

Species-Specific Quorum Sensing Represses the Chitobiose Utilization Locus in *Vibrio cholerae*

Catherine A. Klancher,ª Jane D. Newman,ª Alyssa S. Ball,ª 💿 Julia C. van Kessel,ª 💿 Ankur B. Daliaª

^aDepartment of Biology, Indiana University, Bloomington, Indiana, USA

ABSTRACT The marine facultative pathogen *Vibrio cholerae* forms complex multicellular communities on the chitinous shells of crustacean zooplankton in its aquatic reservoir. *V. cholerae*-chitin interactions are critical for the growth, evolution, and waterborne transmission of cholera. This is due, in part, to chitin-induced changes in gene expression in this pathogen. Here, we sought to identify factors that influence chitin-induced expression of one locus, the chitobiose utilization operon (*chb*), which is required for the uptake and catabolism of the chitin disaccharide. Through a series of genetic screens, we identified that the master regulator of quorum sensing, HapR, is a direct repressor of the *chb* operon. We also found that the levels of HapR in *V. cholerae* are regulated by the ClpAP protease. Furthermore, we show that the canonical quorum sensing cascade in *V. cholerae* regulates *chb* expression in an HapR-dependent manner. Through this analysis, we found that signaling via the species-specific autoinducer CAI-1, but not the interspecies autoinducer AI-2, influences *chb* expression. This phenomenon of species-specific regulation may enhance the fitness of this pathogen in its environmental niche.

IMPORTANCE In nature, bacteria live in multicellular and multispecies communities. Microbial species can sense the density and composition of their community through chemical cues using a process called quorum sensing (QS). The marine pathogen *Vibrio cholerae* is found in communities on the chitinous shells of crustaceans in its aquatic reservoir. *V. cholerae* interactions with chitin are critical for the survival, evolution, and waterborne transmission of this pathogen. Here, we show that *V. cholerae* uses QS to regulate the expression of one locus required for *V. cholerae*-chitin interactions.

KEYWORDS quorum sensing, cholera, protease

The facultative bacterial pathogen *Vibrio cholerae*, the causative agent of the diarrheal disease cholera, natively resides in the aquatic environment. In this niche, *V. cholerae* forms multicellular communities on biotic and abiotic chitinous surfaces, like the shells of crustaceans or marine snow (1, 2). Chitin is a polysaccharide made up of β -1,4-linked *N*-acetylglucosamine (GlcNAc) and serves as a major nutrient source for *V. cholerae* in the marine environment (1, 3, 4). The ability of *V. cholerae* to form chitin biofilms is critical for the waterborne transmission of cholera (5, 6). As chitin is the most abundant biopolymer in the ocean, the ability of *Vibrio* species to break down and utilize this highly insoluble polysaccharide also serves an important role in global nitrogen and carbon recycling (1, 4).

When *V. cholerae* is associated with a chitinous surface, chitin induces the expression of a subset of genes in *V. cholerae*. The genes induced by chitin include those required for chitin degradation, uptake, and catabolism (termed the chitin utilization program), as well as the genes required for natural transformation (7, 8). Transcriptional responses resulting from *Vibrio*-chitin interactions are highly regulated. One major chitin-responsive regulator is the orphan hybrid sensor kinase ChiS (7, 9). ChiS senses chitin

Citation Klancher CA, Newman JD, Ball AS, van Kessel JC, Dalia AB. 2020. Species-specific quorum sensing represses the chitobiose utilization locus in *Vibrio cholerae*. Appl Environ Microbiol 86:e00915-20. https://doi.org/10 .1128/AEM.00915-20.

Editor Eric V. Stabb, University of Illinois at Chicago

Copyright © 2020 American Society for Microbiology. All Rights Reserved. Address correspondence to Ankur B. Dalia,

ankdalia@indiana.edu.

Received 16 April 2020

Accepted 4 July 2020

Accepted manuscript posted online 10 July 2020 Published 1 September 2020 indirectly through the periplasmic <u>chitin binding protein (CBP)</u> (9, 10). In the absence of chitin, CBP represses ChiS through interactions with its periplasmic domain (9, 10). In the presence of chitin, the CBP-chitin complex stimulates ChiS activity (9, 10). Thus, in the presence of chitin, ChiS is active and can facilitate expression of the chitin utilization program. Alternatively, ChiS can be genetically activated in the absence of chitin by deleting *cbp* (10, 11).

In the marine environment, *V. cholerae* not only senses chitin to modulate gene expression but also the presence of other bacteria through a process termed "quorum sensing" (QS) (12). This is a process by which bacteria indirectly sense other microbes in their community via small diffusible molecules called autoinducers (AIs). Als are sensed by cognate sensor proteins. *V. cholerae* has four AI sensors, although the autoinducer molecules that serve as inducing cues are only known for two of them (13). AI sensing allows for cell-density-specific gene expression programs, which regulate "group" or "individual" behaviors (14). *V. cholerae* senses both chitin and AIs to regulate natural transformation on chitinous surfaces (15). Though a link between chitin utilization and quorum sensing has previously been suggested, it has not been directly studied (16).

To investigate regulation of the chitin utilization program in *V. cholerae*, most studies employ the chitobiose utilization operon (*chb*) (10, 11, 17, 18). The *chb* operon encodes the genes required for uptake and catabolism of the chitin disaccharide chitobiose and is highly induced in the presence of chitin oligosaccharides (7). Several mechanisms of *chb* regulation have already been identified. ChiS is the master regulator of the chitin utilization program in *V. cholerae*, and we have recently shown that this protein is a direct transcriptional activator required for induction of the *chb* locus (9, 10). Previous work has shown that carbon catabolite repression (CCR) can also play a role in regulating chitin responsive phenotypes, including ChiS-dependent induction of *chb* and natural transformation (18, 19). In addition, our group has previously found that the cell division licensing factor SImA plays an essential role in activating *chb* expression (11). Tight regulation via these diverse signaling systems may act to ensure that the chitin utilization program is only expressed under conditions in which it will provide a competitive advantage.

