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Introduction
The ability to see movement is one of the
most survival-critical and evolutionarily
ancient abilities of animal vision. Yet our
perception of motion, like our perception
of other visual features, is subject to illu-
sions and biases. For example, when a
diagonally striped “barber pole” rotates to
the right, its pattern appears to move
upward (Guilford, 1929); and reducing the
contrast of a moving grating can falsely
make it appear to move more slowly
(Stone and Thompson, 1992). These per-
ceptual quirks provide invaluable clues to
the computations going on in the visual
system. After all, computer vision teaches
us that there are multiple algorithms that
can solve the same visual task. We can use
the idiosyncratic errors of human vision
to identify those algorithms that most
closely replicate our own errors, and
therefore are most likely to model the true
neural computations.

To probe the biological computations
underlying motion perception, Rideaux
and Welchman (2020) created a fully

transparent, fully interrogable artificial
model. “MotionNet” is a convolutional
neural network (CNN), comprising layers
of interconnected units that have spatially
restricted receptive fields and compute
weighted sums of their inputs. Unlike
the very deep CNNs used in computer
vision, with tens or hundreds of layers
(Russakovsky et al., 2015; Lindsay, 2020),
MotionNet is designed for simplicity and
interpretability. It consists of an input layer,
a single “hidden” layer of units, and an out-
put layer, and it can be fully trained in 10–
15min (R. Rideaux, personal communica-
tion). Despite its simplicity, the model cap-
tures an impressive gamut of phenomena
when tested against psychophysical and
electrophysiological data from the last 5
decades of motion perception research.

MotionNet takes as input short movie
clips comprising six image frames (32� 32
pixel resolution). The main training dataset
consists of natural image fragments sliding
in random directions at random speeds.
The network is trained to output a decision
about how fast and in what direction a clip
was moving, via 1 of 64 output units, each
assigned by the experimenters to indicate 1
of 8 motion directions (4 cardinal, 4
oblique) and 8 velocities.

This implementation means that out-
put layer units are constrained to jointly
encode direction and velocity, mimicking
neurons in middle temporal (MT) visual
cortical area (Maunsell and Van Essen,
1983). These output units are referred to
as “MT units.” The similarity of MT unit
tuning properties to those of biological
neurons is therefore largely dictated by the
training objective, whereas units in the

hidden layer, equated to primary visual
cortex (V1), are unconstrained. Although
output (MT) units encoded motion direc-
tion and velocity in discrete steps, contin-
uous measures of each were obtained for
test movies by fitting a continuous func-
tion to the pattern of MT unit activations.
Ten instances of the network were trained
on each training dataset—a safeguard
against the potentially large differences
between different randomly initialized
instances (Mehrer et al., 2020).

Key findings
Behaviorally, humans are more sensitive
to cardinal than oblique motion directions
(Green, 1983). Electrophysiology shows
this is because of the greater proportion of
V1 neurons tuned to cardinal than to
oblique motion directions (Salinas et al.,
2017). This preference could arise because
of the greater prevalence of cardinal orien-
tations in natural images (Switkes et al.,
1978) or because a greater proportion of
movement occurs in cardinal directions in
the natural environment, as a result, for
example, of the combined influence of
gravity and the ground plane (Bex et al.,
2005). “V1 units” in MotionNet trained
on sequences of natural images moving in
uniformly sampled directions also exhib-
ited a strong cardinal bias (Rideaux and
Welchman, 2020; their Fig. 2b). Retraining
MotionNet on sequences of 45° rotated
natural images instead produced a strong
oblique bias (Rideaux and Welchman,
2020; Fig. 2c). Therefore, uneven sensitiv-
ities to different motion directions in both
MotionNet and biological brains are likely
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because of the orientation statistics of nat-
ural images, rather than the distribution of
motion in the natural world. This makes
sense, because orientation anisotropies
produce visual motion anisotropies, even
when real-world motion is uniformly dis-
tributed, as we illustrate in Figure 1.

