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Introduction: We present the reliability of ultra-high field T 2 
∗ MRI at 7T, as part of the UK7T Network’s “Travelling 

Heads ” study. T 2 
∗ -weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and 

R 2 
∗ maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. 

The relaxation parameters of human brain tissue are such that R 2 
∗ mapping and QSM show particularly strong 

gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5–3T). We aimed to determine 

the inter-subject and inter-site reproducibility of QSM and R 2 
∗ mapping at 7T, in readiness for future multi-site 

clinical studies. 

Methods: Ten healthy volunteers were scanned with harmonised single- and multi-echo T 2 
∗ -weighted gradi- 

ent echo pulse sequences. Participants were scanned five times at each “home ” site and once at each of four 

other sites. The five sites had 1 × Philips, 2 × Siemens Magnetom, and 2 × Siemens Terra scanners. QSM and R 2 
∗ 

maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm ( https://github.com/fil-physics/ 

Publication-Code ). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined 

manually or by the MNI152 standard space. 

Results and Discussion: Mean susceptibility ( 𝜒) and R 2 
∗ values agreed broadly with literature values in all ROIs. 

The inter-site within-subject standard deviation was 0.001–0.005 ppm ( 𝜒) and 0.0005–0.001 ms − 1 (R 2 
∗ ). For 𝜒

this is 2.1–4.8 fold better than 3T reports, and 1.1–3.4 fold better for R 2 
∗ . The median ICC from within- and 

cross-site R 2 
∗ data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM 

especially in areas with large B 0 inhomogeneity such as the inferior frontal cortex. Across sites, R 2 
∗ values were 

more consistent than QSM in subcortical structures due to differences in B 0 -shimming. On a between-subject level, 

our measured 𝜒 and R 2 
∗ cross-site variance is comparable to within-site variance in the literature, suggesting that 

it is reasonable to pool data across sites using our harmonised protocol. 

Conclusion: The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coeffi- 

cient of reproducibility for QSM and R 2 
∗ at 7T compared to previous reports of multi-site reproducibility at 3T. 

These protocols are ready for use in multi-site clinical studies at 7T. 
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. Introduction 

Neurodegenerative diseases are a significant global health burden.
n many instances, neurodegeneration is associated with the deposi-
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ion of iron in the brain. Understanding the patterns of deposition
nd their association with other risk factors is a key area of clini-
al research, but progress has been limited by the need to scale over
ulti-centre trials ( Moeller et al., 2019 ). The EUFIND ( Düzel et al.,
019 ) is an example of a network focused on advancements in neurode-
enerative research by running large-scale multi-centre imaging stud-
es. Also, the UK7T network ( http://www.uk7t.org ) has recently run a
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ulti-site study with a dementia cohort to assess feasibility in patient
roups. Imaging as part of the C-MORE study (Capturing the MultiOR-
an Effects of COVID-19) is also including harmonized multi-centre se-
uences which might provide insights into the long-term impact in sur-
ivors of COVID-19 ( https://oxfordbrc.nihr.ac.uk/brc-funds-new-covid-
9-research-projects/ ). Yet, in order to perform such multi-centre stud-
es, it is necessary to first guarantee the consistency and reproducibility
f imaging markers. 

A popular approach to estimating iron concentration in the human
rain uses gradient-echo (GE) magnetic resonance imaging (MRI). In
rey matter, iron is mainly found in the protein ferritin which, due
o its antiferromagnetic core and the presence of uncompensated spins
t the surface or in the core, exhibits a superparamagnetic behaviour
 Makhlof et al., 1997 ; Langkammer et al., 2012 ). This paramagnetic iron
nteracts with the MRI scanner’s static magnetic field (B 0 ) causing local
ipolar field perturbations. These accentuate the rate of transverse sig-
al decay causing T 2 

∗ relaxation in surrounding tissue, which is visible
s decreasing signal amplitude with increasing echo time in a series of
E images. This effect causes an increase in the rate of transverse re-

axation, R 2 
∗ , which correlates well with non-heme iron concentrations

n grey matter ( Gelman et al., 1999 ; Langkammer et al., 2010 ), and has
een used to investigate the distribution of iron in the healthy brain and
n disease ( Haacke et al., 2005 ; Yao et al., 2009 ; Li et al., 2019 ). 

The local presence of iron (and to a lesser extent myelin and cal-
ium) also affects the signal phase of GE images because of the effect
f the field perturbation on the local Larmor frequency ( House et al.,
007 ; He et al., 2009 ; Lee et al., 2012 ). Quantitative Susceptibility Map-
ing (QSM) methods attempt to deconvolve these dipole phase patterns
o identify the sources of the magnetic field inhomogeneity. In other
ords, QSM estimates quantitative maps of tissue magnetic suscepti-
ility 𝜒 from GE phase data ( Li and Leigh, 2004 ; Reichenbach, 2012 ;
ang and Liu, 2015 ). This approach has shown sensitivity to several

eurological conditions ( Lotfipour et al., 2012 ; Acosta-Cabronero et al.,
013 ; Blazejewska et al., 2015 ; Acosta-Cabronero et al., 2016 ) and of-
ers advantages over magnitude R 2 

∗ such as having reduced blooming
rtifacts or being able to distinguish between paramagnetic and diamag-
etic substances ( Eskreis-Winkler et al., 2017 ). 

R 2 
∗ imaging and QSM have been shown to provide reproducible re-

ults in single-site and cross-site studies at 1.5T and 3T ( Hinoda et al.,
015 ; Cobzas et al., 2015 ; Deh et al., 2015 ; Lin et al., 2015 ; Santin et al.,
017 ; Feng et al., 2018 ; Spincemaille et al., 2019 ). 

The dipole-inversion problem at the heart of QSM methods benefits
rom the increased sensitivity to magnetic susceptibility variation and
patial resolution at ultra-high fields ( B 0 ≥ 7 T) ( Yacoub et al., 2001 ;
eichenbach et al., 2001 ; Tie-Qiang et al., 2006 ; Duyn et al., 2007 ;
harton and Bowtell, 2010 ). At 7T, close attention must be paid to
 0 shimming and gradient linearity to achieve accurate QSM and R 2 

∗ 

apping ( Yang et al., 2010 ). Head position is also an important factor
hat affects the susceptibility anisotropy ( Lancione et al., 2017 ; Li et al.,
017 ). 

In this study, we introduce single-echo and multi-echo GE imaging
rotocols for QSM and R 2 

∗ mapping at 7T which were standardised on
hree different 7T MRI scanner platforms, from two different vendors.

e applied this standardised protocol in the UK7T Network’s “Travel-
ing Heads ” study on 10 subjects scanned at 5 sites. We report repro-
ucibility for derived R 2 

∗ and QSM maps and make recommendations
or the design of future multi-centre studies. 

