  experiments. Hyperalgesic
priming was established using a previ-
ously described model (Aley et al., 2000;
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priming. After IL-6-induced mechanical C
hypersensitivity resolved and thresholds 2.0,
returned to a baseline level, PGE, was
administered either intraplantarly or intra-
thecally to precipitate the primed state and
induce mechanical hypersensitivity. PRL,
APRL, or 4EGI-1 was administered immedi-
ately before IL-6 or PGE, administration. To
evaluate mechanical hypersensitivity follow-
ing the intraplantar or intrathecal injections,
animals were habituated for 45-60min in
elevated behavior racks, and then paw with-
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draw threshold was determined using the 0.0
up-down von Frey method (Chaplan et al,
1994). Both the experimenters performing
the behavior and data analysis were done
blinded.

Experimental design and statistical
analysis. GraphPad Prism 7.0 (GraphPad)
was used for all statistical analyses of data.
Data are presented as mean * SEM, with
n indicating the number of independent
animals per group in behavioral experi-
ments. The sex of the animals used in
each experiment is described in the text. Differences between groups
were assessed by either mixed-effects or repeated-measures ANOVA with
Bonferroni post hoc tests (noted for each figure). Statistical significance
was determined as p < 0.05. Interaction F ratios and the associated
p values are reported in the text.

Figure 2.

Results

Sex differences in hyperalgesic priming in mice are regulated
by gonadal hormones and translation regulation

Chronic pain occurs more frequently in females (Unruh, 1996;
Berkley, 1997; Fillingim et al., 2009; Traub and Ji, 2013). This dif-
ference could be mediated by sex-dependent mechanisms con-
trolling the transition from acute to chronic pain. We used the
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Time (d)

Contribution of gonadal hormones profoundly influences hyperalgesic priming in female and male mice. 4,
Hyperalgesic priming model with spinal PGE, injection in WT female, OVX, and OVX+E (B) GdX, and (C) WT male, GdX, and
GdX-T C57BL mice. B, The disparity in timelines between GDX animals and those animals that are naive or GdX-T. Arrows indicate
injection time points for IL-6 and PGE,. Repeated-measures ANOVA with Bonferroni post hoc test: A, ***p <<0.007;
*xxky <0,0001, for OVX-E compared with female; vevkep <<0.01 for OVX compared with female; €, ***p < 0.001;
Y ¥kp < 0.01 for GdX-T compared with male; n=5 or 6. vk Hp < 0.0001.

hyperalgesic priming paradigm (Aley et al., 2000) to gain insight
into female-specific mechanisms involved in the acute to chronic
pain transition. In our experiments, hyperalgesic priming was ini-
tiated with an intraplantar injection of IL-6 (0.5 ng). When the ini-
tial hypersensitivity from this IL-6 injection had resolved, the
presence of priming was assessed with either an intraplantar or in-
trathecal injection of PGE, (0.1 pg; Fig. 1A). Female C57BL/6
mice that were primed with IL-6 and then subsequently received
an intraplantar injection of PGE, had a slightly longer persistence
of mechanical hypersensitivity compared with males (repeated-
measures ANOVA; F(jyg5=1.437; p=0.1708; n=5; Fig. 1B).
Intrathecal injection of PGE, in females had a significantly longer
duration of response to PGE, compared with males (repeated-
measures ANOVA; F40;)=8.975 p<<0.0001 n=5; Fig. 1C). To
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phases of the cycle, and circulating blood
estrogen (E-2) levels will vary on a day-to-
day basis. Hence, to control for E-2 levels,
we used OVX and OVX with E-2 supple-
mentation (OVX-E-2) female mice. The
substantial reduction of circulating E-2 in
OVX mice (Green et al, 2016) did not
change the initiation phase of priming, but
the persistence of the response following the
PGE, injection was significantly shorter
(mixed-measures ANOVA; F(34220)=8.710
p=0.0011; n=5 or 6; Fig. 2A). Admini-
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in a significant extension of both the initia-
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pared with intact females in the hyperalgesic
priming model. Testosterone mediates male-
specific nociceptive responses (Sorge et al.,
2011). GdX mice have almost no circulat-
ing testosterone (Green et al., 2016). These
GdX mice had a substantially longer
response to IL-6 injection than intact male
mice. Males with IL-6-induced mechanical
hypersensitivity usually return to baseline
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al., 2016) (Fig. 1B-D). In contrast, the ini-
tiation phase of hyperalgesic priming lasted
>31 d in GdX males, and only partially
recovered to baseline levels, which we dis-
played on a separate graph (Fig. 2B). The
PGE, phase was also lengthened in GdX
compared with intact male mice (repeated-
measures ANOVA; F(584)=5.016; p <
0.0001; n=5 or 6; Fig. 2C). Testosterone res-
cue in GdX-T animals returned the initia-
tion and priming phases to the same
timeline as intact males (Fig. 2C). These
results show that the time course of hyperal-
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Figure 3.

