
Best Practices for Making Reproducible Biochemical Models

Veronica L. Porubsky1,5,*, Arthur P. Goldberg2,4,5,*, Anand K. Rampadarath3, David P. 
Nickerson3, Jonathan R. Karr2,4, Herbert M. Sauro1

1Department of Bioengineering, University of Washington, Seattle, WA 98105, USA 2Department 
of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 
10029, USA 3Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand 
4Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount 
Sinai, New York, NY 10029, USA 5These authors contributed equally

SUMMARY

Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible 

results. This limits the utility of biochemical models by making them difficult to understand, trust, 

or reuse. We comprehensively list the best practices that biochemical modelers should follow to 

build reproducible biochemical model artifacts—all data, model descriptions, and custom software 

used by the model—that can be understood and reused. The best practices provide advice for all 

steps of a typical biochemical modeling workflow in which a modeler collects data; constructs, 

trains, simulates, and validates the model; uses the predictions of a model to advance knowledge; 

and publicly shares the model artifacts. The best practices emphasize the benefits obtained by 

using standard tools and formats and provides guidance to modelers who do not or cannot use 

standards in some stages of their modeling workflow. Adoption of these best practices will 

enhance the ability of researchers to reproduce, understand, and reuse biochemical models.

INTRODUCTION

Recent recognition of the reproducibility obstacles in scientific research has led to calls for 

improved practices that ensure that published results can be reproduced by independent 

investigators (Mobley et al., 2013; Prinz et al., 2011; Golub et al., 1999; De Schutter, 2010; 

Woelfle et al., 2011; Casadevall and Fang, 2010). Computational models of biochemical 

system dynamics face the same criticism (Elofsson et al., 2019; Sandve et al., 2013; Peng, 

2011; Medley et al., 2016; Waltemath and Wolkenhauer, 2016). Reproducible models confer 

important benefits: they are easier to understand, trust, modify, reuse, and compose. Thus, 

they facilitate collaboration among biochemical modelers. A collection of reproducible 

models could be reused to construct multi-scale models of larger, more complex systems. 

Achieving a dynamical, biochemical model with these traits requires that (1) the data, code, 

and decisions used to construct and simulate models be recorded by the modeler, (2) models 
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be described in comprehensible languages, standard data formats, and nomenclature, and (3) 

the artifact produced by modeling be publicly shared and governed by open-source licenses 

(Rosen, 2005). To make it easier to conduct reproducible biochemical modeling, we and 

others are creating tools (Choi et al., 2018; Somogyi et al., 2015; Smith et al., 2009; Choi et 

al., 2016; Hucka et al., 2003; Hoops et al., 2006; Waltemath et al., 2011b; Olivier and Snoep, 

2004; Watanabe et al., 2019) that simplify these activities. As a practical guide for the 

computational biochemical modeling community, this article lists nine of the most important 

best practices that researchers can use to make their models more reproducible.

We offer modelers these best practices as a guide for conducting reproducible modeling. We 

structure the best practices as advice for each stage of a typical biochemical modeling 

workflow: collect and aggregate data; construct a model, identify and estimate its 

parameters, define initial conditions and simulate the model, analyze the simulation results, 

validate the model, document all of the model artifacts, build a package that contains the 

artifacts and their documentation, and share the package while publishing the findings of the 

study (see Figure 1). This structure makes it easy to selectively implement a subset of the 

best practices.

An initiative with consistent goals developed the findability, accessibility, interoperability, 

and reusability (FAIR) principles (Wilkinson et al., 2016), which set forth goals and 

desiderata for good management and stewardship of scholarly data. To better support 

knowledge discovery and innovation, the FAIR principles urge all scholars who create 

digital data to ensure that it is findable, accessible, interoperable, and reusable. The best 

practices we present consistently support the FAIR principles, as enumerated in Table 1. In 

addition, our goals for achieving reproducible biochemical models focus more on creating 

reusable model artifacts, and our detailed practices provide specific guidelines that go 

beyond the scope of the FAIR principles.