Here, we sought to identify additional regulators of *chb*. Through a number of genetic screens and complementary molecular methods, we show that quorum sensing is an additional regulatory system that tunes expression of a chitin utilization locus in *V. cholerae*.

RESULTS

ClpA is identified in an unbiased screen for activators of P_{chb} **.** To identify additional genes required for activation of the *chb* locus, we conducted a transposon mutant screen. This was carried out in a strain containing a chromosomally integrated P_{chb} -lacZ transcriptional reporter. As shown previously, induction of P_{chb} is dependent on the activity of the master regulator ChiS (7, 10, 11). In the absence of chitin, ChiS activity is repressed by CBP. In the presence of chitin, CBP repression of ChiS is relieved, which allows for ChiS-dependent activation of P_{chb} . In addition to being induced by chitin, ChiS can be activated genetically in the absence of chitin by deleting *cbp* (10, 11). As chitin oligomers are prohibitively expensive, a Δcbp mutation was used to induce ChiS-dependent P_{chb} -lacZ expression in our genetic screen exactly as previously described (11). So, the starting genotype for our screen was a strain containing P_{chb} -lacZ and a Δcbp mutation. This strain formed blue colonies on 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (X-Gal)-containing plates, and we screened for white colonies to identify putative activators that contribute to P_{chb} induction.

Of approximately 60,000 transposon mutants visually screened for loss of P_{chb} -lacZ expression, one gene identified was *clpA* (2 unique transposon insertions). Other hits identified in this screen are listed in Table S1 in the supplemental material. To study the effect of *clpA* on P_{chb} activity moving forward, we utilized a previously described chromosomally integrated P_{chb} -green fluorescent protein (GFP) reporter (10, 11). Using

FIG 1 HapR is a repressor of P_{chb} that is degraded by the ClpAP protease. Expression of a P_{chb}-GFP reporter and HapR protein levels were determined in the indicated mutant strains. The parent strain contained a P_{chb}-GFP reporter and a Δcbp mutation. A representative Western blot is shown below bars to indicate the protein levels for HapR and RpoA (a loading control) in the corresponding strains. An antibody against LuxR, which has 72% identity and 86% similarity to HapR, is cross-reactive with HapR and so was used to detect HapR protein levels. Fluorescence of cultures was determined on a plate reader from at least six independent biological replicates and is shown as the mean ± standard deviation (SD). Statistical comparisons were made by one-way ANOVA with Tukey's posttest. NS, not significant. ***, P < 0.001.

this reporter, we found that a $\Delta clpA$ mutation resulted in an ~3-fold decrease in P_{chb} expression relative to the parent (Fig. 1). Importantly, complementation of this strain with an ectopic copy of *clpA* in *trans* restored P_{chb} expression to parent levels (see Fig. S1 in the supplemental material). ClpA is a AAA+ unfoldase that recognizes protein substrates, unfolds them, and feeds them into the ClpP protease where they are degraded (20). If ClpA was exhibiting its effect on P_{chb} expression as a part of the ClpAP machine, we hypothesized that a $\Delta clpP$ mutation should phenocopy a $\Delta clpA$ mutation. Indeed, $\Delta clpP$ and $\Delta clpA$ degrades that loss of the ClpAP protease decreases P_{chb} expression (Fig. 1). These results suggest that loss of the ClpAP protease decreases P_{chb} expression. As ClpAP degrades proteins, we hypothesized that ClpAP may indirectly promote activation of P_{chb} by degrading a repressor of the *chb* locus.

HapR is a repressor of P_{chb} that is degraded by ClpAP. To identify a putative repressor of P_{chb} that is targeted by ClpAP for degradation, we conducted a counterscreen using the P_{chb}-lacZ reporter. For the $\Delta clpA$ strain counterscreen, the parent strain had both Δcbp and $\Delta clpA$ mutations. This mutant is white on X-Gal plates because P_{chb}-lacZ is poorly expressed; inactivation of the putative repressor in this strain should result in restoration of P_{chb}-lacZ expression and yield a blue colony phenotype. In the $\Delta clpA$ strain counterscreen, we visually screened approximately 30,000 transposon mutants for reactivation of P_{chb}-lacZ expression and identified hapR (9 unique transposon insertions). Other hits identified in this screen are listed in Table S1. A $\Delta hapR$ mutation restored P_{chb} expression in the $\Delta clpA$ mutant background (Fig. 1). In fact, a $\Delta hapR$ mutation allowed for higher P_{chb} expression than that of the parent strain. This suggests that HapR represses P_{chb} expression when ClpAP is intact and that ClpAP does not degrade the entire pool of HapR in the cell (Fig. 1). Importantly, the level of P_{chb} expression observed in the $\Delta hapR \Delta clpA$ mutant phenocopied the $\Delta hapR$ strain (Fig. 1). This epistasis between clpA and hapR suggests that they are involved in the same pathway for regulating P_{chb} expression. In addition, complementation of the $\Delta hapR$ strain with an ectopic copy of hapR in trans decreased P_{chb} expression almost to the level in the parent (see Fig. S1). Further, complementation of the $\Delta hapR \Delta clpA$ strain with hapR in trans brought P_{chb} expression down to the level observed in the $\Delta clpA$ parent (Fig. S1).