measures ANOVA with Bonferroni post hoc test: ****p << 0.0001. n=5 or 6.

rule out a possible strain-dependent sex effect, the experiment
with spinal administration of PGE, following intraplantar IL-6
was repeated in male and female Swiss Webster mice. The differ-
ence in the length of the PGE, response following intrathecal
administration was even longer lasting in this outbred strain
(repeated-measures ANOVA; F(jg 140y = 8.409; p < 0.0001; n=8;
Fig. 1D). To gain insight into the mechanistic underpinnings of
the sex difference we identified, we did the remaining experiments
with intraplantar injection of IL-6 and intrathecal administration
of PGE, in C57BL/6 mice.

In the above and following experiments, the female animals
were all in the estrous phase of the estrous cycle at the time of IL-
6 injections. The hyperalgesic priming model lasts at least a
week; and despite controlling for the estrous phase at the time of
IL-6 injection, female mice cycle quickly (4-5d) through other

Spinal local translation only contributes to hyperalgesic priming in intact female mice. A, Hyperalgesic priming
model with spinal PGE, injection in WT male, (B) WT female, and (C) OVX mice. 4EGI-1 (10 p1g) or vehicle was adminis-
tered spinally at 30 min before PGE, injection. Arrows indicate injection time points for IL-6 and 4EGI-1/PGE,. Repeated-

3 gesic priming is more pronounced in female
mice compared with male mice, and is
closely regulated by circulating gonadal hor-
mones in both sexes.

Translation regulation plays a key role in
the development of hyperalgesic priming
(Price and Inyang, 2015; Khoutorsky and
Price, 2018). In previous experiments that
were mostly done in male animals, we have
shown that inhibition of cap-dependent translation at the time of
initiation blocks the development of hyperalgesic priming
(Melemedjian et al., 2010, 2014; Asiedu et al., 2011; Moy et al,,
2017). Inhibition of cap-dependent translation during the main-
tenance phase fails to reverse established priming (Asiedu et al,,
2011). In concordance with previous experiments (Melemedjian
et al., 2010, 2014; Asiedu et al., 2011), the cap-dependent transla-
tion inhibitor 4EGI-1 (10 ng) given intrathecally immediately
before PGE, stimulation did not affect PGE,-induced mechanical
hypersensitivity in males (repeated-measures ANOVA; Fges =
0.3153; p=0.9575; n=>5; Fig. 3A). In stark contrast, 4EGI-1 dra-
matically reduced the persistence of PGE, precipitated mechanical
hypersensitivity in females (repeated-measures ANOVA; Fges) =
10.60; p < 0.0001; n =5; Fig. 3B). We next evaluated whether the
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difference between males and females in the
regulation of maintenance of hyperalgesic
priming was defined by gonadal hormone
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status. Removal of circulating E-2 using <
OVX females abolished the influence
of 4EGI-1 on the hyperalgesic priming
(repeated-measures ANOVA; Fggp = B
0.7394; p=0.6719; n=6; Fig. 3C). These
results indicate that the magnitude and
maintenance of chronic pain are regulated
by gonadal hormones in male and female
mice and that the enhanced priming effect
seen in intact female mice is dependent on
translation regulation at the level of the
DRG and/or SC. Interestingly, previous
work done entirely in male rodents sug-
gested that translation regulation events at
the level of the DRG and/or SC were not
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involved in maintenance of hyperalgesic
priming (Asiedu et al,, 2011; Ferrari et al,
2015).