We organize the best practices into two parallel sets of recommendations. The first provides 

guidance to biochemical modelers who employ a “standards-based approach,” which uses 

tools and data formats that were designed for biochemical modeling and have been adopted 

as community standards. The second advises modelers who use a “general-purpose 

approach” that employs computer languages, tools, and data formats that were designed to 

be used by many fields. While modelers who employ the general-purpose approach can 

make reproducible models, the standards-based tools and data formats expedite the 

construction of reproducible models. By facilitating the exchange of model artifacts between 

platforms for construction, simulation, analysis, and validation, and employing consistent 

ontology and minimum information standards, standards-based modeling makes it easier for 

other researchers to understand and reuse these models. Therefore, we recommend that the 

standards-based approach be followed whenever possible. However, modelers constructing 

models that require functionality that is not supported by the existing standards-based tools 

(Karr et al., 2012; Goldberg et al. 2018) will find the general-purpose approach to be more 

practical for some stages of the workflow.

Typical biochemical modeling workflow (A) and tools for achieving best practices for 

making reproducible biochemical models (B). Full caption on the following page.
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BEST PRACTICES FOR MAKING REPRODUCIBLE BIOCHEMICAL MODELS

Best Practice 1: When Aggregating and Curating Data, Retain Its Metadata and Provenance

Most biochemical models require inputs gathered by data aggregation or the collection of 

data from multiple experiments, scientific papers, and online data sources. Appendix A of 

Goldberg et al. (Goldberg et al., 2018) provides an extensive list of data sources that store 

intracellular biochemical data. If experiments are conducted to obtain new data or inform 

conditions studied by the model, use reproducible experimental methods. We encourage 

experimentalists to use appropriate ontologies and minimum information standards when 

recording experimental methods, conditions, and the historical record of the data 

(Bandrowski et al., 2016; Kazic, 2015; Orchard et al., 2007; Deutsch et al., 2008; Bustin et 

al., 2009; Brazma et al., 2001; Taylor et al., 2007). Provide thorough descriptions of 

statistical analyses and estimated uncertainties in measurements that are due to instrument 

accuracy and other sources of noise (White, 2008; Miškovic and Hatzimanikatis, 2011). 

Data curation standardizes, normalizes, and links together the aggregated data to facilitate its 

use in models and manages its metadata (Goldberg et al., 2018). Metadata are data that 

describe data, in this case, data used by biochemical models (Deelman et al., 2010). 

Metadata about a measurement should include its units, estimates of its accuracy, 

annotations, and the identities of the ontologies that define the annotations. This will provide 

information that a modeler can use to evaluate whether data are suitable for their model. 

Data provenance is metadata that describes the historical record of data and should include 

the lab that generated the data, the conditions under which it was obtained, the protocol used 

to make it, the paper that reported the measurement, and the online data source from which 

it was aggregated (Deelman et al., 2010). Provenance records should also describe 

transformations of the data following their collection. Follow the scientific evidence and 

provenance information OntologySEPIO to provide rich, computable representations of the 

evidence and provenance behind scientific assertions (Brush et al., 2016).

A limited set of existing tools can track the versions, metadata, and provenance of 

aggregated data. For example, Quilt provides version control features for data, and PROV 

(Moreau et al., 2015) is an extensive data model for tracking the provenance of online data, 

such as data sources. Over fifty tools have implemented parts of PROV (Huynh et al., 2013). 

When aggregating data, modelers should automate the processes that retain its metadata and 

provenance. If existing tools cannot perform the automation, then custom tools must be 

developed.

Best Practice 2: Record the Model Construction Process

Construction (of a model) encodes the structure and dynamics of the biological system being 

modeled: its geometry; molecular species that participate in the system, the reactions that 

transform them, and the rate laws for these reactions, initial conditions, and parameters used 

by these model components. Other biological or biochemical features may also be 

represented. Document the construction process to ensure that the justification for design 

decisions, which are not explicitly encoded in the logic or mathematics of the model, is 

communicated to independent researchers. This includes simplifications and assumptions 
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about the system and environmental context and decisions about which measurements to 

use.

Many of the artifacts created during model construction will change as the data and models 

are improved and altered. We recommend that modelers use version control systems to track 

changes in their data and code. This would support concurrent development by teams of 

modelers and help avoid unnecessary duplication of artifacts. Version control system tools 

include subversion (SVN) and Git. For cloud-based storage of SVN and Git repositories that 

support version control, use GitHub (Brindescu et al., 2014).

Standards-Based—Follow the minimal information required in the annotation of 

biochemical models (MIRIAM) standard to ensure that all model components are explained 

(Laibe and Le Novère, 2007). Use the systems biology graphical notation (SBGN) (Laibe 

and Le Novère, 2007) to visualize the model to help independent groups understand its 

components and interactions.