. Methods 

.1. Measurement setup 

Ten healthy volunteers (3 female, 7 male; age 32.0 ± 5.9 years) were
ecruited: comprising two subjects from each of the five 7T imaging
ites in the UK7T Network (described in Table 1 ). Each subject was
canned five times at their “home ” site, and once at the other sites,
nder local ethics approval for multi-site studies obtained at Site-4
HBREC.2017.08). Scans for each subject were completed within a pe-
iod of between 83 and 258 days. The five home-site scans were per-
ormed across different sessions: the median time to acquire all five
cans was 59 days (range: 3–71 days). 

In every scan session, B 0 shimming was performed using the
endors’ default second-order (or third-order for Site-4 and Site-
) B 0 -shimming routines. B 1 

+ -calibration was performed initially
sing the vendor’s default adjustment scans. A 3D DREAM se-
uence ( Nehrke and Bornert, 2012 ; Ehses et al., 2019 ) was subse-
uently acquired and the transmit voltage (or power attenuation)
as then adjusted for all subsequent imaging based on the mean
ip-angle from the brain in an anatomically-specified axial slice of
he 3D DREAM flip angle map as described in Clarke et al. (2019) .
ingle-echo 0.7mm isotropic resolution T 2 

∗ -weighted GE data were
hen acquired with: TE/TR = 20/31ms; FA = 15°; bandwidth = 70Hz/px;
n-plane acceleration-factor = 4 (Sites-1/2/4/5) or 2 × 2 (Site-3);
OV = 224 × 224 × 157mm 

3 ; scan-time = ~9min. Multi-echo 1.4mm
sotropic resolution T 2 

∗ -weighted GE data were acquired with:
E 1 /TR = 4/43ms; 8 echoes with monopolar gradient readouts; echo-
pacing = 5ms; FA = 15°; bandwidth = 260Hz/px; acceleration-factor = 4
Sites-1/2/4/5) or 2 × 1.5 (Site-3); FOV = 269 × 218 × 157mm 

3 ; scan-
ime ~6min (Sites-1/2/4/5) and ~4 min (Site-3). For Siemens data,
oil combination was performed using a custom implementation of Roe-
er’s algorithm, as previously described ( Clarke et al., 2019 ). Subject
’s single-echo scan failed to reconstruct using Roemer’s method on data
rom the first visit at Site-5 so a sum-of-squares (SoS) algorithm was used
or coil combination for that scan instead. A 0.7mm isotropic MP2RAGE
can was used for within- and cross-site registration as previously de-
cribed ( Mougin et al., 2019 ). 

.2. QSM and R 2 
∗ data processing 

QSM maps were generated from both the single-echo and multi-echo
 2 
∗ -weighted datasets using the Multi-Scale Dipole Inversion (MSDI)

lgorithm, as implemented in QSMbox v2.0 ( Acosta-Cabronero et al.,
018 ). Briefly: first the local field was estimated by phase unwrap-
ing ( Abdul-Rahman et al., 2005 ) and magnitude-weighted least squares
hase echo fitting was performed on the multi-echo data. Then, indepen-
ently for both single-echo and multi-echo data, background field was
emoved using the Laplacian Boundary Value (LBV) method followed
y the variable Spherical Mean Value (vSMV) algorithm with an ini-
ial kernel radius of 40mm ( Zhou et al., 2014 ; Acosta-Cabronero et al.,
018 ). MSDI inversion was estimated with two scales: the self-optimised
ambda method was used on the first scale with filtering performed us-
ng a kernel with 1mm radius, and on the second scale the regulariza-
ion term was set to 𝜆= 10 2.7 (the optimal value for in-vivo 7T datasets
ound in ( Acosta-Cabronero et al., 2018 )) and filtering was done with a
ernel radius set to 5mm. Brain masks used in the analysis were ob-
ained with FSL’s Brain Extraction Tool (BET) with fractional inten-
ity threshold = 0.2 for single-echo data ( Smith, 2002 ). These were then
apped to multi-echo data space. 

On the multi-echo data, QSM was reconstructed seven more times:
ith only one echo at 19 ms (matching the single-echo data), with the

wo shortest echoes (i.e. TE 1 /TE 2 = 4/9 ms), with the three shortest
choes (i.e. TE 1 /TE 2 /TE 3 = 4/9/14 ms), and so forth. 

On the multi-echo dataset, voxel-wise quantitative maps of R 2 
∗ were

btained using the Auto-Regression on Linear Operations (ARLO) algo-
ithm for fast monoexponential fitting ( Pei et al., 2015 ). R 2 

∗ was also fit-
ed five more times: with data from the first three echoes (TE 1 /TE 2 /TE 3 
 4/9/14 ms), then with the first four echoes (TE 1 /TE 2 /TE 3 /TE 4 
 4/9/14/19 ms), and so forth. 

https://oxfordbrc.nihr.ac.uk/brc-funds-new-covid-19-research-projects/
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Table 1 

Details of the scanners and hardware used for the UK7T Network’s Travelling Heads study. 

# Site Vendor Scanner Model Gradient Performance 

Installation Date 

(Month-Year) 

Software 

Version 

1 Wellcome Centre for Integrative Neuroimaging (FMRIB), 

University of Oxford 

Siemens Magnetom 7T 70 mT m 

− 1 Dec-2011 VB17A 

200 mT m 

− 1 ms − 1 

2 Cardiff University Brain Research Imaging Centre, Cardiff

University 

Siemens Magnetom 7T 70 mT m 

− 1 Dec-2015 VB17A 

200 mT m 

− 1 ms − 1 

3 Sir Peter Mansfield Imaging Centre, University of Nottingham Philips Achieva 7T 40 mT m 

− 1 Sep-2005 R5.1.7.0 

200 mT m 

− 1 ms − 1 

4 Wolfson Brain Imaging Centre, University of Cambridge Siemens Magnetom Terra 80 mT m 

− 1 Dec-2016 VE11U 

200 mT m 

− 1 ms − 1 

5 Imaging Centre of Excellence, University of Glasgow Siemens Magnetom Terra 80 mT m 

− 1 Mar-2017 VE11U 

200 mT m 

− 1 ms − 1 
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.3. Data registration 

The neck was cropped from the magnitude data with FSL’s “ro-
ustfov ” command ( https://fsl.fmrib.ox.ac.uk/fsl/ ), applied to the
ingle-echo data and the 4th echo of the multi-echo data. High-
esolution single-echo and multi-echo templates were made from
his cropped data for each subject with antsMultivariateTemplate-
onstruction2.sh from the Advanced Normalization Tools (ANTs,
ttp://stnava.github.io/ANTs/ ). Two approaches were compared: trans-
ormations using rigid registration with mutual information similarity
etric (denoted as “Rigid ” below) or using symmetric diffeomorphic im-

ge registration with cross-correlation similarity metric (denoted “SyN ”
elow). Other settings were kept the same for both approaches: 4 steps
ith 0.1 gradient step size, maximum iterations per step 1000, 500, 250
nd 100, smoothing factors per step of 4, 3, 2, and 1 voxels, and shrink
actors per step of 12 ×, 8 ×, 4 ×, and 2 ×. The resulting registrations were
hen applied to the QSM and R 2 

∗ maps which were averaged to create
ingle-echo and multi-echo QSM and R 2 

∗ templates for each subject. 