A female-specific role for sensory
neuronal Prlr in hyperalgesic priming
Responsiveness to PRL in sensory neurons
is substantially higher in females (>40
fold) than in males (Patil et al., 2013b,
2019a,b), and strictly controlled by E-2
(Diogenes et al., 2006; Patil et al., 2019b).
Endogenous and extrapituitary PRL is ele-
vated in paw and SC after inflammation
and surgical injury (Scotland et al., 2011;
Patil et al., 2013a). Accordingly, we exam-

- =S, N
°© &u o

Mechanical threshold(g)
o
3]
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endogenous PRL after injury could pro-
long mechanical hypersensitivity induced
by spinal PGE, in both females and males.
To do this, we primed the nociceptive
pathway with a single injection of exoge-
nous PRL (1pg) intraplantarly (this PRL
dosage is active in females but not males)
(Patil et al., 2019b) and precipitated hyper-
algesic priming with intrathecal PGE, at 1
d after PRL treatment (Fig. 4A). We were
able to administer PGE, at 24 h after intra-
plantar PRL because 1 pg PRL produces mechanical hypersensitiv-
ity for only ~3-4 h in females (Patil et al., 2019b). PGE, evoked
mechanical hypersensitivity was substantially longer lasting in
PRL-treated female mice compared with vehicle-primed
females (repeated-measures ANOVA; F60)=6.398; p <
0.0001; n = 6; Fig. 4C), but this was not the case in male mice
(repeated-measures ANOVA; Fiy40) = 0.2318; p=0.9189; n=>5-7;
Fig. 4B).

Our present findings suggest that a translation regulation
event at the spinal level is critical for enhanced pain chronifica-
tion in female mice. Our previous work demonstrated that Prlr
signaling in the central terminals of nociceptors is important for
acute pain models, specifically mechanical hypersensitivity in
response to inflammation and injury in females (Patil et al., 2019b).
This sex difference can be accounted for by increased translation of
Prlr mRNA in central terminals of female mice (Patil et al., 2019b),
suggesting transport of this mRNA to central terminals of nocicep-
tors. To gain better insight into regulation of Prlr mRNA

Figure 4.

0.25 1 2 3 24

Time (h)

BL 48

Peripheral PRL only induces hyperalgesic priming in female mice. A, Schematic of the PRL-induced hyperalgesic
priming model. BL, Baseline measurements after PRL-induced hypersensitivity is fully resolved. Brown arrows indicate injec-
tion time points. Blue arrows indicate post-PGE, treatment mechanical nociception measurement time points. B,
Hyperalgesic priming model; PRL or vehicle priming into paw and PGE, injection into SC of male (B) or female (€) C57BL
mice. Arrows indicate injection time points for PGE,. Repeated-measures ANOVA with Bonferroni post hoc test:
*¥¥p < 0.007; ¥**p < 0.0001. n=5-7.

localization, we used Prir® mice and crossed them with Nav1.8~

animals to generate a Nav1.8%¢~/Pri" (Prir CKO) in a set of
sensory neurons (Fig. 5A4). The Prir™" line has inverse lox
sites; hence, Cre recombination ablates the Prlr gene and acti-
vates GFP expression in targeted cells driven by the Prir pro-
moter (Fig. 5A). Analysis of the Prlr CKO showed that the
truncated transgene Prlr mRNA contains the entire 5'-UTR;
four exons and an intron between exons 1 and 4 (EI-EIV)
and GFP, but it does not have the remaining Prlr exons or
the 3’-UTR (Fig. 5A). Accordingly, we observed that RT-
PCR with Prir-F and GFP-R1 primers (Fig. 5A, red arrows)
produced a 2500bp band containing an intron sequence
from total RNA of female Prlr CKO, but not Prlr/f (Fig. 5C).