We hypothesized that the reason P_{chb} expression was decreased in $\Delta clpAP$ mutants was due to increased HapR protein levels. Western blotting in these backgrounds

revealed that HapR levels were, indeed, increased in strains containing mutations to clpA and/or clpP (Fig. 1). ClpAP-dependent degradation of HapR is not unique to V. cholerae but has previously been observed in Vibrio vulnificus where CIpAP degrades the HapR homolog SmcR (21). In addition to the ClpAP machine, it was shown that the Lon protease also plays a role in SmcR degradation. So, we next sought to investigate the role of other protease machines on induction of P_{chb} and HapR protein levels. Mutations to other Clp components (the ClpS adaptor protein or the ClpX unfoldase) did not have a marked impact on HapR protein levels. Also, a $\Delta clpS$ mutation did not affect P_{chb} expression levels, while a $\Delta clpX$ mutation slightly decreased P_{chb} expression (Fig. 1). Because HapR expression was not affected by the $\Delta clpX$ mutation, the observed decrease in P_{chb} expression may be attributed to a pleiotropic effect (i.e., an effect of clpX that is independent of HapR-dependent P_{chb} repression). In contrast to the effect of the Lon protease on SmcR levels in V. vulnificus, we did not observe an impact of the $\Delta lonA$ mutation on HapR levels in V. cholerae; the $\Delta lonA$ mutation, correspondingly, did not affect P_{chb} expression (Fig. 1). Together, these results establish that HapR is a repressor of P_{chb} and that HapR levels are controlled specifically by the ClpAP protease in V. cholerae.

HapR-mediated repression of P_{chb} **occurs on chitinous surfaces.** Thus far, we have studied P_{chb} regulation using a Δcbp mutation to induce ChiS activity. Natural induction of this locus, however, occurs in the presence of chitin oligosaccharides. So, we next wanted to test whether the repression of P_{chb} by HapR was observed in a more physiologically relevant setting. To test this, we cultured *V. cholerae* strains with CBP intact, a P_{chb} -mCherry reporter, and a construct that constitutively expresses GFP (P_{const2} -GFP) on chitin beads (Fig. 2A). The P_{const2} -GFP construct (derived from the insulated *proD* promoter [22]) served as an internal control for noise in gene expression and was used to normalize P_{chb} -mCherry expression in single cells (see Materials and Methods for details).

When cells were cultured on chitin beads, both the parent strain and the $\Delta hapR$ strain exhibited a bimodal distribution of P_{chb} expression (Fig. 2A to C). There were at least two possible explanations for the observed bimodality in P_{chb} gene expression in this experiment as follows: (i) the signaling pathway that leads to activation of *chb* has switch-like behavior that results in a population that exhibits bimodality in chb expression, or (ii) the environment during growth on chitin beads is heterogeneous and only some cells within the population have access to the chitin oligosaccharides necessary for activation of *chb*. Those cells that do not have access to chitin do not activate P_{chb} expression (P_{chb} off), while those that do have access to chitin do induce P_{chb} expression (P_{chb} on). To differentiate between these two possibilities, we induced expression of P_{cbb} using the native inducer, chitin oligosaccharides, or genetically by deleting cbp. If the signaling circuit responsible for P_{chb} activation has switch-like behavior, we would predict that bimodality in gene expression would be maintained in both of these conditions; however, if bimodality is the result of heterogeneous access to chitin oligosaccharides when cells are cultured on chitin beads, we would expect bimodality to be lost. When P_{chb} was induced by chitin oligosaccharides or via deletion of cbp, all cells in the population are uniformly "P_{chb} on" (Fig. 2D and F), and the population becomes unimodal (Fig. 2E and G). Thus, these results showed that only the "P_{chb} on" cells have access to chitin oligosaccharides when grown on chitin beads. These results are consistent with chitin induction of natural transformation on chitin beads, where cells display bimodality in gene expression that is also likely due to heterogeneous access to inducing chitin oligosaccharides (23).

Next, we tested whether HapR influenced activation of P_{chb} on chitin beads by just assessing the expression level among " P_{chb} on" cells. As observed in bulk populations, the $\Delta hapR$ strain exhibited an ~1.7-fold increase in P_{chb} expression when cultured on chitin beads (Fig. 2C) and an ~2.5-fold increase when cultured with chitin oligosaccharides (Fig. 2E). These values were consistent with the ~2-fold increase in P_{chb} expression observed in single cells when the population was induced via deletion of

FIG 2 HapR-mediated repression of P_{chb} occurs on chitinous surfaces. (A) Representative images of the indicated V. cholerae strains grown on chitin beads. The parent strain background contains both a P_{chb}-mCherry reporter and a P_{const2}-GFP construct, which exhibits constitutive GFP expression. Scale bar = 10 μ m. (B and C) P_{chb} expression in the indicated V. cholerae cbp⁺ strains grown on chitin beads. (B) Representative images of cells that were vortexed off chitin beads. Arrows demarcate cells where P_{chb} expression is induced ("P_{chb} on" cells). Scale bar = $2 \mu m$. (C) Scatterplot and bar graph showing the relative expression of the P_{chb}-mCherry reporter in cells cultured on chitin beads. Scatterplots (left y axis) represent the entire population, whereas the bars (right y axis) represent only the P_{chb} on cells (bracketed in black on scatterplots). The percentage of cells in the P_{chb} on population is indicated. n = 2,120 for parent; n = 2,191 for $\Delta hapR$ strain; n = 333 for parent P_{chb} on; n = 1,139 for $\Delta hapR$ strain P_{chb} on. Data shown are from two independent biological replicates. (D and E) P_{chb} expression of the indicated V. cholerae strains where P_{chb} expression is induced by chitin oligosaccharides. (D) Representative images of cells grown with chitin oligosaccharides. Scale bar = $2 \mu m$. (E) Scatterplot showing the relative expression of a P_{chb}-mCherry reporter in the indicated V. cholerae strains. n = 2,735 for parent; n = 2,384for $\Delta hapR$ strain. Data shown are from two independent biological replicates. (F and G) P_{chb} expression of the indicated V. cholerae strains where P_{chb} expression is induced via deletion of cbp. (F) Representative images of cells grown in the absence of chitin. Scale bar = $2 \mu m$. (G) Scatterplot showing the relative expression of a P_{chb}-mCherry reporter in the indicated V. cholerae strains. n = 2,407 for Δcbp strain; n = 2,313 for $\Delta hap R \Delta cbp$ strain. Data shown are from two independent biological replicates. Statistical comparisons in panels C, E, and G were made using Student's t test. ***, P < 0.001.