Constrained by their training objective,
MotionNet MT units are tuned for motion
direction: they respond strongly to motion
along their assigned direction, and pro-
gressively less to motion directions away
from assigned. This direction tuning was
sharper in units that had been assigned to
prefer higher speeds, an interaction not
enforced by the training objective. The
authors explain this based on the statistics
of moving images: two image sequences
taken from the same scene but moving in
different directions will be more similar
when moving at slow speeds, and more
dissimilar when moving at high speeds. By
reanalyzing published neurophysiological
data (Wang and Movshon, 2016), Rideaux
and Welchman (2020) indeed found evi-
dence that the relationship between speed
and movement direction in natural images
is also exploited by MT neurons in maca-
ques. Further analysis of the connections
between V1 units and MT units showed
that MotionNet MTmotion selectivity pri-
marily arose through inhibition, rather
than excitation. This is another novel, test-
able prediction ripe for neurophysiological
investigation.

MotionNet replicates and provides com-
putational explanations for several classic
motion illusions and (mis)perceptions.
For example, MotionNet misperceives
upward the motion direction of a right-
ward rotating “barber pole,” and analyz-
ing MotionNet V1 unit activations
shows that this occurs because of the
pooling of competing motion signals

from the center and the edges of the
barber pole.

MotionNet also replicates the tendency
of observers to perceive lower-contrast
objects as moving at slower speeds (Stone
and Thompson, 1992). This has been previ-
ously explained by a “slow world prior”:
because net motion in the environment is
near zero, uncertain motion estimates (e.g.,
low-contrast signals) are pulled toward
slower motion (Weiss et al., 2002; Stocker
and Simoncelli, 2006). MotionNet could
not have learned this prior, since in its
training set all motion velocities are equally
likely. Yet the MT offset parameters in
MotionNet bias the network toward slower
speeds. Why does the network learn this
bias? The authors observe that in natural
images, spatiotemporal contrast increases
with speed: the faster an image moves, the
greater the range of objects and surfaces it
covers. Retraining MotionNet on datasets
in which this speed–contrast relationship
was artificially reversed or modulated con-
comitantly reversed or modulated the bias
learned by the network. Conversely, alter-
ing the relative frequency of slow-moving
and fast-moving image sequences in the
training set (artificially creating slow or fast
worlds) did not reliably bias MotionNet to-
ward slower or faster speeds.

Does the learned contrast-speed rela-
tionship also dominate over a slow world
prior in humans? The slow world hypothe-
sis predicts that any uncertainty in motion
signals should bias perception toward
slower speeds. Rideaux and Welchman
(2020) test this prediction in human
participants and find that biases occur
only for contrast manipulations. Thus,
the relationship between speed and spa-
tiotemporal contrast, not a slow world
prior, best accounts for motion biases in
both MotionNet and humans.

Significance
Extremely deep CNNs have in recent years
reached and exceeded human object recog-
nition abilities (Russakovsky et al., 2015;
He et al., 2016), and they predict neural ac-
tivity in high-level visual regions (Yamins
and DiCarlo, 2016; Kietzmann et al., 2018;
Lindsay, 2020). However, they are some-
times criticized as being “black boxes”—
replacing a biological system whose func-
tion we do not understand with an artifi-
cial system whose function we do not
understand—and are only as good as the
methods used to interpret them (Funke et
al., 2020; Ma and Peters, 2020). In contrast,
Rideaux and Welchman (2020) combine a
CNN of a tractable size with an array of
computational experiments and “in silico
electrophysiology” to create a detailed
comparison of an artificial system to brain
and behavioral data. The article highlights
how numerous laboratory techniques are
transferable to image-computable neural
network models, including the use of syn-
thetic stimuli with precise spatial and
motion properties, classification of units
by their response profiles, and synaptic
weight profiling. It also demonstrates
powerful new techniques, such as retrain-
ing the system on datasets tailored to test
specific hypotheses. This work thus show-
cases how neural networks can be used as
transparent and interrogable models in
neuroscience.