The unique splicing of EI-EIV and GFP for Prlr mRNA in
Prlr CKO mice allowed us to detect localization of this hybrid
Prlr mRNA synthesized from Prir gene promoter in sensory neu-
ronal cell bodies, as well as peripheral and central terminals. For
these experiments, we also used a positive control, PGP9.5
mRNA (Uchll gene), which undergoes axonal transport in DRG
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not noticed in the Prir"" mouse line (Fig.

A Prir fl/fl Prir fl/fl 5C). Interestingly, the 2500 bp PCR prodg-
Gene mRNA uct was detected in SC mRNA, suggest-
45_4'—'4&[%&‘-'—@ - ORF —sToP ing constitutive axonal transport of Prlr
s L mRNA (Fig. 5C). Moreover, hybrid Prlr
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mRNA was at significantly higher levels
in SC compared with DRG (unpaired
two-tailed f test; t=4.797 df = 4; Fig. 5C)).
STOP mers, we PCR-amplified GFP (253 bp
band) with GFP-F and GFP-R2 primers
(Fig. 5A, blue arrows), using DRG and
SC total RNA from Prir® and Prir CKO
mice. GFP mRNA was detected not only
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in DRG of Prlr CKO females, but also in
SC (Fig. 5D), and it was at higher density
in SC compared with DRG (unpaired
two-tailed ¢ test; t=3.608 df =4; Fig. 5D’).
To examine translocation of Prlr mRNA

to peripheral terminals, we examined the
111 presence of GFP mRNA in hindpaw tis-
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sues of Prlr CKO mice (Fig. 5E). Again,
GFP mRNA in Prlr CKO was at higher
levels in hindpaw compared with DRG
tissues (unpaired two-tailed t test; t=
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o o o
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5.036 df =4; Fig. 5E”). These findings sug-
gest that female Prlr mRNA is extensively
translocated to sensory neuron peripheral
and central terminals, likely via an ele-
ment in the 5" UTR of the mRNA that is
preserved in the transgene.

sc
CKO

HP

DRG SC
253

Con CKO Con CKO

Next, we used Prlr CKO mice to exam-
ine the contribution of sensory neuronal
Prlr to the regulation of the development
of chronic pain in females and males.

DRG

ConCKO ConCKO P}'lr ablation ip male sensory neurons

, " , did not affect either the initiation or per-
D’ 100 —|— E’ 200 ks sistent phase in the hyperalgesic priming
F 2150 model (repeated-measures ANOVA;
@ @ Fliz6 = 9.445; p<0.001; n=4-6; Fig.
5 50 5 100 6A). In contrast, Prlr CKO female mice
Q 0 5o showed both a significant reduction in
. mechanical hypersensitivity in response to

Tisgue DRG sC Ti(s)sue HP DRG IL-6 injection and these mice also showed
Mouse line CKO CKO Mouse line CKO CKO a greatly reduced response to PGE, injec-

Figure 5.

Evidence for translocation of Prir mRNA to sensory neuronal peripheral and central terminals in female mice. A,
Schematic of Prir™™ and Nav1.8//Pr’™" (Prir CKO) genes and corresponding transcribed mRNA from these genes. Location of
Prir-F and GFP-R1 (red arrows) and GFP-F and GFP-R2 (blue arrow). B, Representative panel for PCR of PGP9.5 mRNA (Uchl
gene) from total RNA isolated from DRG and hindpaws (HP) of Prij /M (Con) and Prir CKO female mice. B, Quantification of
data shown in B for Prir CKO female mice (**p << 0.01; n=3). C, Representative panel for P(R of hybrid 2500 bp Prlr mRNA
using Prir-F (exon 4) and GFP-R1 primers (see A) for DRG and SC total RNA isolated from Pri™™ (Con) and Prir CKO of female
mice. €', Quantification of data shown in € for Prir CKO female mice (**p << 0.01; n=3). D, Representative panel for P(R of
GFP mRNA using GFP-F and GFP-R2 primers (see A) for DRG and SC total RNA isolated from Prif"™ (Con) and Prir CKO of female