cbp (Fig. 2G). Finally, native *chb* transcripts (measured via reverse transcriptionquantitative PCR [qRT-PCR]) were also induced ~2-fold higher in a $\Delta hapR$ mutant compared to that of the parent when strains were induced with chitin oligosaccharides (see Fig. S2 in the supplemental material). Together, these results indicate that HapR is a bona fide repressor of P_{chb} under physiologically relevant inducing conditions.

HapR repression of P_{chb} is conserved in other V. cholerae El Tor isolates. Previously, it was suggested that HapR was an activator of P_{chb} expression in the V. cholerae El Tor isolate A1552 (16). Specifically, the authors showed that deletion of hapR resulted in a decrease in P_{chb} expression when cells were cultured on chitin flakes. In the present study, we use the V. cholerae El Tor isolate E7946 to study P_{chb} regulation. To assess if HapR exhibits different effects on P_{chb} expression depending on the strain background, we assessed expression of a P_{chb} -mCherry reporter in hapR⁺ and $\Delta hapR$ derivatives of both E7946 and A1552. Consistent with our previous results, we observed that P_{chb} expression is elevated ~2-fold in the $\Delta hapR$ derivative of both strain backgrounds when induced with chitin oligosaccharides or via deletion of *cbp*, which is consistent with HapR acting as a repressor of this locus (see Fig. S3 in the supplemental material). It is unclear what explains the discrepancy between our findings and those that were previously reported; however, these data suggest that they cannot be attributed to differences between strain backgrounds.

Deletion of HapR does not confer a growth advantage during growth on chitobiose. Our data indicate that in the absence of HapR, P_{chb} expression is elevated. The *chb* locus encodes the genes required for uptake and degradation of the chitin disaccharide, chitobiose. Thus, we wanted to assess if the increased expression of P_{chb} confers a fitness advantage to $\Delta hapR$ mutant cells during growth on chitobiose. To test this, we conducted competitive growth assays with a 1:1 mixture of a parent and a $\Delta hapR$ mutant strain on minimal medium with chitobiose as the sole carbon source. We hypothesized that if the $\Delta hapR$ mutant had a competitive growth advantage due to increased expression of *chb*, then it should outcompete the parent strain in this assay. Even after ~48 generations of growth on chitobiose, however, we did not observe a competitive advantage for the $\Delta hapR$ mutant (see Fig. S4 in the supplemental material). HapR is a global regulator that controls the expression of dozens of genes (24). Thus, even though a $\Delta hapR$ mutant has increased P_{chb} expression, there may be negative pleiotropic effects associated with the $\Delta hapR$ mutant during growth on chitobiose.

HapR binds P_{chb} *in vitro* and *in vivo*. Thus far, our data suggest that HapR is a repressor of $P_{chb'}$, but it does not distinguish whether HapR is a direct or indirect regulator of this locus. To assess if HapR could be regulating P_{chb} directly, we used an *in silico* approach to identify putative HapR binding sites (BSs) in P_{chb} based on consensus binding sequences generated for the HapR homologs LuxR (from *Vibrio harveyi*) and SmcR (from *V. vulnificus*) via chromatin immunoprecipitation sequencing (ChIP-seq) (25, 26). Using the Motif Alignment and Search Tool (MAST) in the Multiple Em for Motif Elicitation (MEME) suite (27), we identified two potential HapR binding sites in P_{chb} (Fig. 3A). Interestingly, these binding sites overlap with other elements in the *chb* promoter required for transcriptional activation. HapR BS 1 overlaps with the SImA binding site, which is a critical activator of P_{chb} expression (11). HapR BS 2 overlaps with the -35 signal, which is required for RNA polymerase to bind to the promoter and initiate transcription. This sequence analysis suggests that the repressive effect of HapR may be due to HapR binding directly antagonizing SImA and/or RNA polymerase (RNAP) at this locus.