General-Purpose—Record all the data and software used to construct the model and 

document the construction process. Help independent investigators understand the model by 

noting all assumptions and decisions made during construction, with comments in source 

code or as supplementary documentation for each artifact. When developing figures to 

visualize the model components and interactions, provide a detailed legend. Follow existing 

conventions for interaction maps when possible—for example, use standard arrowheads to 

represent mass transfer or activating interactions between biochemical species, and blunt-

end arrowheads to represent repression.

Best Practice 3: Make Model Descriptions Comprehensible by Using Structured Formats 
and Unambiguous Names

Models described in structured formats, which precisely identify model components, are 

easier to understand. All model components, such as a model geometry, species, and 

reactions, should be identified by an unambiguous name or annotation with a distinct 

semantic meaning. We also urge modelers to unambiguously describe the system context, 

that is, the biological entity being modeled, including its species, tissue, cell type or strain, 

and genotype. Also, describe the environmental context, such as the temperature, pressure, 

and external nutrients in the environment surrounding the biological entity. The physical 

units of all quantities represented in the model should be documented and propagated as 

quantities are transformed. Software packages that support units are available in multiple 

languages, including R and Python (Pebesma et al., 2016; Grecco and Thielen, 2020).

Standards-Based—To facilitate design and comprehension of their models, modelers 

should use standard systems biology formats for model descriptions, such as the systems 

biology markup language (SBML) (Hucka et al., 2003) and CellML (Cuellar et al., 2003). 

Antimony is a modular, text-based language that can describe a model in simple statements 

and export models to SBML (Smith et al., 2009). BioPAX is a modeling language that 

represents biological pathways and can export them to SBML or CellML (Demir et al., 

2010). BioNetGen (Harris et al., 2016) and PySB (Lopez et al., 2013) enable rule-based 
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models and can also export them to SBML. SBtab (Lubitz et al., 2016) and ObjTables (Karr 

et al., 2020) provide a set of standardized syntax rules and conventions for table-based data 

formats, to help modelers structure experimental measurements and enable automated data 

integration and model building.

Use the systems biology ontology (SBO) (Courtot et al., 2011) to precisely record and 

categorize the semantics of model components, including assumptions, the types of rate 

laws, and the roles of species in reactions and rate laws. The structures of small molecules 

can be described using the International Union of Pure and Applied Chemistry (IUPAC) 

International Chemical Identifiers (InChI) (Heller et al., 2015). BpForms and BcForms can 

precisely describe the structures of and modifications to bio-polymers and complexes (Lang 

et al., 2020).

General-Purpose—Models can be described using general-purpose programing 

languages. Document the code thoroughly with comments that describe the structure of all 

model components. If possible, describe the components of models as data rather than in 

code. For example, the types of molecules in a model could be described in a computer-

readable table that contains a column for each molecular attribute. Many other model 

components can be described in similar tables. Storing components in spreadsheets or 

delimited files and annotating the meaning of all components and fields will help 

independent investigators comprehend the model. Standard identifiers for biological and 

chemical species identified in the standards-based section above can be used to name model 

entities in the general-purpose approach.

Avoid publishing a model as a system of ordinary differential equations alone, because 

converting a reaction network to this representation usually loses information, which 

obfuscates the underlying biochemistry. Instead, publish both the ordinary differential 

equations and a description of the model as a set of reactions and provide a computer-

readable representation whenever possible.

Best Practice 4: If Parameters Are Estimated, Share the Estimation Algorithm and Perform 
Uncertainty Quantification

Unfortunately, aggregated measurements often fail to provide a complete, self-consistent set 

of parameters for a biochemical model. Therefore, parameter estimation is typically needed 

to infer the values of missing or inconsistent parameters. Parameter estimation solves for 

parameter values that minimize the divergence between experimental measurements of the 

system being modeled and the predictions of the model for that data. For non-identifiable 

models, common when representing biological systems, there are multiple sets of parameters 

that can minimize this divergence. In these cases, families of estimated parameters should be 

reported in machine-readable formats, to adequately capture their correlation structure. 

Many parameter estimation algorithms use well-established optimization methods and allow 

the user to tune inputs for effective estimation (Ashyraliyev et al., 2009). Use reusable 

programs instead of manually tuning parameter values.

Recognizing that biochemical measurements are imprecise and many biochemical 

properties, such as species concentrations, vary naturally; uncertainty quantification 
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estimates the distributions of model input parameters and then propagates these distributions 

through model simulations to quantify their impacts on model predictions. When possible, 

initialize simulations by sampling inputs from their estimated distributions and execute 

multiple simulations to estimate the distributions of predictions. Algorithms and codes for 

parameter estimation and uncertainty quantification should be included in shared artifacts.