One intriguing result is that MotionNet
V1 unit tuning more strongly predicts MT
unit inhibition rather than excitation. This
broadens support for the importance of
“proscription” as a computational strategy
in vision—neurons signal not only what
features are likely present in the input, but,
perhaps equally importantly, what features
are not likely present. Previously, proscrip-
tion has been shown to be important for

Figure 1. Uniform motion in the environment can produce nonuniform visual motion information. We input different patterns to a simple motion energy algorithm following (Adelson and
Bergen, 1985). a, A pattern of circles, containing equal image information at all orientations, is moved by equal amounts along cardinal (blue) or oblique (orange) directions. Motion energy fil-
ters detect visual motion information at circle edges perpendicular to the direction of motion (gray squares with filter energy shown in orange and blue for one example oblique and cardinal
direction, respectively). The amount of total motion energy produced by the patterns is the same in any motion direction (polar plot). b, A pattern of ellipses, which, like natural images, has
more edges at cardinal orientations, produces stronger motion energy when moved in cardinal directions.
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depth perception, with inhibitory binocu-
lar neurons suppressing incorrect corre-
spondences between features in the two
eyes (Goncalves and Welchman, 2017;
Rideaux and Welchman, 2018). Depth
from binocular disparity can be thought of
as computationally equivalent to motion:
depth is derived from differences between
two image frames separated in space, while
motion is computed from differences
between two frames separated in time.
Thus, in MotionNet, V1 units signal to
MT units which specific motion directions
are both likely and unlikely, given the
image differences between two frames.

The article by Rideaux and Welchman
(2020) also demonstrates how image-com-
putable statistical learning models can
help settle debates between conflicting
Bayesian theories of perception. For exam-
ple, although it is plausible that motion
anisotropies in biological systems could be
learned from uneven environmental
motion statistics (Bex et al., 2005), the fact
that anisotropies arise even in a model
with uniform motion experience suggests
that it is more parsimonious to attribute
them to the static orientation statistics of
natural images (Switkes et al., 1978).
Similarly, although MotionNet is capable
of learning slow-world/fast-world priors,
the effects of priors are overshadowed by a
previously underappreciated speed–con-
trast relationship in natural scenes. By dis-
puting the slow-world prior hypothesis
(Weiss et al., 2002; Stocker and Simoncelli,
2006), Rideaux and Welchman (2020)
even argue against their own previous
work (Welchman et al., 2008).

The authors share data and model
code (https://www.repository.cam.ac.uk/
handle/1810/300898), providing an excel-
lent opportunity to extend the model, as
MotionNet is (necessarily) missing several
features of human vision. For instance,
MotionNet uniformly samples its inputs,
whereas the human visual field has high
resolution at the fovea and low resolution
in the periphery. Incorporating space-vari-
ant resolution (Chessa et al., 2016; Maiello
et al., 2020) into MotionNet might help
explain illusory motion phenomena in the
periphery, such as the curveball illusion
(Shapiro et al., 2010). Another challenge is
to understand how motion selectivity
emerges in biological brains via less
strongly supervised learning, without rely-
ing on ground-truth motion information

or training objectives that impose MT-like
motion tunings (Fleming and Storrs, 2019;
Storrs and Fleming, 2020).

Finally, although MotionNet qualita-
tively captures many aspects of motion
processing, quantitative fits of the model
predictions to behavioral or brain data
would likely be low (e.g., MotionNet con-
trast-dependent biases occur at contrast
ranges 10-fold smaller than in human
observers). Fitting MotionNet quantita-
tively to human data is likely possible,
for example by introducing noise to the
system, and could be considered as an
additional validation of the model. The
success of the wholly unfitted model in
accounting for a wide range of percep-
tual and physiological phenomena is
nevertheless remarkable.
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