tion (persistent phase) compared with
Prif" mice (repeated-measures ANOVA;
Fasn = 1309, p=0.2219; n=5-7; Fig
6B). We conclude from this experiment
that Prlr in sensory neurons plays a key
role in initiation and maintenance of
chronic pain in female, but not male,
mice.

mice. D', Quantification of data shown in D for Prir CKO female mice (*p << 0.05; n=3). E, Representative panel for PCR of

GFP mRNA using GFP-F and GFP-R2 primers (see A) for DRG and HP total RNA isolated from Pri A (Con) and Prir CKO of female

mice. E’, Quantification of data shown in E for Prlr CKO female mice (**p << 0.01; n=3).

neurons (Willis et al., 2005, 2007). Uchll mRNA was found in
the hindpaw, but at an apparently lower level than observed in
the DRG (unpaired two-tailed ¢ test; t=6.521 df = 4; Figs. 5B,B’).
The hybrid Prlr mRNA in sensory neuronal cell bodies (DRG)
and sensory neuronal central terminals (SC) was detected by
amplification of the 2500 bp band from total RNA isolated from
DRG and SC tissues of Prlr CKO (Fig. 5C). This 2500 bp band was

Prlr signaling and the initiation and
maintenance of hyperalgesic priming
in female mice

Ablation of Prlr in sensory neurons does
not allow for identification of peripheral
or central sites driving hyperalgesic priming or the time course of
when Prlr signaling occurs during hyperalgesic priming. To
explore this in detail, the Prlr antagonist APRL (Rouet et al., 2010;
Patil et al., 2019b), was delivered at different locations and time
points. A single injection of the antagonist APRL (5pg) into the
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paw immediately before the intraplantar IL-6
priming injection did not affect mechanical
hypersensitivity in response to the IL-6 injec-
tion (Fig. 7A). However, there was a signifi-
cant reduction in mechanical hypersensitivity
during the persistent, post-PGE, phase in ani-
mals that received APRL compared with
those that received the vehicle. These APRL-
treated female mice returned to baseline levels
of mechanical sensitivity within 2d of the
PGE, injection (repeated-measures ANOVA;
Fiso.105 = 6.043; p<0.0001; n=5 or 6; Fig.
7A). Intrathecal administration of APRL
(5png) immediately before intraplantar IL-6 0.0

>
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led to a transient reduction in mechanical
hypersensitivity for <3 h following intraplan-
tar IL-6 injection (Fig. 7A). The degree of me-
chanical hypersensitivity following PGE,
injection was almost identical to that 2.0
observed with intraplantar administration of
APRL. We then evaluated the role of Prlr sig-
naling in the maintenance of hyperalgesic
priming with intraplantar or intrathecal
administration of APRL (5pg) before PGE,
administration. Blockage of Prlr signaling in
the paw by intraplantar injection of APRL
before the injection of PGE, did not influence
mechanical hypersensitivity magnitude or du-
ration. In contrast, intrathecal administration
of APRL coupled with intrathecal PGE,

v
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administration led to inhibition of mechanical BL

hypersensitivity and a faster return to base-
line (repeated-measures ANOVA; Fi30510) =
7.192; p < 0.0001; =5 or 6; Fig. 7B).