.4. Selection of Regions of Interest (ROIs) 

Five regions of interest (Substantia Nigra, Red Nucleus, Caudate Nu-
leus, Putamen and Globus Pallidus) were manually segmented based
n the subject-specific QSM templates of the single-echo data registered
ith the “SyN ” approach. In order to minimize the amount of segmenta-

ion variability, these ROIs were then mapped to the single-echo “Rigid ”,
nd multi-echo “SyN ” and multi-echo “Rigid ” spaces with nearest neigh-
our interpolation and via non-linear registrations obtained with the
efault settings in the antsRegistrationSyN.sh command in ANTs. 

Magnitude data were first registered to the T 1 -weighted MP2RAGE
cans (Rigid transformations; MI similarity metric) and later to the stan-
ard T 1 “MNI152 brain ” (Montreal Neurological Institute 152) (using
ettings in antsRegistrationSyN.sh) applied to the single-echo data and
o the 1st echo of the multi-echo data. These registrations were then
sed to map the 48 probabilistic cortical ROIs, “cortical ROIs ”, from
he Harvard-Oxford Cortical Atlas and the 21 probabilistic subcortical
OIs, “subcortical ROIs ”, from the Harvard Oxford Subcortical Atlas to

he QSM and R 2 
∗ template spaces. 

The T 1 -weighted MP2RAGE data was bias-field corrected,
rain extracted, and segmented into five tissues using SPM
 https://www.fil.ion.ucl.ac.uk/spm/ ): the grey matter (GM), white
atter (WM) and cerebral-spinal fluid (CSF) volumes were mapped

nto each subject-specific QSM template space. Then, using “fslmaths ”
rom FSL ( https://fsl.fmrib.ox.ac.uk/fsl/ ), the mapped cortical ROIs
ere thresholded at 10% of the “robust range ” of non-zero voxels and
ultiplied by the GM tissue map in order to obtain GM-specific cortical
OIs. The mapped subcortical ROIs were thresholded at 50% of the
robust range ” of non-zero voxels. From these, any CSF voxels were
xcluded from the left and right Caudate Nucleus, Putamen and Globus
allidus, and the voxel sets from the left and right counterparts were
erged together. 
From the single-echo and multi-echo data, average 𝜒 and R 2 
∗ values

ere extracted from the manual and atlas-based ROIs for all volunteers
nd sessions in template space (values given in Supplementary material
). 

In order to estimate where the magnetic field is spatially more vari-
ble, field-maps were first estimated from the multi-echo datasets. ΔB 0 

as calculated from the background field removal step of the QSM
ipeline, and was defined, per-voxel, as the average difference between
he field in a voxel and its immediate nearest neighbours. The average
B 0 was extracted for each of the cortical ROIs and averaged across
ll subjects and sessions. Then the cortical ROIs were divided into two
roups based on the ΔB 0 values: wherever | ΔB 0 | > 0.005 Hz the ROI was
rouped into “high ΔB 0 ” regions, otherwise it was grouped into “low
B 0 ” regions. ΔB 0 was calculated from the multi-echo pipeline only,
s differences to values calculated using single-echo data were minimal
Fig. 1, Supplementary material 2). 

We explored three possible susceptibility reference regions for QSM
rocessing. The average QSM signal was extracted from: 

1 A whole brain mask, “wb ”; 
2 A whole-brain CSF mask eroded in two steps, “csf ”; 
3 A manually placed cylindrical ROI in the right ventricle, “cyl ” (across

all subjects the ROI volume was 104 ± 11 mm 

3 ). 

.5. Statistical analysis 

Statistical analysis was performed with R 3.5.3 ( R Core Team, 2013 ).
ross-site analysis used only the 1st scan at the “home ” site along with
he scans at the other four sites. To obtain the within subject average,
V w 

, the 𝜒 and R 2 
∗ values were averaged within the same site and across

he sites and then averaged across subjects: 

 V 𝑤 = 

∑𝑚 

𝑖 =1 ( 
∑𝑛 

𝑗=1 𝑥 𝑖𝑗 ∕ 𝑛 ) 
𝑚 

(1) 

here n is the number of sessions ( 𝑛 = 5 for within-site and cross-site)
nd m the number of subjects. Relative reliability was measured using
he intra-class correlation coefficient (ICC) from within and cross-site
ata independently for each ROI ( Weir, 2005 ): 

CC = 

𝑀 𝑆 𝑏 − 𝑀 𝑆 𝑤 

𝑀 𝑆 𝑏 + 𝑀 𝑆 𝑤 ( 𝑛 − 1 ) 
(2) 

here MS b and MS w are the between-subjects and within-subjects mean
quare from a random-effects, one-way analysis of variance (ANOVA)
odel. Intra-subject absolute variability is assessed by measuring the
ithin-subject standard-deviation (SD w 

) calculated as ( Santin et al.,
017 ): 

 𝐷 𝑤 = 

√ ∑𝑚 

𝑖 =1 𝜎𝑖 
2 

𝑚 

with 𝜎𝑖 = 

√ ∑𝑛 

𝑗=1 
(
𝑥 𝑖𝑗 − 𝑥̄ 𝑖 

)2 
𝑛 − 1 

(3)

here 𝑥 𝑖 = 

𝑛 ∑
𝑗=1 

𝑥 𝑖𝑗 ∕ 𝑛 is the replicate average for each subject. SD w 

was

omputed using within-site data and cross-site data independently. Simi-

https://fsl.fmrib.ox.ac.uk/fsl/
http://stnava.github.io/ANTs/
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/
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arly, cross-subject variability was calculated by measuring the between-
ubject standard-deviation (SD b ): 

 𝐷 𝑏 = 

√ ∑𝑚 

𝑖 =1 
∑𝑛 

𝑗=1 
(
𝑥 𝑖𝑗 − 𝑥 𝑎𝑣𝑔 

)2 
𝑛 × 𝑚 − 1 

(4)

here 𝑥 𝑎𝑣𝑔 = 

𝑚 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑥 𝑖𝑗 ∕( 𝑛 × 𝑚 ) is the measurement average across sub-

ects and sessions. Note that SD b is computed using data from all sites. 
Statistical testing on AV w 