Standards-Based—Use a reusable program, such as COPASI (Hoops et al., 2006), 

SBML-PET (Zi and Klipp, 2006), or PyBioNetFit (Mitra et al., 2019), to perform parameter 

estimation on SBML models. COPASI accomplishes this by minimizing the least squares 

error between time course measurements and predictions of the model or by performing 

profile likelihood estimation (Hoops et al., 2006). SBML-PET estimates parameters for 

diverse types of experimental measurements (Zi and Klipp, 2006). PyBioNetFit provides 

both parameterization and uncertainty quantification protocols (Mitra et al., 2019).

General-Purpose—State the parameter estimation algorithm and all input values used to 

tune the protocol. If a custom algorithm is created, provide its code and documentation. 

Potential tools include Data2Dynamics (Raue et al., 2015), PyDREAM (Shockley et al., 

2018), and the optimization library provided by SciPy (Jones et al., 2001). Data2Dynamics 

is a MATLAB toolbox that addresses parameter estimation challenges (Raue et al., 2015). In 

Python, PyDREAM (Shockley et al., 2018) performs parameter estimation and uncertainty 

quantification for biochemical models and the SciPy (Jones et al., 2001) optimization 

package provides many gradient-based and global optimization approaches.

Best Practice 5: Record All Simulation Inputs and Methods, Including Initial Conditions, 
Numerical Integration Algorithms, Random Number Generator Algorithms, and Seed 
Values

Simulation (of a model) involves computational execution of the mathematics describing a 

model to generate predictions of its dynamic behavior. We urge modelers to implement 

numerical methods—such as a custom integration method—separately from representations 

of biological systems, so that each of them can be independently reused. When performing 

stochastic simulations that use a pseudo-random number generator algorithm, preserve a 

precise definition of the algorithm. Execute an ensemble of simulation runs with different 

seeds to estimate the distributions of species population trajectories and predictions that 

depend on them. Make the ensembles large enough to accurately characterize properties of 

the distributions. Record the seeds used by these simulations or a reproducible method for 

obtaining the seeds. If multiple distinct sets of input parameters are analyzed, repeat the 

process of estimating the distribution of predictions for each parameter set.

Standards-Based—Follow the minimum information about & simulation experiment 

(MIASE) guidelines to determine which software and data to archive (Waltemath et al., 

2011a). The simulation experiment description markup language (SED-ML) can encode 

simulation descriptions, including simulator settings and parameter modifications, and 

facilitate exchange between standard-compatible tools (Waltemath and Le Novère, 2013). 

We recommend using the kinetic simulation algorithm ontology (KiSAO) (Courtot et al., 

2011) to annotate SED-ML documents. Many simulators are compatible with these 
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standards, including COPASI and Java web simulation online (JWS Online), an online 

platform that hosts models, simulation programs, and data (Olivier and Snoep, 2004). 

libRoadRunner provides high-performance simulation of multiple numerical integration 

algorithms (Somogyi et al., 2015), and Tellurium provides a Pythonic interface to access 

libRoadRunner, SED-ML, and additional analysis capabilities (Choi et al., 2018). OpenCOR 

is a modeling environment, which can be used to simulate models described using CellML 

(Garny and Hunter, 2015). Alternatively, with simulation experiment specification via & 

scala layer (SESSL) modelers can specify simulation experiments in a domain-specific 

language, import SBML model descriptions, and write additional specifications in Scala 

(Ewald and Uhrmacher, 2014).

General-Purpose—To ensure that published results can be regenerated, archive all 

software and data used to produce simulation results that may be used or referenced in 

publications. Follow the generic MIASE (Waltemath et al. (2011a)) guidelines regarding 

documentation of model descriptions, simulators, and simulation experiments.

A simulation experiment simulates one or more models. It inputs initial conditions and 

parameters, and, optionally, perturbations. Perturbations can modify parts of the model or its 

parameters. A modeler can make a simulation experiment reproducible without archiving 

multiple executables by writing a small program, often called a “script,” that executes all 

simulations. If the simulator has an application programming interface (API), then a script 

that uses the API can be written to run all simulation experiments. Strive to store the initial 

conditions and parameters used by the script in data files that can be easily understood by 

independent investigators. Variations on this approach should be devised if multiple 

simulators are required, if some simulators do not have APIs, or if the simulators depend on 

incompatible computing environments. For example, if a simulator does not have an API, 

then script could be written to output a sequence of commands in another script that 

executes the simulation experiments that use the simulator.