The conventional view is that endoge-
nous PRL comes almost exclusively from
the pituitary gland (Ben-Jonathan et al.,
2008). However, extrapituitary sources
for PRL have been reported, and these
PRL sources are especially abundant in
humans (Ben-Jonathan et al.,, 1996). In
rodents, inflammation and tissue injury cause an increase in
PRL in the paw and SC (Scotland et al., 2011; Patil et al,
2013a). We examined whether endogenous pituitary PRL is
involved in the regulation of pain chronicity in male and
female mice. Circulating PRL that has originated in the pitui-
tary can be removed by either hypophysectomy (Green et al.,
2016) or systemic treatment with bromocriptine (Grattan, 2015).
Both approaches have downsides, but we opted to use the
systemic bromocriptine approach because bromocriptine is
used in clinical studies and hypophysectomy drastically
affects gonadal hormone production. We systemically
treated both male and female mice with bromocriptine as
previously described (Yip et al., 2012). Removal of endoge-
nous pituitary PRL did not influence mechanical hypersensi-
tivity during the IL-6 phase of hyperalgesic priming
initiation in male mice but did slightly prolong the PGE, pre-
cipitated hypersensitivity (repeated-measures ANOVA; Fj900) =
2.980; p=0.0028; n =5 or 6; Fig. 8A). In female mice, the IL-6
response was enhanced in the bromocriptine-treated
females, but the priming response to PGE, was equivalent in ve-
hicle and bromocriptine-treated mice (repeated-measures
ANOVA; F(a126) = 3.127; p=0.0003; n=5 or 6; Fig. 8B).

Figure 6.

th 3h 1 BL 1 3h 1 2 3 4 5 7

Time (d)

Regulation of hyperalgesic priming by sensory neuronal Prlr selectively in female mice. 4, B, Hyperalgesic
priming model with peripheral IL-6/Veh and spinal PGE, in Prir™" (Prir-lox; control) and Nav1.8™//Prf™" (Prir CKO) in
male (A) and female (B) mice. Arrows indicate injection time points for IL-6/Veh and PGE,. Repeated-measures ANOVA
with Bonferroni post hoc test: A, ****p < 0.001, for Prir-lox compared with Veh-Prlr-lox; and vk vkevvkp << 0.0001;
Yy kp < 0.001, for Prir CKO compared with Veh-Prir-lox. B, *p << 0.05; **p << 0.01; ***p << 0.001. n =4-7.

Collectively, these results suggest that endogenous extrapituitary
PRL signaling plays a key role in hyperalgesic priming in female
mice. During initiation of chronic pain, this source can be periph-
eral or central, but the crucial source of PRL during the mainte-
nance of pain chronicity is likely central.

Discussion

Studies in both animals and humans demonstrate sexually
dimorphic mechanisms controlling the development and resolu-
tion of chronic pain (Joseph et al., 2003; Sorge et al., 2015; Nasir
et al., 2016; Taves et al., 2016; Lopes et al., 2017; Rosen et al,,
2017, 2019; Mapplebeck et al., 2018; Paige et al., 2018; Dance,
2019; North et al, 2019; Patil et al., 2019b; Ray et al., 2019).
Among these sex differences, several factors have been discov-
ered that drive chronic pain specifically in males (Sorge et al.,
2015; Taves et al.,, 2016; Mapplebeck et al., 2018; Megat et al.,
2018; Paige et al., 2018; Shiers et al., 2018; Martin et al., 2019),
but relatively little is known about such chronic pain mecha-
nisms in females. There is evidence that these mechanisms are
closely regulated by gonadal hormones (Traub and Ji, 2013). For
instance, the apparent male-specific effect of microglia-driven
P2X4 signaling in neuropathic pain can be conferred to females
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of translation regulation signaling in the
periphery or SC was only capable of inter-
fering with hyperalgesic priming if these
treatments were given at the time of the
priming event (Melemedjian et al., 2010,
2014; Asiedu et al., 2011). However, these
previously published experiments were
done entirely in male mice. Our data sug-
gest that targeting these translation regula-
tion mechanisms for the treatment of pain
may have additional therapeutic benefits in
women. A potential explanation for this
differential effect on translation machinery
in females is an effect of estrogen on trans-
lation machinery (Bronson et al, 2010;
Ochnik et al., 2016). E-2-dependent con-
nections between translational control of
the suppressor of cytokine signaling and
mTOR phosphorylation (Augusto et al,
2010) or regulation of Rheb signaling
(Pochynyuk et al.,, 2006) have been pro-
posed (Matthews et al., 2005; Arbocco et al.,
2016). These signaling pathways also play
key roles in the excitability of nociceptors
(Moy et al., 2017; Khoutorsky and Price,
2018; Megat et al., 2019a,b) and may play a
more prominent role in the maintenance of
persistent nociceptor plasticity in females
than males.