We next sought to determine whether HapR could directly bind to P_{chb} using both *in vitro* and *in vivo* approaches. First, we tested whether HapR could bind to P_{chb} in vitro using electrophoretic mobility shift assays (EMSAs). Consistent with the presence of two HapR binding sites in P_{chb} , we observed two shifts by EMSA when using a DNA probe of the *chb* promoter (Fig. 3B). HapR does not regulate the ClpP promoter and thus did not bind P_{clpP} (Fig. 3B), which is consistent with previous studies (28). EMSAs were also done using 32-bp probes that encompassed each putative HapR BS (probe sequences

FIG 3 HapR binds P_{chb} in vitro and in vivo. (A) Promoter map of P_{chb} highlighting putative HapR binding sites (BSs). Other sites required for P_{chb} activation (the SIMA BS and the -35 and -10 signals) are highlighted. The exact sequences of the region containing the HapR BSs (bolded), the SIMA BS, and the -35 signal are shown. The transcriptional start site (+1) and the translational start site (+137) are also shown. (B) A representative EMSA using HapR and Cy5-labeled DNA probes of the indicated promoters. The P_{chb} probe was incubated with (from left to right) 0 nM (-), 12.5 nM, 25 nM, 50 nM, 100 nM, 200 nM, 400 nM, or 800 nM purified HapR. The P_{clpP} probe was incubated with 0 nM (-) or 800 nM HapR (+). (C) A representative EMSA using HapR and 32-bp Cy5-labeled probes encompassing each of the putative HapR binding sites within the *chb* promoter (exact probe sequences are shown in panel A). The 32-bp probes were incubated with (from left to right) 0 nM (-), 100 nM, 200 nM, 400 nM, 800 nM, 1.6 μ M, or 3.2 μ M purified HapR. (D) ChIP-qPCR assays showing enrichment of the indicated promoters relative to *rpoB*, a reference locus that HapR does not bind to. Data are from five independent biological replicates and are shown as the mean \pm SD. Statistical comparisons were made by Student's *t* test. *, P = 0.0240.

can be found in Fig. 3A). We observed that HapR was able to bind to both probes, suggesting that HapR binds to both HapR BS 1 and HapR BS 2 (Fig. 3C). Next, we wanted to assess if HapR bound to P_{chb} in vivo via ChIP assays under physiologically relevant conditions. To that end, we first generated a FLAG-HapR strain that was functional for regulating P_{chb} expression (see Fig. S5 in the supplemental material). Using this strain in ChIP-quantitative PCR (qPCR) assays, we found that P_{chb} was, indeed, bound by HapR *in vivo*, while the negative control P_{clpP} locus was not bound by HapR (Fig. 3D). Together, these data demonstrate that HapR binds to $P_{chb'}$, which suggests that it is a direct repressor of this locus.

Quorum sensing regulates expression of P_{chb} through the cholera-specific autoinducer CAI-1. HapR is the master regulator of quorum sensing (QS) in *V. cholerae* and is highly expressed at high cell density (HCD) (29). Thus far, we have established that HapR is a repressor of P_{chb} expression. Next, we wanted to probe the role of QS in regulating P_{chb} . To that end, we sought to test the effect of mutations in genes upstream of HapR in the *V. cholerae* QS cascade on P_{chb} induction and HapR protein levels.

QS in *Vibrio* species is controlled by autoinducer-responsive sensor proteins that indirectly modulate phosphorylation of the response regulator LuxO, which in turn indirectly regulates production of HapR (14). When autoinducer concentrations are low (i.e., at low cell density [LCD]), multiple histidine kinase sensors act as kinases (30–32). This results in high levels of phosphorylated LuxO, which prevents HapR production (see Fig. S6A in the supplemental material) (33). By contrast, at high autoinducer concentrations (i.e., at HCD), the sensors act as phosphatases, which ultimately leads to dephosphorylation of LuxO and allows for HapR production (Fig. S6B) (14, 34).

FIG 4 Quorum sensing regulates expression of P_{chb} through the cholera-specific autoinducer CAI-1. Expression of a P_{chb} -GFP reporter and HapR protein levels were determined in the indicated strains. The parent strain contains a P_{chb} -GFP reporter and a Δcbp mutation. A representative Western blot is shown below the bars to indicate the protein levels for HapR and RpoA (a loading control) in the corresponding strains. An antibody against LuxR, which has 72% identity and 86% similarity to HapR, is cross-reactive with HapR and so was used to detect HapR protein levels. Statistical comparisons were made by one-way ANOVA with Tukey's posttest. NS, not significant. ***, P < 0.001. The P_{chb} -GFP fluorescence data for the "parent" and " $\Delta clpA$ " strains are identical to the data presented in Fig. 1 and were included here to ease comparisons.

First, we assessed the impact of HCD on P_{chb} induction and HapR levels by deleting *luxO*, which genetically locks cells in an HCD state. Induction of the parent strain is tested under HCD conditions; thus, as expected, HapR levels were similar between the parent and the $\Delta luxO$ mutant; accordingly, expression of P_{chb} was also similar between the parent and $\Delta luxO$ mutant (Fig. 4). Next, we tested the effect of LCD on P_{chb} and HapR expression by generating a $luxO^{D47E}$ (D-to-E change at position 47 encoded by *luxO*) mutant, which mimics phosphorylated LuxO and genetically locks cells in an LCD state. In this strain, we saw that P_{chb} expression increased and was correlated with a decrease in HapR protein levels (Fig. 4). Together, these data suggest that HapR repression of P_{chb} is mediated through the canonical QS circuit.