Best Practice 6: Save Structured Unprocessed Simulation Results and Share the Data 
Presented in Graphs and Tables

To allow independent researchers to analyze published simulation results and perform new 

analyses and mathematical manipulations of the results without requiring that they 

reproduce the entire model, unprocessed results should be preserved for dissemination. 

Unprocessed results of simulations that might be used in published findings should be 

temporarily saved; results that are used in published findings should be archived so they can 

be shared with independent investigators.

Share the reduced data that are presented in published graphs and tables to enable 

independent analyses by other investigators. If these data are not shared, researchers must 

devote substantial effort to transcribe data from figures. Results and data should be stored in 

structured and space-efficient formats with annotations that clearly describe the data. Unlike 

traditional figures, interactive graphics provide access to the data presented by mouse over. 

However, to comprehensively share plotted data, archive formatted files containing the raw 

data, the graphics files, the code that generated the graphics, and documentation that relates 
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the data to the figures. Providing the source data and the code used to generate the published 

figures ensures that the figure can be readily regenerated by independent researchers or 

altered to improve understanding of the data (EMBOpress, 2019).

Standards-Based—While standardized formats, such as the systems biology results 

markup language (SBRML) (Dada et al., 2010), have been developed for simulation results, 

they have not been widely adopted, leaving opportunities to develop additional standards. 

The SEEK platform helps address the challenges of managing model data by providing a 

suite of standards-compliant tools that link data with relevant metadata, facilitate exchange 

with independent modelers, and enable web-based simulation and plotting of experimental 

data stored on the platform (Wolstencroft et al., 2015). JWS Online directly links simulation 

predictions to online plots that display them and allows modelers to execute real-time web-

based simulation of stored models to visualize interactive output (Olivier and Snoep, 2004).

General-Purpose—Annotate the semantic meaning and provenance of all simulation 

results. Save results in computer-readable formats, such as comma-separated values (CSV) 

or tab-separated values (TSV). The hierarchical data format (HDF) offers structured and 

efficient data storage that is especially useful for large datasets (Brown et al., 1993), and 

RightField provides semantic data annotation features in excel spreadsheets (Wolstencroft et 

al., 2011). Export interactive graphics using MATLAB figures or web-based frameworks, 

such as Vega and D3.

Best Practice 7: Automate and Document Model Verification and Validation

Verification (of a model and its tools) and validation (of a model) are concerned with 

whether a model, its tools, and its predictions are consistent with experimental data (Sargent, 

2010). We recommend that modelers automate verification and validation as much as 

possible. Employ workflows, shell scripts, and similar techniques to automate processes that 

involve repeated execution of programs with different inputs. Document the verification and 

validation processes, especially the steps that are not automated, such as decisions made and 

conclusions reached during verification and validation. Record the algorithms, code, and 

data used.

Models that use stochastic simulations must employ stochastic validation methods, which 

statistically compare the distributions of model predictions with the distributions of 

measurements of the biological system phenotypes.

Standards-Based—Memote validates static properties of metabolic flux-balance 

constraint models and complies with SBML (Lieven et al., 2018). SBML2Prism can be used 

to make SBML models compatible with the PRISM model checker, which provides 

probabilistic model checking utilities that automate quantitative performance analyses in 

stochastic biochemical models (Kwiatkowska et al., 2011). BioLab uses statistical model 

checking to verify that rule-based biochemical models programed in the BioNetGen 

language exhibit expected temporal properties (Clarke et al., 2008).

General-Purpose—Models written in general-purpose programing languages should be 

designed, built, and verified using software engineering techniques, such as object-oriented 

Porubsky et al. Page 8

Cell Syst. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



programing, modularity, unit testing, and regression testing. Continuous integration services, 

such as CircleCI and Travis, automate regression testing. Evaluate whether simulation 

functions and the computational model have been correctly designed and implemented. 

Defining invariants and ensuring that they are satisfied can help verify modeling tools 

(Gries, 2012). For example, ensuring that chemical reactions conserve of mass and that 

species populations are non-negative can detect subtle errors.

SciUnit is a framework for test-driven model validation (Omar et al., 2014). Modelers write 

a set of scientific unit tests that compare the predictions of the model with measured 

phenotypes of the system being modeled, and SciUnit runs the tests. We recommend SciUnit 

for validating general-purpose and standards-based models. NuSMV (Cimatti et al., 2002) 

and LoLA (Schmidt, 2000) may be used for formal model checking.