Previous work indicates that sex-depend-
ent mechanisms regulating hypersensitivity in
inflammatory and neuropathic pain condi-
tions can be attributed to distinct immune
cell types: microglia in males (Sorge et al,
2011, 2015, Taves et al, 2016; Paige et al.,
2018) and T cells in females (Sorge et al,

2015). Importantly, there is an opinion that
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Figure 7.  Regulation of the initiation and maintenance of hyperalgesic priming by peripheral and spinal Prlr

in female mice. Hyperalgesic priming model in female mice with peripheral IL-6 and spinal PGE,. A, Schematic
of injection locations and timing. B, Vehicle (no APRL), Prir antagonist (APRL; 5 pig) was coadministered with
IL-6 in paw or SC. €, Schematic of injection locations and timing. D, Vehicle (no APRL) was injected into paw.
APRL (5 pg) was given into the paw or SC 30 min before spinal PGE,. Repeated-measures ANOVA with
Bonferroni post hoc test: *p < 0.05; ****p < 0.0001, for APRL intrathecally compared with no APRL; and
Yok kP < 0.0001; Hep < 0.05, for APRL intraplantarly compared with no APRL; n = 5-7).

with testosterone treatment (Sorge et al., 2015). In humans, sex
differences in tibial nerve transcriptomes also demonstrate a sig-
nature for gonadal hormone influence on sensory neuronal tran-
scriptomes across the lifespan in females (Ray et al, 2019).
Experiments described here clearly demonstrate differential roles
of gonadal hormones in development of chronicity in painful
conditions with estrogen exacerbating priming effects and testos-
terone playing a protective role.

Additionally, we demonstrated that translation regulation
plays a sex-specific role in the maintenance of chronic pain in
female mice. This is especially relevant considering that transla-
tion control mechanisms are known contributors to the sensiti-
zation of nociceptors (Khoutorsky and Price, 2018; Megat and
Price, 2018). Our previous work demonstrated that disruption

these cells are regulated by gonadal hor-
mones. Together, key molecules involved in
sex-dependent regulation of the initiation,
maintenance, and resolution would need to
(1) be controlled by gonadal hormones, (2)
induced by injury, (3) regulate immune cells,
(4) undergo local translation control, and (5)
be capable of regulating many other genes.
The neuroendocrine hormone PRL and its re-
ceptor Prlr fit all these requirements. First,
Prlr-mediated PRL effects are sex- and go-
nadal hormone-dependent in many tissues
and cell types, including sensory neurons
(Torner et al, 2001; Ben-Jonathan et al.,, 2008; Belugin et al.,
2013; Patil et al,, 2013a, 2019a,b). Second, many clinical and pre-
clinical studies show that endogenous release of PRL from both
pituitary and extrapituitary origins is induced by inflammation
and tissue injury (Chernow et al., 1987; Noreng et al., 1987; Ben-
Jonathan et al., 1996; Yardeni et al., 2007; Scotland et al., 2011;
Patil et al., 2013a). Third, PRL is an effective direct and/or indi-
rect activator of immune cells, especially macrophages and T
cells (Matera et al., 2001; Savino et al., 2016; Tang et al., 2017).
Moreover, many chronic autoimmune diseases affect females
more frequently than males, and a potential role for PRL may in
part explain this phenomenon for certain autoimmune diseases,
such as lupus (Tang et al., 2017; Rizzetto et al.,, 2018). Fourth,
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translational regulation of Prlr in sen- A
sory neurons has been suggested in our
previous work (Patil et al., 2019b), and 2.0-