, SD w 

and ICC values extracted from man-
al and template-based ROIs was done by first fitting the data with nor-
al, log-normal, gamma and logistic distributions. The goodness-of-fit

tatistics for the parametric distributions were calculated and the dis-
ribution which showed the lowest Akaikes Information Criterion (AIC)
as then used on a general linear model fitting. All models included as
xed main effects ROI number and data type (within- and cross-site).
hen evaluating the data registration type, the model also included

egistration type ( “Rigid ” and “SyN ”) as a fixed main effect. When test-
ng for QSM reference, the model also included reference region ( “wb ”,
csf ”, and “cyl ”) as a fixed main effect. On multi-echo QSM data, a model
as fitted which also included the number of echoes processed as a fixed
ain effect. When comparing the manual and subcortical ROIs, the ROI

ype (manual vs. atlas-based) was also included as a fixed main effect.
inally, on the data from the cortical ROIs, ROI number was replaced
ith “high ΔB 0 ” and “low ΔB 0 ” ROI type as covariate. A p-value less

han 0.05 was considered significant. 

.6. Head orientation 

We investigated the effect of head orientation on QSM variability.
ince all our data was acquired with transverse slice orientation, the
lice normal vector in the acquired images was parallel to B 0 . We used
he per-subject rotation matrices of the affine transforms from this ac-
uired transverse data to MNI space to estimate the z -axis rotation 𝜃
ith respect to the B 0 vector (0,0,1) ( Fig. 7 (A)): 

= cos −1 
(
𝑀 33 

)
here M 33 is the 3rd row, 3rd column of the affine transform matrix. 

Two linear mixed effects models, ‘mod1’ and ‘mod2’, were fitted on
he within-site and cross-site 𝜒 data separately: both models included
ite, ROI, and session number as fixed effects, and subject number as a
andom effect, while ‘mod2’ also included 𝜃 as a fixed effect. For each
odel, the R 

2 was evaluated and both models were compared with a
hi-squared test. 

Finally, from ‘mod2’ the 𝜃 fit coefficients were used to estimate cor-
ected 𝜒-values based on a chosen standard 𝜃 for all of the measure-
ents ( 𝜃𝑛𝑜𝑟𝑚 = 0 . 52 radians). Then, new within-site and cross-site SD w 

f the corrected 𝜒 were calculated based on the same approach as in
ection 2.5 . 

. Results 

Fig. 1 shows QSM and R 2 
∗ maps for one example subject.

asal ganglia structures, including Caudate Nucleus, Putamen and
lobus Pallidus are clearly visible consistent with previous findings
 Langkammer et al., 2010 ; Wang et al., 2015 ; Betts et al., 2016 ; Acosta-
abronero et al., 2016 ). Fig. 2 , Supplementary material 2 highlights the
ifference in QSM data quality when using our chosen Roemer coil com-
ination method vs using sum-of-squares coil combination. 

.1. QSM and R 2 
∗ results and literature 

Fig. 2 compares average 𝜒 and R 2 
∗ values calculated in this study

n the five manual ROIs and three corresponding atlas-based subcortical
OIs against literature ranges. The single-echo 𝜒-values and multi-echo
-values from this study are consistent with literature values at 1.5T, 3T
nd 7T. R 2 

∗ values from this study also agree closely with 7T literature
alues. 
.2. Reproducibility of QSM and R 2 
∗ 

Fig. 3 shows boxplots over ROIs of the within- and cross-site AV w 

(A),
D w 

(B) and ICC (C) values for the manual ROIs on the 𝜒 and R 2 
∗ maps.

he AV w 

from R 2 
∗ maps measured on the same site is systematically

igher compared to the AV w 

measured across sites ( p < 0.0001; e.g., on
he Putamen ROI, AV w_within-site = 0.0493 ms − 1 vs AV w_cross-site = 0.0489
s − 1 ). On this comparison, QSM data did not show significant differ-

nces between within-site and cross-site groups for either single-echo
ata ( p = 0.053) or multi-echo data ( p = 0.65). 

From all the data in the manual ROIs, the median SD w 

of single-echo
-values was approximately 29% lower than for multi-echo 𝜒-values
 p = 0.0010). There was a significantly larger SD w 

cross-site compared
o within-site on single-echo 𝜒 data ( p < 0.0001; e.g., on the PN ROI,
D w_within-site = 0.00088 ppm vs SD w_cross-site = 0.0014 ppm), multi-echo
( p = 0.033) and on R 2 

∗ data ( p < 0.0001). 
The ICC values for within- and cross-site R 2 

∗ data (median ICC
as 0.98 and 0.91, respectively) were found to be significantly higher

han values for single-echo 𝜒 (median ICC was 0.89 and 0.64, respec-
ively) or for multi-echo 𝜒 (median was ICC 0.76 and 0.38, respectively)
 p = 0.00011). For all measurements, the ICC for cross-site data was sig-
ificantly lower than for within-site data (single-echo QSM: p < 0.0001;
ulti-echo QSM: p = 0.017; R 2 

∗ : p < 0.0001). 
Similar statistics were obtained for AV w 

, SD w 

and ICC measurements
n the Altas-based cortical ROIs (Table 2 Supplementary material 2). 

.3. Registration 

The within- and cross-site standard deviations for one axial slice from
ne example subject using “Rigid ” and “SyN ” registration approaches
re shown in Fig. 4 . Generally, with both registration methods, within-
ite and cross-site SD w 

increases in veins, in the orbitofrontal regions and
t the cortical surface (white and green arrows, Figure 4 ). These are ar-
as associated with large B 0 inhomogeneities and gradient non-linearity.
owever, there is a decrease in the cross-site standard deviation in the
rbitofrontal region and close to the edges of the cortex when using the
SyN ” compared to the “Rigid ” method (green arrows, Fig. 4 ). 

On the manual ROIs increased variability was observed for R 2 
∗ on

Rigid ” registered data compared to “SyN ” (SD w 

: p < 0.0001; ICC: p =
.013) but not for single-echo or multi-echo 𝜒 : for example, the median
ross-site R 2 

∗ SD w 

from all ROIs was 0.00066 ms − 1 using “SyN ” method
nd 0.00086 ms − 1 using the “Rigid ” registration method. On the atlas-
ased cortical ROIs, the same significant trend was observed for R 2 

∗ and
ingle-echo 𝜒 data (Table 2 Supplementary material 2). 