Best Practice 8: Confirm That Model Predictions Can Be Reproduced in an Independent 
Computing Environment

Because modeling tools, models, and computing environments are all complex software, it 

can be difficult to re-execute a simulation experiment in a computing environment that 

differs from the original environment used to execute the experiment. To increase the 

likelihood that independent researchers can replicate a simulation experiment in a different 

environment, we recommend that modelers replicate their own experiments in a different 

environment before disseminating the artifacts. Some journals now test the functionality of 

submitted models and may award badges to manuscript that attach data, source code and 

model artifacts, or attach artifacts that pass reproducibility tests performed by the journal 

(Donoho, 2010; Kidwell et al., 2016; AJPS, 2016). The Center for Open Science has 

compiled a list of journals that provide badges for sharing data and other materials (COS, 

2019).

Traditionally, a programmer prepares to execute complex software in their computing 

environment by installing the software upon which the complex software depends. We 

strongly advise modelers to automate this software installation process and test it and their 

simulation experiments in popular computing environments. Given the challenges of this 

approach, we suggest that modelers build and disseminate a container or virtual machine, 

which contains all of the software and data required by their model and simulation 

experiments. Independent researchers can deploy the container or virtual machine to 

replicate the simulation experiments it contains. Popular types of containers include Docker, 

Amazon machine image and singularity, while common virtual machines include VMware, 

Parallels, and VirtualBox. In addition, cloud services, such as the Amazon elastic compute 

cloud, can be rented to test the modeling experiments deployed in a container or virtual 

machine.

Best Practice 9: Create Packages that Contain All Model Artifacts and Documentations, 
and Deposit them in Public, Version-Controlled Repositories

We recommend that all model artifacts be publicly shared to ensure that they are findable, 

accessible, and reusable, as emphasized by the FAIR (Wilkinson et al., 2016) principles. A 

summary of the aims, design, assumptions, limitations, and structure of the model will help 
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independent investigators find, understand, and reuse it. The relationships between model 

artifacts should be clearly described so that others can follow the dependencies within the 

data, model, code, predictions, and findings.

When possible, minimize barriers to accessibility. We recommend that the packages of 

artifacts be governed by an open-source license (Rosen, 2005) and deposited in public, 

version-controlled repositories. GitHub, Bitbucket, and Zenodo are popular repositories, 

which use version control and are easily accessed by the scientific community. Ideally, the 

packages would be shared by publishing a URL or DOI reference to them. Modelers who 

use version-controlled repositories should label and record public releases by tagging the 

release versions. Share findings on preprint servers, such as bioRxiv (Sever et al., 2019), and 

publish in peer-reviewed, open-access journals. The Physiome Project has developed an 

open-access journal created for the explicit purpose of publishing reproducible models of 

biological systems (Hunter and Borg, 2003).

Standards-Based—The computational modeling in biology network (COMBINE) 

developed the open modeling exchange format (OMEX), which enables modelers to store all 

project data required for model comprehension, construction, and simulation in a single zip 

archive (Bergmann et al., 2014). Deposit the archive in a modeling repository, such as the 

BioModels Database (Li et al., 2010) or the FAIRDOMHub (Wolstencroft et al., 2017). JWS 

Online also provides an integrated and standards-compliant storage and simulation platform 

that stores model components with their assumptions, parameter values, simulation results, 

and raw data. Independent investigators can execute simulations of shared models on the 

JWS Online platform and download model artifacts.

General-Purpose—We urge modelers following a general-purpose approach to structure 

input data, model definitions, and other artifacts by creating directories that group the 

artifacts within an archive containing the complete modeling project. Provide thorough 

documentation for the contents of the archive, including a manifest that lists all files, a 

metadata file that describes the contents of the archive, and documents on how to execute the 

simulations and investigate the model. Upload archived artifacts to open-access repositories 

for scientific research, such as FigShare, SimTK, or Zenodo (Singh 2011; Sherman et al., 

2005; Sicilia et al., 2017).