Next, we wanted to move further upstream in the QS regulatory cascade to address whether distinct autoinducers differentially affected expression of P_{chb} and HapR. There are four parallel histidine kinase sensors that coordinate QS-dependent control of HapR expression (13); however, the autoinducer signal is only known for two of these systems. The sensor LuxPQ is responsive to the interspecies autoinducer AI-2, and the sensor CqsS is responsive to the V. cholerae-specific autoinducer CAI-1 (Fig. S6) (35). To assess the role of each autoinducer in regulation of $P_{chb'}$ we made mutations to the synthase genes responsible for production of each autoinducer. LuxS makes AI-2 (36) and CqsA makes CAI-1 (35) (Fig. S6). In a strain that no longer produces AI-2 (ΔIuxS strain), expression of P_{chb} was similar to that observed in the parent, and HapR levels remained similar in these two strains (Fig. 4). By contrast, a strain that is unable to produce CAI-1 ($\Delta cqsA$ strain) had increased expression of P_{chb} likely due to the low level of HapR produced (Fig. 4). The observed decrease in P_{chb} expression in the $\Delta cqsA$ strain background was, indeed, due to a lack of CAI-1 production, as exogenously adding back synthetic CAI-1 restored HapR levels and repression of P_{chb} to the parent level (Fig. 4). In addition, a strain that does not make CAI-1 induced P_{chb} to the same level as that of a strain that does not produce both CAI-1 or HapR (Fig. 4). This epistasis indicates that CAI-1 production and HapR are involved in the same regulatory pathway for modulating expression of P_{chb}. These data support previous results, which indicate that CqsS signaling plays a dominant role in regulating HapR (23, 35, 37, 38). Together, these results indicate that P_{chb} expression is strongly influenced by QS signaling mediated by the V. cholerae-specific autoinducer CAI-1 and less via the interspecies autoinducer AI-2.

FIG 5 Model of quorum sensing regulation of chitobiose utilization genes in *V. cholerae*. When *V. cholerae* grows on a chitinous surface, the periplasmic chitin binding protein (CBP) binds to chitin oligosaccharides. This derepresses ChiS, which can then activate expression of the chitobiose utilization operon (*chb*) through recruitment of RNA polymerase (RNAP) (10). Binding of SImA to P_{chb} is also required for transcriptional activation (11). (A) At low CAI-1 concentrations, the CqsS sensor indirectly (dashed line) promotes LuxO phosphorylation, which indirectly blocks HapR expression. In this state, P_{chb} is maximally expressed. (B) At high CAI-1 concentrations, the CqsS sensor indirectly dephosphorylates LuxO, which results in indirect activation of HapR expression. HapR then exerts a repressive effect on P_{chb} by decreasing expression of this locus ~2-fold in the presence of the ClpAP protease machine. If HapR is not degraded by ClpAP, its repressive effect can result in an ~7-fold decrease in P_{chb} expression. The mechanism of HapR repression may be through occluding binding of SImA or RNAP to P_{chb} .

DISCUSSION

Here, we show that HapR acts as a repressor of chitobiose utilization genes in *V. cholerae.* When this organism forms communities on a chitinous surface, chitin induces expression of P_{chb} through activation of the chitin sensor ChiS (Fig. 5). *V. cholerae* then modulates P_{chb} expression depending on the presence of other *V. cholerae* cells, which it senses via the *V. cholerae*-specific autoinducer CAI-1. At low CAI-1 concentrations, P_{chb} expression is high because the repressor HapR is produced at a low level (Fig. 5A). At high CAI-1 concentrations, HapR is produced at higher levels and can repress P_{chb} expression (Fig. 5B). As the HapR binding sites in P_{chb} overlap with the SIMA binding site and the -35 signal, it is possible that HapR competes with these activators for binding at P_{chb} . Thus, HapR-mediated repression may occur through antagonism of the binding activity of SIMA and/or RNAP at P_{chb} .

When HapR is produced, it gets proteolyzed by the ClpAP machine (Fig. 5B). While the dynamic range of HapR-dependent P_{chb} repression is only \sim 2-fold when ClpAP is intact, the dynamic range of repression increases to \sim 7-fold in the absence of ClpAP. Thus, it is tempting to speculate that regulation of ClpAP may modulate P_{chb} expression under some conditions. Currently, however, little is known about the regulation of ClpAP in V. cholerae. ClpAP is induced during heat shock in V. vulnificus (21). Also, in Escherichia coli, ClpP expression is induced during heat shock (39-41). Thus, it is believed that the CIpP protease plays a role in the heat shock response. In Bacillus subtilis, ClpP is upregulated under various stress conditions, suggesting that this protease may also be induced by a general stress response (42). Thus, one possibility is that stress-dependent regulation of CIpAP indirectly regulates P_{chb}. It has also been hypothesized that V. cholerae makes use of proteolysis machines to rapidly respond to changes in their environment; namely, the transition from the human gut to the aquatic environment after infection (43). ClpAP acting as an activator of P_{chb} may be a way for cells to rapidly induce expression of a locus that is not important in the human gut but is useful for survival in its aquatic reservoir. Consistent with this idea, chb is induced late

in infection, suggesting that this is a critical locus for preparing to reenter the aquatic environment after infection of a host (44).

The mechanisms underlying distinct responses to AI-2 or CAI-1 remain a topic of interest in QS. It has been shown that the CAI-1 sensor CqsS plays a dominant role over LuxPQ in modulating HapR levels. Thus, it remains possible that the presence of CAI-1 allows for more robust regulation of HapR-regulated genes. CAI-1 has been shown to be critical for expression of the virulence factor hapA (38), natural transformation (15), and for repressing chitobiose utilization as shown in this study. HapA is a protease that has been implicated in mediating V. cholerae detachment from host epithelial cells, thereby promoting dissemination of cells back into the aquatic environment (45, 46); natural transformation and chitin utilization aid in V. cholerae fitness in the marine environment. By contrast, expression of tcpA, a protein that contributes to V. cholerae pathogenesis in the human gut, was shown to be primarily regulated by AI-2 (37). It is tempting to speculate that CAI-1 controls V. cholerae behaviors important for marine survival, whereas AI-2 controls behaviors involved in infection. It has been hypothesized that sensing both of these autoinducers plays a critical role in biofilm dispersal and that only when both are sensed are V. cholerae cells induced to leave a surface (i.e., QS works as a coincidence detector for both signals) (37). Thus, signaling via distinct autoinducers may allow V. cholerae to modulate responses depending on the context of the environment that they inhabit.