.4. QSM referencing 

To assess the optimal QSM susceptibility referencing, Fig. 5 shows
oxplots of the SD w 

for single-echo and multi-echo 𝜒 using different ref-
rencing methods on the manual ROIs. On single-echo 𝜒 data, compared
o “wb ” correction (chosen correction for this study), the “csf ” reference
id not increase significantly the SD w 

( p = 0.93) but with “cyl ” the me-
ian SD w 

increased by approximately 14% ( p < 0.0001). 
Multi-echo 𝜒 data showed an increase in the median SD w 

of, respec-
ively, 11% ( p = 0.00096) and 8% ( p = 0.00064) when using “csf ” and
cyl ” methods for correction. The effect of varying the referencing of
SM data was similar in within-site and cross-site data, for all methods

ested. 

.5. Multi-echo QSM and R2 

∗ 

On average across all the manual ROIs and compared to single echo
ata, multi-echo data (using two or more echoes) showed a significant
4% increase of the SD w 

( Fig. 6 ) and 3% of the ICC ( Table 1 , Supplemen-
ary material 2). This supports the single-echo and multi-echo 𝜒 compar-
son in Section 3.2 . Similar behaviour was observed on the atlas-based
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Fig. 1. Representative slices of single-echo 𝜒

(A) multi-echo 𝜒 (B) and R 2 
∗ maps (C) from an 

example subject templates. The right Caudate 

Nucleus (a), Putamen (b) and Globus Pallidus 

(c) are shown in green. Multi-echo 𝜒 maps cal- 

culated with data from all 8 echoes. 

Fig. 2. Mean and standard deviation literature values of QSM (A) and R 2 
∗ (B). The mean and standard deviation results from this study are also plotted. For data with 

the symbol ‘§’ the standard error of the mean was originally reported and has been rescaled by reported N. Shaded regions correspond to literature data. Multi-echo 

𝜒-maps were calculated with data from all eight echoes ( Choi et al., 2019 ; Deistung et al., 2013 ; KeuKen et al., 2017 ; Barbosa et al., 2015 ; Schweser et al., 2011 ; 

Bilgic et al., 2012 ). 
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Fig. 3. Boxplots from data obtained on the manual ROIs of within- and cross-site AV w (A), SD w (B) and ICC (C) of single-echo and multi-echo QSM, and R 2 
∗ . Data 

from each ROI is shown with a different marker for each boxplot. Legend: SN = Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus 

Pallidus. The variability in AV w reflects the natural variation of iron content in subcortical structures in the healthy brain. Multi-echo 𝜒-maps were calculated with 

data from all eight echoes. 
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ortical ROIs (Table 2 Supplementary material 2). On the manual ROIs,
here is no significant difference in AV w 

( p = 0.79) or in SD w 

( p = 0.11)
rom 𝜒 computed from multiple echoes (i.e. 2 or more echoes in the
SM analysis). Yet, in the atlas-based cortical ROIs, long echo times

i.e. using 6 or more echoes) showed an average increase of 15.7% in
D w 

( p < 0.0001) compared to using 2 to 5 echoes and a decrease of
.75% in ICC ( p < 0.0001) (Table 2 Supplementary material 2). 

In the manual ROIs, R 2 
∗ showed no significant change in variability

cross all ROIs when different number of echoes were used in the fit-
ing (SD w 

: p = 0.11; ICC: p = 0.95) ( Fig. 6 (B)) or on AV w 

( p = 0.97).
n the atlas-based cortical ROIs, the number of echoes used influenced
he average R 2 

∗ value (AV w 

: p < 0.0001), weakly ICC ( p = 0.021), but
ot SD w 

( p = 0.61). Tables 1 and 2 Supplementary material 2 display
ndividual statistics. 

.6. ROI selection 

There is a small but significant higher average 𝜒 from manually
rawn ROIs compared to the atlas-based subcortical ROIs in single-echo
SM data ( p < 0.0001; e.g. 0.042 ± 0.009 ppm vs 0.033 ± 0.010 ppm

n the caudate nucleus) and in multi-echo QSM data ( p < 0.0001; e.g.
.048 ± 0.010 ppm vs 0.038 ± 0.011 ppm in the caudate nucleus) ( Fig. 2 ).
imilarly, for R 2 

∗ (e.g. 0.041 ± 0.004 ms − 1 vs 0.039 ± 0.006 ms − 1 in the
audate nucleus) this difference was significant ( p < 0.0001). In addi-
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Fig. 4. Voxel-wise within- and cross-site stan- 

dard deviation of an example subject from 

single-echo and multi-echo QSM and R 2 
∗ data 

with data registered with “Rigid ” (A) and 

“SyN ” (B) transformations. Arrows point to 

regions where the SD w decreased with the 

“SyN ” transformations (green) are compared to 

“Rigid ” (white). The right Caudate Nucleus (a), 

Putamen (b) and Globus Pallidus (c) are out- 

lined in white. Multi-echo 𝜒-maps were calcu- 

lated with data from all eight echoes. 

Fig. 5. Boxplots from data obtained on the manual ROIs of within- and cross-site SD w (red and green, respectively) of single-echo QSM (A) and multi-echo QSM 

(B) with a whole-brain reference (wb), with a csf reference (csf), and with a cylinder reference (cyl). Data from each ROI is shown with a different marker for each 

boxplot. Legend: SN = Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus Pallidus. Multi-echo 𝜒-maps were calculated with data from 

all eight echoes. 
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ion, the SD w 

was, on average, approximately two times higher and the
CC lower in the atlas-based subcortical ROIs compared to the manual
OIs in all datasets (SD w 

: single-echo QSM p < 0.0001, multi-echo QSM
 < 0.0001, R 2 

∗ p < 0.0001; ICC: single-echo QSM p = 0.00021, multi-
cho QSM p = 0.0023, R 2 

∗ p = 0.012). So, ROI selection should be done
onsistently in a study. 
s

.7. Spatial distribution of the magnetic field 

On the atlas-based cortical ROIs the SD w 

increased by approximately
8% and 88% on “high ΔB 0 ” regions compared to “low ΔB 0 ” regions on
ulti-echo 𝜒 and R 2 

∗ data, respectively ( p = 0.0011 and p < 0.0001)
Table 2 Supplementary material 2). Similarly, ICC values decreased
ignificantly for single-echo and multi-echo 𝜒 and R 

∗ values. 
2 
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Fig. 6. Boxplots from data obtained on the manual ROIs of within- and cross-site SD w for multi-echo QSM (A) and R 2 
∗ (B) calculated with different number of 

echoes. Increasing trend on the median SD w observed with increasing number of echoes was observed on the QSM data (dotted green and red dotted lines in (A)). 

Legend: SN = Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus Pallidus. 

Table 2 

Within-site to Cross-site ratio of the median SD w obtained from all five manually-defined ROIs on single-echo and multi-echo 

𝜒 without and with 𝜃-correction. 