herein we show evidence in support of IL-6

the translocation of Prlr mRNA to pe-
ripheral and central terminals of female
or male sensory neurons where it could
be translated in a female sex hormone-
specific fashion (Patil et al, 2019b).
Finally, Prlr activation leads to epige-
netic changes and transcription regula-
tion of many genes via the STAT5
pathway (Bole-Feysot et al., 1998; Ben-
Jonathan et al, 2008). The data pre- 0.0
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sented here are one of the first demon- BL
strations of a female-specific chronic

pain initiation and maintenance mecha-

nism acting directly on sensory neurons.

Another is calcitonin gene-related pep- B

tide, which is released from sensory 2.0-
neurons, but its site of action to produce
pain specifically in female mice is not
known (Avona et al., 2019). Our find-
ings using a sensory neuron-specific KO
of Prlr combined with pharmacological
antagonism of Prlr at specific sites sug-
gests that Prlr signaling in sensory neu-
ronal terminals of the SC controls
initiation and maintenance of a chronic
pain state in female mice. Having said
this, we cannot rule out the possible
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influence of immune cells in our obser- 0.0

vations, including immune cells as a
possible source of PRL that acts on Prlr
in the setting of hyperalgesic priming in
female mice.

A previous study in rats demon-
strated that hyperalgesic priming to car-
rageenan does not occur in females
(Joseph et al., 2003). Subsequent studies
in mice and rats have shown additional
sexual dimorphisms (Megat et al., 2018; Paige et al., 2018; Inyang
et al,, 2019), across the lifespan (Moriarty et al., 2019), but none
of them has observed a similar absence of priming in female
rodents. Indeed, our work shows, at least with IL-6 as the pri-
ming stimulus, that the magnitude and duration of the response
to PGE, given peripherally or intrathecally are longer in female
mice than in male mice.

Previous work from our laboratory (Patil et al., 2013a, 2019a,
b) and other groups (Chen et al., 2020b) has established that PRL
signaling to nociceptor PRL receptors plays an important role in
promoting pain in response to injury, specifically in female rodents
(Chen et al,, 2020a). Our findings presented here extend this work
to show that PRL signaling to nociceptors promotes development
of chronic pain, also specifically in females. Interestingly, there is lit-
erature linking PRL to migraine (Silberstein, 1992; Cavestro et al.,
2006), and a recent clinical study demonstrates that reducing PRL
levels leads to resolution of headache, suggesting a causative role
(Oliveira et al,, 2020). These preclinical and clinical results suggest
that targeting PRL signaling may be a treatment avenue for certain
types of chronic pain, but likely only in women.

In conclusion, our findings demonstrate that sensory neuro-
nal Prlr signaling relies on gonadal hormones and translation

Figure 8.
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Lack of effect of systemic bromocriptine on hyperalgesic priming in female and male mice. A, B, Hyperalgesic pri-
ming model with peripheral IL-6 and spinal PGE, in vehicle and bromocriptine (i.p.; BrCre) treatments of male (4) and female
(B) mice. Arrows indicate injection time points for IL-6 and PGE,. Repeated-measures ANOVA with Bonferroni post hoc test:
**¥p < 0.001; ****p < 0.0001. n =5 or 6.

mechanisms to contribute to a female-specific regulation of the
initiation and maintenance of pain chronicity. These results add
a new depth to our understanding of sexually dimorphic sig-
naling pathways involved in chronic pain development.
Additionally, our data further substantiate the critical role that
the neuroendocrine system and translation regulation play in no-
ciceptor and nociceptive circuit excitability in response to a
broad variety of important physiological stimuli.
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