DISCUSSION

A Practical Guide to Reproducible Biochemical Modeling

Building reproducible biochemical models is essential; reproduction of results by 

independent investigators is a tenet of science. Therefore, we have comprehensively 

enumerated the best practices that researchers who build dynamical models of biochemical 

systems should follow to make their modeling workflows and their models reproducible. We 

urge modelers to systemize and automate their model construction processes and to record 

all data and software used by a workflow. When modelers publish models and findings, we 

encourage them to publicly share digital archives of their organized and documented 

artifacts, so that other researchers can reproduce their workflow and findings. These nine 

best practices can be easily integrated into a modeling workflow, because best practices are 

Porubsky et al. Page 10

Cell Syst. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provided for each workflow stage, and useful software tools and data formats are 

recommended for each best practice (see Figure 1).

To see an example of many of these best practices at work in a single modeling workflow, 

we point readers to the executable simulation model (EXSIMO), recently published as a 

preprint in bioRxiv (König, 2020). This is an exemplary case study, which applies many of 

the concepts discussed in this text, to create a reproducible model of the liver, and can serve 

as a practical guide. For example, the EXSIMO platform encodes an executable simulation 

model of the liver using the SBML model description format and makes the simulation 

experiments compatible with SED-ML. While these steps alone would enable 

exchangeability across model construction and simulation platforms that support the 

standards, the EXSIMO platform also provides the entire simulation environment within a 

Docker image, allowing all validation tests and analyses to be executed within a container 

when run by an independent researcher. This step ensures that model and its simulation 

studies can be readily distributed. Finally, the EXSIMO platform provides extensive unit 

testing to verify and validate the model, and through GitHub releases, is version controlled. 

Through these techniques, which are rigorously employed by the computer science 

community, the EXSIMO platform achieves a high level of quality control that will greatly 

benefit researchers interested in adapting this model or studying its predictions.

Levels to Reproducible Biochemical Modeling

Following all best practices is an aspirational goal; this may become routine as the field 

grows and the importance of reproducible modeling becomes a more tangible concern, but 

adopting these guidelines is not an all-or-nothing challenge. Some of the recommended best 

practices may require additional training and effort to adopt new tools, and modelers may be 

concerned that this will distract from the scientific endeavor. There are costs associated with 

this transition. However, even adding just a few of these practices to a modeling project 

could provide notable benefits to reproducibility and enable long-term accessibility by the 

greater scientific community. We hope that modelers will consider these benefits and 

implement the best practices when possible. To further facilitate this goal, we have 

developed checklists that modelers may use to track their reproducibility progress as they 

execute a modeling workflow, encouraging them to work toward reproducibility (see 

Supplemental Information for checklists). These checklists are presented as levels of 

reproducible modeling, such that modelers can work toward an idealized modeling 

workflow, which most dramatically improves the ease of reproduction. We envision a future 

of biochemical modeling in which models undergo versioning and are iterated over, similar 

to semantic versioning, which is practiced within the software development community. In 

this way, models can be updated to facilitate reproducibility, and improve biological 

relevance and utility, but access to earlier versions can still be maintained to keep a complete 

provenance record for models derived from these versions. Using the provided checklists, a 

modeler could produce the first version of their model following easy-to-adopt 

reproducibility practices (see the general-purpose reproducible biochemical modeling 

checklist in the Supplemental Information). Over time, more rigorous changes could be 

implemented, adopting standardized formats whenever applicable to gradually move toward 

an idealized workflow (see the standards-based reproducible biochemical modeling checklist 
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in the Supplemental Information). We encourage modelers to steadily improve the 

reproducibility of their models and modeling workflow.

Standards in Biochemical Modeling: Progress and Limitations

We encourage modelers to employ standard data formats and tools that use these formats 

when possible because doing so greatly reduces the effort required to make reproducible 

models. As evidenced by the many standards and tools discussed in this paper, our field has 

made great strides toward automating and simplifying reproducible biochemical modeling in 

the last two decades. To evaluate this progress, we have collected data on the impact and 

adoption rates for the recommended scientific standards and tools (Table 2). All but one of 

these tools and standards were developed in the last two decades. Two types of evaluation 

data are provided, annual citation rates and adoption rates reported by a survey of the 

biochemical modeling community (Szigeti et al., 2018a). The most influential and widely 

adopted biochemical modeling tools and standards include SBML, COPASI, SBGN, 

COBRApy, BioPAX, BioModels, Pathway Tools, InChI, BioNetGen, and SED-ML. A 

couple of tools and standards, notably SciPy and FAIR, score highly, because they are used 

broadly by science beyond biochemical modeling. Many other tools and standard have 

begun to develop a following and may become the leading approach in their domains in the 

future.