Parameter within-site/cross-site median SD w (without 𝜃-correction) within-site/cross-site median SD w (with 𝜃 -correction) 

Single-echo 𝜒 0.82 0.67 

Multi-echo 𝜒 0.91 0.82 
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.8. QSM variability with head orientation 

When analysing 𝜒 in the manually-defined ROIs with respect to 𝜃,
 consistent negative trend was observed for all subjects. Fig. 7 (C) and
D) shows an example for the analysis in the Globus Pallidus ROI. Fit-
ing a linear model on 𝜒 , with 𝜃 and ROI as fixed variables, 𝜃 showed
 significant negative correlation with single-echo 𝜒 ( p < 0.0001) and
ulti-echo 𝜒 ( p = 0.015). 

In addition, for 𝜃, the within-site SD w 

was nearly half of the cross-
ite SD w 

(0.011 and 0.028 radians, respectively), indicating that there
as larger variability in head orientation across sites (subject-wise vari-
bility of 𝜃, 𝜎i of equation [3], is plotted in Fig. 7 (B)). 

Separately for within-site and cross-site 𝜒 data, we assessed the
oodness-of-fit of a model containing 𝜃 as an explanatory variable.
n single-echo within-site data, the marginal R 

2 increased from 0.71
ith ‘mod1’ to 0.76 with ‘mod2’ (which includes 𝜃) (Chi-squared test,
 = 0.041). The corresponding cross-site R 

2 s were: 0.77 and 0.80 (Chi-
quared test, p = 0.057). On multi-echo data, the marginal R 

2 increased
rom 0.75 with ‘mod1’ to 0.79 with ‘mod2’ on within-site data (Chi-
quared test, p = 0.041) and maintained at 0.79 on both models for
ross-site data (Chi-squared test, p = 0.14). 

From the corrected 𝜒-values at 𝜃norm 

, results show a slight decrease
n the ratio of within-site to cross-site SD w 

( Table 2 ), but variability of
obtained from cross-site data was still higher than from within-site ( 𝜒
ith 𝜃-correction, p = 0.01; uncorrected 𝜒 , p < 0.0001 ( Section 3.2 )).
or multi-echo data, the SD obtained from the corrected 𝜒-values
w 
ere similar on within-site compared to cross-site ( 𝜒 with 𝜃-correction,
 = 0.11; uncorrected 𝜒 , p = 0.033 ( Section 3.2 )). 

. Discussion 

In this paper, the reproducibility of QSM 𝜒 and R 2 
∗ measurements

n cortical and subcortical regions of the brain was assessed for the first
ime in a multi-site study at 7T for two different protocols (a single-echo
.7mm isotropic T 2 

∗ -weighted scan and a 1.5mm isotropic multi-echo
 2 
∗ -weighted scan), using three different scanner platforms provided by

wo different vendors. 
Previous studies at 1.5T and 3T have shown good reproducibility for

and R 2 
∗ data acquired on the same scanner or across sites (1.5T and

T) ( Hinoda et al., 2015 ; Cobzas et al., 2015 ; Deh et al., 2015 ; Lin et al.,
015 ; Santin et al., 2017 ; Feng et al., 2018 ; Spincemaille et al., 2019 ).
n terms of QSM and depending on the subcortical region, intra-scanner
T repeatability studies report an SD w 

of 0.002–0.005 ppm ( Feng et al.,
018 ) and 0.004–0.006 ppm ( Santin et al., 2017 ), and the cross-site 3T
tudy by Lin et al. (2015) reported an average SD W 

of 0.006–0.010 ppm.
e observed a within-site SD w 

range of 0.0009–0.004 ppm and cross-
ite SD w 

range of 0.001–0.005 ppm at 7T. Compared to 3T studies, this
s a 2.0–5.3 fold decrease in the within-site SD w 

, and a 2.1–4.8 decrease
n the cross-site SD w 

. 
The range of within-site SD w 

values for R 2 
∗ was averaged 0.0003–

.001 ms − 1 in our study and the cross-site SD w 

range was 0.0005–0.001
s − 1 . The cross-site values are comparable to the same site reported
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Fig. 7. In QSM, it is assumed that the macroscopic susceptibility in an imaging voxel is isotropic. However, it has been shown that this assumption is too simplistic 

for single head orientation QSM methods, complicating the interpretation of the QSM results ( Li et al., 2017 ). We investigated the effect of head orientation on 

QSM estimation in our data: (A) Considering that data was all acquired in the transverse plane with B 0 perpendicular to the imaging slice, subjects had a variable 

head rotation 𝜃 with respect to B 0 . To estimate 𝜃, we used MNI space as a common head orientation (z MNI ) across all scans. From the affine registration matrix M 

converting acquired data into MNI space, the angle of rotation from the rotated z-axis, z 2 , will be given by 𝜃 = cos −1 ( 𝑀 33 ) where M 33 is the 3rd row, 3rd column of 

the affine transform matrix. (B) Subject-wise within-site and cross-site 𝜎i measurements on 𝜃. (C) Single-echo and (D) multi-echo scatter plots of 𝜒 measurements 

according to 𝜃 on the Globus Pallidus manual ROI. For each subject a linear trend is also plotted and the fit coefficients are given in the plot legend. Data from each 

site is displayed with a different symbol. Multi-echo 𝜒-maps were calculated with data from all eight echoes. 
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t 3T: 0.0005–0.0009 ms − 1 ( Feng et al., 2018 ), 0.0006–0.002 ms − 1 

 Santin et al., 2017 ). Compared to the latter, our cross-site results show
 1.1–3.4 improvement over the same brain regions in R2 ∗ variability. 

The study from Hinoda et al. (2015) measured QSM reproducibility
t 1.5T and 3T by scanning subjects twice on each of the scanners. They
howed there is a 1.1–2.1 fold decrease in the upper and lower limits in
land-Altman plots at 3 T compared to 1.5 T, which is in line with the
xpected signal-to-noise ratio (SNR) increase between these two field
trengths ( Edelstein et al., 1986 ; Wardlaw et al., 2012 ). Compared to
T reports, there is, on average, an improvement of approximately 3-
old in our QSM and R 2 

∗ 7T measurements of reproducibility. This is
n line with the expected SNR increase in brain imaging from 3T to 7T
 Pohmann et al., 2016 ). 

The higher values of cross-site SD w 

compared to the within-site val-
es in our study may be attributed to the different gradient systems and
utomatic distortion corrections used in the different scanner platforms
nd to the different approaches to shimming, which lead to different ge-
metrical distortions and dropout regions ( Figs. 3 and 4 Supplementary
aterial 2) ( Yang et al., 2010 ). In our study we verified that not only

egions in the cortex close to air-tissue interfaces show differences in B 0 

cross scanners, but also large subcortical regions such as the CN, the
u and the GP ROIs. 