The data that we present here suggests that at HCD, V. cholerae dampens its expression of a chitin utilization locus. Below, we speculate on a few reasons why this regulation may be advantageous. Chitin polymers in the shells of crustacean zooplankton are long-chain polysaccharides in a crystalline insoluble lattice. In order to be used as a nutrient source, the long-chain chitin must be broken down into smaller, soluble chitin oligosaccharides. V. cholerae secretes chitinases that enzymatically degrade insoluble chitin into soluble chitin oligosaccharides for uptake and catabolism. The production and secretion of chitinases is an energetically costly process; thus, liberated chitin is a valuable "public good" in the context of a chitin biofilm (47). So, it is possible that QS regulation of chitin utilization allows V. cholerae to modulate chitin uptake based on the composition of its microbial community. When the level of V. cholerae cells (and the corresponding concentration of cholera-specific autoinducer CAI-1) in the community is high, chitin uptake may decrease among individual cells within the population in an effort to "share" liberated chitin oligosaccharides. By contrast, when the level of V. cholerae in the community is low, sensing of only the interspecies signal Al-2 (which is produced by many bacterial species) does not suppress chitin uptake and utilization, thus, allowing the V. cholerae within this population to maximally compete for liberated chitin oligosaccharides.

Another possibility is that this regulation allows *V. cholerae* to control its production of toxic metabolites. In a previous study, it was shown that cells in an HCD state alter their metabolic flux to produce neutral by-products as opposed to organic acids when grown in LB supplemented with a fermentable sugar like glucose (48). This regulation allows for a more stable community; by contrast, cells locked in an LCD state will excrete harmful metabolic by-products, which leads to the demise of the community (48). It has been shown that *V. cholerae* excretes ammonium as a potentially toxic by-product when grown on chitin (16). Also, because chitin oligosaccharides likely feed into glycolysis, it is possible that catabolism of chitin results in the production of potentially toxic organic acids. Thus, repressing chitin uptake and utilization may also help slow the rate of metabolism to prevent the accumulation of toxic intermediates in a dense community setting.

MATERIALS AND METHODS

Bacterial strains and culture conditions. *V. cholerae* strains were routinely grown at 30°C in LB medium and on LB agar supplemented when necessary with carbenicillin ($20 \mu g/ml$ or $50 \mu g/ml$), kanamycin ($50 \mu g/ml$), spectinomycin ($200 \mu g/ml$), trimethoprim ($10 \mu g/ml$), and/or chloramphenicol ($2 \mu g/ml$). Strains were grown in defined artificial salt water (DASW) medium for microscopy (see below

for details), Instant Ocean for generating mutant strains (see below for details), or M9 minimal medium for competition experiments (see below for details).

Transposon mutagenesis. Transposon mutant libraries were generated with a Carb^r mini-Tn10 transposon exactly as previously described (49). Briefly, the transposon mutagenesis plasmid pDL1086 was first mated into parent strains containing chromosomally integrated P_{chb} -lacZ and a Δcbp mutation (activator screen) or $\Delta clpA \Delta cbp$ mutations ($\Delta clpA$ strain counterscreen). The parent strains also carried a chromosomally integrated P_{chb} -mCherry reporter at an ectopic site to ensure that candidate transposon mutants affected expression of P_{chb} and did not simply disrupt the P_{chb} -lacZ reporter. The activator screen parent also carried or of P_{chb} . Transposition was induced by plating cultures on LB agar supplemented with 50 μ g/ml carbenicillin (Carb) at 42°C. To screen colonies, plates also contained 40 μ g/ml X-Gal and 5 mM isopropyl- β -o-thiogalactopyranoside (IPTG). IPTG was added to competitively inhibit the basal activity of the P_{chb} -lacZ reporter.

The sequences of transposon-genomic junctions in transposon mutants were determined by inverse PCR followed by Sanger sequencing. Briefly, genomic DNA was purified from mutants of interest and digested with the Fatl restriction enzyme per the manufacturer's instructions (NEB). Digested genomic DNAs were then incubated with T4 DNA ligase per manufacturer's instructions (NEB) to generate self-ligated circles. The transposon-genomic junction was then amplified by PCR using the primers specified in Table 1 and subsequently Sanger sequenced (Eurofins Genomics).

Generating mutant strains. V. cholerae E7946 served as the parent for all strains generated in this study, except for those used in Fig. S3 in the supplemental material where we compare E7946 to A1552 (50, 51). Mutant constructs were generated by splicing by overlap extension PCR (SOE PCR) exactly as previously described with the primers indicated in Table 1 (52). PCRs were performed to generate up (F1/R1), middle, and down (F2/R2) arms. Up and down arms were designed to have 3-kb arms of homology to the genome at the site targeted for mutagenesis. All three arms were then mixed and used as a template for SOE PCRs with the F1 and R2 primers to generate the full-length mutant construct SOE product. Mutant constructs were introduced into V. cholerae cells by chitin-induced natural transformation and/or cotransformation exactly as previously described (53, 54) or by chitin-independent transformations using a plasmid that ectopically expresses tfoX and qstR as previously described (55). For chitin-dependent natural transformation, V. cholerae was grown to mid-log in LB medium, washed with Instant Ocean medium (7 g/liter; Aquarium Systems), and incubated with chitin flakes (Alfa Aesar) at a final optical density at 600 nm (OD₆₀₀) of 0.1 overnight at 30°C. The next day, SOE PCR products were added to chitin-induced cells, incubated at 30°C for 5 h, and then outgrown and plated on selective media. For chitin-independent transformation, cells harboring pMMB67EH-tfoX-qstR were grown overnight in LB medium supplemented with 100 μ M IPTG and 1 μ g/ml chloramphenicol. The next day, 7 μ l of the overnight culture was diluted into 350 μ l of Instant Ocean medium. Then, SOE products were added as described above for chitin-dependent transformations. Mutant strains were confirmed by colony PCR, mismatch amplification mutation assay (MAMA) PCR (56), and/or sequencing. Complete lists of strains and primers used in this study are outlined in Table 2 and Table 1, respectively.