Nevertheless, some aspects of biochemical modeling still lack good standards or tools for 

reproducibility. For example, no standards or tools are available for aggregating and curating 

data, and the standardized methods available for saving simulation results lack important 

functionality. Because some models cannot be built using only a standards-based approach, 

we offer general-purpose approach recommendations for reproducible biochemical modeling 

that provide conceptual and practical guidance when standards-based tools are insufficient.

We have identified three core limitations to our standards-based guidance—limited domain 

coverage, limited functionality, and limited compatibility. Many of the recommended tools 

provided in these best practices (e.g., SBML, SED-ML, and COPASI) only support 

modeling of biochemical dynamics, limiting the domain coverage, or the types of biological 

processes and components that can be represented. However, modelers in the biochemical 

domain may want to study many other aspects of cells, such as evolution, motility, and 

replication. These domains of study must either build custom models or employ tools that 

are not standard-compatible. The tools we recommend also have functional limitations in the 

domains that they serve. For example, none of the recommended tools are suitable for 

modeling biochemical models of cells at the genome scale. Whole-cell models require tools 

that can scale to tens of thousands of species types and reactions, identify parameters for 

models of this size, and employ multi-algorithmic simulation to integrate pathways, which 

are characterized with variable levels of detail. Tools that address these limitations are under 

development (Medley et al., 2016; Goldberg et al., 2018;Schwab et al., 2000). The final 

chronic problem is that tools rarely support a standard in its entirety, limiting their 

compatibility. This problem grows worse when standards change frequently and when the 

tools are produced as academic projects with limited funding and high staff turnover. An 

example of this problem is that while the SBML standard has augmented functionality 
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provided through packages for flux-balance analysis and hierarchical models, no SBML 

simulator supports all of the additional packages. Given these limitations, the use of general-

purpose methods can be quite advantageous and even necessary for investigating certain 

biological inquiries.

CONCLUSIONS

Although reproducibility is a core tenet of the scientific method, until recently it has been 

difficult to reproducibly construct biochemical models, because suitable standards and 

software tools did not exist. Over the last two decades, the biochemical modeling 

community has addressed this problem by developing and adopting standards and tools that 

make reproducible construction of many biochemical models feasible.

We seek to further these advances by providing a comprehensive and practical set of best 

practices for reproducibly creating biochemical models. We recommend specific standards 

and tools for each stage of model development. But if some stages of model construction 

cannot employ the recommended standards and tools, a modeler can still implement our 

general-purpose guidelines, which can be applied to any method. Biochemical models 

constructed by following the recommended practices will be easier to understand, trust, and 

reuse. We envision a biochemical modeling community that routinely publishes reproducible 

and reusable models, and which provides open access to their model artifacts. This would 

dramatically reduce the effort modelers must devote to making larger and more complex 

models by enabling reuse of models and data, and facilitating collaboration. Achieving this 

vision would accelerate the contributions made by modeling toward advancing our 

understanding of biology and medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Practical Recommendations of Tools for Reproducible Modeling across All Stages of 
the Typical Biochemical Modeling Workflow
(A) A typical workflow that creates and uses a dynamical model: in “aggregate data,” a 

modeler collects data from papers, public data sources and/or private experiments; in 

“construct model,” they use the data, their biological knowledge, assumptions, and modeling 

methods to create a model; in “estimate parameters,” the modeler produces a complete and 

self-consistent set of input parameters from the data; in “simulate model,” the modeler 

integrates the model over time; in “store and analyze results,” they store simulation results 

and analyze them; in “verify & validate model,” the modeler ensures that the model and its 

Porubsky et al. Page 19

Cell Syst. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predictions are consistent with experimental data; in “document artifacts,” the modeler 

annotates and provides human-readable descriptions (tan rectangles) for all model artifacts 

from each stage; in “package artifacts and documentation,” they combine all model artifacts 

and documentation into archive(s) to be shared publicly, and in “publish and disseminate,” 

the modeler publishes their novel scientific findings and shares the archive(s) by depositing 

them in open-source repositories that independent researchers can access to reproduce, 

understand, and reuse the model. Black arrows indicate the transitions between workflow 

stages.

(B) Software tools and data formats for reproducible modeling: Tools and data formats that 

enhance reproducibility are listed in a diagram that parallels the workflow in (A). These 

tools and data formats are split into recommendations for standards-based and general-

purpose approaches to modeling, as presented in the text. Tools that are useful in multiple 

modeling stages are listed in those stages.

A table with links to the tools shown in Figure 1 is included in the Supplemental Information 

(see Table S1).”
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