We also showed that the use of a non-linear registration method
here, “SyN ” in ANTs) significantly reduced the inter-scanner variabil-
ty of cortical QSM compared to rigid-body registration, indicating that
ifferences in geometric distortion across scanners were present. The
 2 
∗ results for both cortical and subcortical structures also show sig-

ificantly lower inter-scanner variability when a non-linear registration
as used. For QSM, higher cross-site variability may also be attributed

o the head orientation with respect to B 0 ( Lancione et al., 2017 ; Li et al.,
017 ). Our results indicate head orientation varied somewhat between
cans and there was greater variation between sites than intra-site; we



C. Rua, W.T. Clarke and I.D. Driver et al. NeuroImage 223 (2020) 117358 

a  

e  

o  

c  

s
 

r  

s  

2  

t  

t  

b  

e  

t  

f  

c  

p  

r  

Q  

e  

A  

i  

(  

a  

t
 

H  

s  

d  

u  

S  

d  

u  

t  

d
 

h  

𝜒  

m  

t  

t  

fi  

t  

v  

fi  

l  

s
 

(  

c  

o  

t  

S  

w  

a  

t  

o  

r  

e  

a  

t  

a  

R  

a  

t  

o  

s  

n  

F  

b  

w  

c  

(  

a  

w  

t  

i
 

m  

a  

n  

p  

s  

t  

t  

C  

g  

t  

l  

o  

u  

2
 

n  

d  

u  

p  

a  

o  

f  

W  

P  

w  

d  

l  

r  

2  

c  

(  

(  

f  

r  

a
 

i  

p  

b  

t  

i  

o  

h  

i  

r  

(  

l  

t  

r  

m  

(
 

a  

a  
lso observed a consistent negative correlation between 𝜒 and head ori-
ntation ( 𝜃). Using a linear model to attempt to regress-out the effects
f head rotation improved the reproducibility of both within-site and
ross-site data. It also reduced the penalty for multi-site scanning vs
ingle-site scanning, but not completely. 

In this study, the reproducibility of QSM using single-echo, high-
esolution (0.7 mm isotropic resolution; TE = 20ms) and multi-echo
tandard-resolution (1.4 mm isotropic resolution; TE = 4, 9, 14, 19,
4, 29, 34 and 39 ms) protocols were compared, and the results show
hat the multi-echo QSM data has a significantly higher variability
han single-echo QSM. Although multi-echo phase data has been com-
ined with a magnitude-weighted least squares regression of phase to
cho time, it may carry inconsistent phase accumulation across echoes
hat were inconsistently unwrapped. This is also particularly relevant
or regions of large field inhomogeneities, where phase accumulation
ould exceed ± 𝜋 between neighbouring voxels, resulting in multiple
hase wraps, which the unwrapping algorithm maybe unable to cor-
ect ( Cronin et al., 2017 ). This has also been verified on the analysis of
SM data from the cortical ROIs reconstructed with different numbers of
choes: long echo times increase significantly the test-retest variability.
lternatively, phase unwrapping can be completely omitted by calculat-

ng the phase change over all echo-times using a complex fitting routine
 Liu et al., 2012 ; Liu et al., 2013 ) (fit_ppm_complex.m of MEDI toolbox)
nd calculating the Laplacian directly from the resulting, still wrapped,
emporal phase change data ( Schweser et al., 2013 ). 

It has been shown that resolution influences QSM estimation.
aacke et al. (2015) showed on phantom data that by decreasing

lice thickness from 3 mm to 0.5 mm partial volume effects are re-
uced, absolute susceptibility values decrease, and accuracy improves
p to 25%. Similar findings on in vivo brain data are reported in
un et al. (2017) (single-echo data) and Karsa et al. (2019) (multi-echo
ata). Our results support the suggestion that a reduction of partial vol-
me effects at higher-resolution might play a role in decreasing both
est–retest and cross-site variability on the single-echo high-resolution
ata compared to the multi-echo low-resolution data. 

R 2 
∗ values show significantly lower variability, reflected in the

igher ICC within and across-sites compared to corresponding values for
in subcortical areas. This may be because the 𝜒 estimation is globally
ore sensitive to background field inhomogeneity compared to magni-

ude data. However, in orbitofrontal and lower temporal regions large
hrough-plane field variations from tissue-air interfaces dominate the
eld changes and produce dropouts in the signal magnitude and increase
he background phase, affecting both QSM and R 2 

∗ maps by increasing
ariability and decreasing ICC across sites. In addition, because of large
eld variations, the estimated cortical R 2 

∗ increases significantly when
ate echo times are used for the fitting, but this effect is not seen in
ubcortical areas. 

QSM can only determine relative susceptibility differences
 Cheng et al., 2009 ) and most approaches to calculation of sus-
eptibility from measured phase yield maps in which the average value
f susceptibility is zero over the masked imaging volume. Issues related
o referencing of QSM data have been investigated ( Feng et al., 2018 ;
traub et al., 2017 ), with aim of finding a reference region or tissue to
hich all susceptibility values are referred that produces well-defined
nd reproducible values of susceptibility. Here we investigated how
he choice of reference affects the within-site and cross-site variability
f measured susceptibility at ultra-high-field. We tested three accepted
eference regions: total whole brain signal, “wb ”, whole brain CSF
roded in order to exclude any pial or skull surfaces, “csf ”, and a manu-
lly selected cylindrical ROI in the right ventricle, “cyl ”. We found that
he “cyl ” referencing generally increased the variability of the cross-site
nd within-site susceptibility measurements in cortical and subcortical
OIs compared to “wb ” referencing. In the case of the multi-echo
cquisition the “csf ” referencing also increased the variability relative
o “wb ” data. This may be because of imprecision in systematically
btaining average QSM signal from CSF regions. Referencing using a
mall ROI in the ventricles might be prone to subjectivity given the
atural variation in ventricle size in healthy subjects and in disease.
urthermore, the ventricles do not contain pure CSF: they are traversed
y blood vessels with a different 𝜒 ( Sullivan et al., 2002 ). This makes
hole-brain referencing attractive in many situations. Yet, in patient

ohorts where there is substantial iron load in subcortical structures
 Snyder and Connor, 2009 ), whole brain referencing might not be an
ppropriate approach. In this case, the more appropriate approach
ill be to choose a small reference region which shows no changes in

he particular disease to be “zero ” susceptibility at a cost of a slight
ncrease in SD. 

To eliminate operator-dependent bias in segmentation when deter-
ining brain structures, we have analysed data using both manual and

tlas-based segmentation. From our results, manual ROIs showed sig-
ificantly lower variability compared to atlas-based methods. This hap-
ens because of imprecision in registration between MNI and subject
pace as well as the empirical thresholding that was chosen to obtain
he subcortical ROIs. This resulted in larger ROIs being derived from
he atlas-based method compared to the manual method (Wilcoxon test,
N: p = 0.014; Pu: p = 0.00018; GP: p = 0.0010). Overestimation of the re-
ion (Fig. 5 Supplementary material 2) meant including boundary voxels
hat, generally, have lower susceptibility (white-matter, for example),
owering the average 𝜒 and R 2 

∗ . However, traditional manual drawing
f ROIs for cohort studies is difficult, time consuming and potentially
nsuitable as it biases results towards particular cohorts ( Collins et al.,
003 ) so it may not always be the most appropriate approach. 

In this study, harmonized protocols were produced for all five scan-
ers without any significant sequence alterations, as a product 3D gra-
ient echo (GE) sequence was readily available on all systems (the prod-
ct ‘gre’ sequence from Siemens and the product ‘ffe’ from Philips). The
rotocols and an example dataset are provided in ( Clarke, 2018 ). Gener-
lly, we also relied on the vendors’ reconstruction. However, at the end
f the reconstruction pipeline of the Siemens systems we adopted a dif-
erent coil combination approach based on Roemer et al. (1990) and

alsh et al. (2000) , to match the SENSE approach implemented on
hilips scanners ( Pruessmann et al., 1999 ; Robinson et al., 2017 ). This
as required due to artifacts appearing on phase images in Siemens
ata reconstructed with the vendor’s pipeline, such as open-ended fringe
ines or singularities ( Chavez et al., 2002 ) ( Fig. 2 , Supplementary mate-
ial 2). These reduce the consistency of the QSM results ( Santin et al.,
017 ). However, other coil combination methods such as a selective
hannel combination approach ( Vegh et al., 2016 ) or the COMPOSER
COMbining Phase data using a Short Echo-time Reference scan) method
 Bollmann et al., 2018 ) have also been shown to reduce open-ended
ringe lines and noise in the signal phase. For future investigations, the
aw k-space data collected from all sites in this study has been stored
nd is available from the authors upon request. 

On the QSM reconstruction, an imperfect background field filter-
ng can influence the reproducibility of QSM data. For this reason, we
erformed background removal in two steps as implemented in QSM-
ox v2.0 and as described in ( Acosta-Cabronero et al., 2018 ): first with
he LBV approach and then followed by the vSMV method. Regular-
zed field-to-susceptibility inversion strategies have been proposed to
vercome the ill-posed problem in QSM with data acquired at a single
ead orientation ( de Rochefort et al., 2010 ). We opted to use the MSDI
mplementation in QSMbox v2.0 ( Acosta-Cabronero et al., 2018 ), as it
anked top-10 in all metrics of the 2016 QSM Reconstruction Challenge
 Langkammer et al., 2018 ), and also now includes a new self-optimized
ocal scale, which results in a better preservation of phase noise tex-
ure and low susceptibility contrast features. On the second step, the
egularization factor, 𝜆, used for this study was set to 10 2.7 , as recom-
ended by Acosta-Cabronero et al. (2018) based on an L-curve analysis

 Hansen et al., 1993 ) with high-resolution 7T data. 
The standard multi-echo GE protocol in this study was produced as

 harmonised sequence that could be performed at all sites, with a rel-
tively short acquisition time (approximately 5 min), which is accept-
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Fig. 8. Illustration of the feasibility of a 7T QSM clinical study. 𝜒 (A) and R 2 
∗ (B) for four ROIs (Substantia Nigra, SN; Caudate Nucleus, CN; Putamen, Pu; Globus 

Pallidus, GP) from healthy volunteer (HV) and synthetic “patient ” (PT) data for which AV lit and SD lit were obtained from Langkammer et al. (2016) and SD b were 

calculated from data of the current study. AV lit values for R 2 
∗ were linearly scaled to 7T according to Yao et al. (2007) . Blue bars show the AV lit ± SD lit and green 

bars the AV lit ± SD b . Statistical differences between HV and PT obtained from Langkammer et al. (2016) are also shown. For each ROI, the sample size that would 

have been needed to give a significant effect was calculated from the group means, AV lit , and the SD b per ROI and is shown in circles. Multi-echo 𝜒-maps were 

calculated with data from all eight echoes. 

a  

a  

v  

f
 

c  

R  

i  

m  

a  

t  

t  

s
 

t  

s  

s  

d  

a  

s  

n  

e  

s  

s  

o

5

 

w  

c  

s  

t  

d  

o  

t  

s  

b

C

 

c
 

t  

T
 

s  

n  
ble for patient studies. Mid-brain structures such as the basal ganglia
re identifiable, yet small subcortical structures will suffer from partial-
olume effects, which could be a limitation of this harmonized protocol
or future ultra-high field multi-site studies. 

At ultra-high field there can be variations in SNR in magnitude data
aused by the variable B 1 

+ across the brain ( Abduljalil et al., 2003 ). As
 2 
∗ is estimated voxel-wise, and as there is always a reasonable SNR

n the magnitude data, the coefficient in the exponential fit that esti-
ates R 2 

∗ will not be strongly affected by variations in B 1 
+ . QSM maps

re estimated from filtered phase data which is not strongly affected by
ransmit B 1 

+ variations. On our data, no correlations were found be-
ween QSM or R 2 

∗ maps and B 1 
+ flip-angle maps collected in the same

ession (Fig. 6 Supplementary material 2). 
To minimise confounding effects of age or pathology, we assessed

est-retest reliability and cross-site variability with ten healthy young
ubjects. The cross-site, between-subject standard-deviation, SD b , mea-
ured in this study was evaluated together with healthy and Parkinson’s
isease data from ( Langkammer et al., 2016 ). A power analysis revealed
 sample size that would have been required for a multi-site clinical
tudy in each ROI as shown in Fig. 8 . For all the significant ROIs the
umber of subjects that would have been required per group was less or
qual to 44. Since this is lower than the sample size we have used in this
tudy (90 healthy volunteer scans) and the numbers in the Langkammer
tudy (66 patients and 58 control subjects), it gives strong confidence
f feasibility for future 7T QSM clinical studies. 
S  

s  
. Conclusion 

We investigated test-retest reliability and reproducibility of T 2 
∗ -

eighted imaging protocols at ultra-high field MRI. Considering the in-
rease in susceptibility effects at 7T, we found that variability of mea-
urements of QSM 𝜒 and R 2 

∗ in the basal ganglia are reduced compared
o reports from lower field strengths, 1.5T and 3T. Scanner hardware
ifferences give more modest improvements for cortical measurements
f QSM 𝜒 and R 2 

∗ . Multi-echo protocols do not benefit from long echo
imes as these increase the imprecision in the estimation of QSM. We
uggest that 7T MRI is suitable for multicentre quantitative analyses of
rain iron, in health and disease. 
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