Measuring GFP and mCherry fluorescence in bulk populations. GFP and mCherry fluorescence in reporter strains were determined exactly as previously described (57). Briefly, single colonies were grown in LB overnight at 30°C. Where indicated, medium was supplemented with 10 μ M CAI-1. CAI-1 was synthesized exactly as previously described (58). The next day, cells were washed and resuspended to an OD₆₀₀ of 1.0 in Instant Ocean medium (7 g/liter; Aquarium Systems). Fluorescence was determined on a BioTek H1M plate reader. For GFP measurements, excitation was set to 500 nm and emission was set to 540 nm; for mCherry measurements, excitation was set to 580 nm and emission was set to 610 nm.

Antibody generation. Purified *Vibrio harveyi* LuxR protein (300 μ g; purified as previously described [59]) was sent to Cocalico Biologicals, Inc. for serial injection into a rabbit host for antibody generation. Serum obtained from the third bleed has been used for Western analyses.

Western blotting. From overnight cultures, cells were concentrated to an OD₆₀₀ of 20 in Instant Ocean medium. Cells were lysed on a FastPrep-24 classic instrument at 4°C, and then lysates were clarified by centrifugation. Lysates were then boiled with an equal volume of 2× SDS-PAGE sample buffer (220 mM Tris, pH 6.8, 25% glycerol, 1.2% SDS, 0.02% bromophenol blue, and 5% β -mercaptoethanol). Proteins were separated on a 15% SDS polyacrylamide gel by SDS electrophoresis, electrophoretically transferred to a polyvinylidene difluoride (PVDF) membrane, and probed with rabbit polyclonal α -LuxR serum or mouse monoclonal α -RpoA (BioLegend) primary antibodies. LuxR is the HapR homolog in *Vibrio harveyi* and has 72% identity and 86% similarity to *V. cholerae* HapR. The LuxR antibody was empirically found to be cross-reactive with *V. cholerae* HapR, and so it was used to detect HapR protein levels. Blots were then incubated with α -rabbit or α -mouse horseradish peroxidase (HRP)-conjugated secondary antibodies, developed using Pierce ECL Western blotting substrate (Thermo Fisher), and exposed to film.

Chitin bead culturing. Chitin beads (200 μ l of a 50% slurry; NEB) and overnight cultures of the indicated strains were washed with defined artificial salt water (DASW) medium, which was prepared exactly as previously described (8). Chitin beads were inoculated with *V. cholerae* cells to an OD₆₀₀ of 0.1 in a final volume of 5 ml in a Costar 6-well plate (Corning). Chitin mixtures were incubated statically at 30°C for 7 days before imaging.

Microscopy data collection and analysis. To image chitin beads, cultured beads were gently transferred to a coverslip using wide-bore pipette tips. To image chitin-grown cells, chitin bead reaction mixtures were vortexed and then centrifuged at $250 \times g$ for 1 min. Cells found in the supernatant were transferred to a coverslip. To image Δcbp strains, overnight cultures grown in LB were washed and resuspended to an OD₆₀₀ of 0.2 in DASW and then transferred to a coverslip. Samples on the coverslip

TABLE 1 Primers used in this study

Primer	Sequence ^a	Description	
Used for inverse PCR	-		
BBC 244	CCCGGGATCCTGTGTGAAATTGTTATCCGC	Tn10-specific primer for inverse PCR	
BBC 434	GTGTGGGCACTCGACATATGACAAG	Tn10-specific primer for inverse PCR	
Used for reporter constructs			
ABD 332	GGCTGAACGTGGTTGTCGAAAATGAC	$\Delta lacZ$ F1 (up arm)	
BBC 219	GTTTATTTTGTCGACTGTACAGCGTTTAAATAGAGGTCGATATTGACCC	$\Delta lac Z B1$ (up arm)	
		$\Delta V C 1907 E1 (up arm)$	
BBC 719			
BBC 218	CGCIGIACAGICGACAAAAAIAAAC	Kan' F (middle arm)	
BBC 262	TACCGAGGACGCGAAGCTG	Kan ^r R (middle arm)	
BBC 266	CAGCTTCGCGTCCTCGGTAGAATAAAGCAATCCGCAAGCG	P _{chb} F (middle arm)	
BBC 267	CCCGGGATCCTGTGTGAAATTGAGTTGCTTTCATTTCACTAATGG	P _{chb} R (middle arm)	
BBC 732	ctcaagccgaggagtaaagaagAGTTGCTTTCATTTCACTAATGG	P _{chb} fuse to <i>lacZ</i> R (middle arm)	
BBC 252	CAATTTCACACAGGATCCCGGGAGGAGGTAACGTAATGCGTAAAGGAGAAGAAC	GFP F (middle arm)	
BBC 254	tgtaggctggagctgcttcTTAGTTGTATAGTTCATCCATGCC	GFP R (middle arm)	
BBC 1356	TTGTTTCGGCGTGGGTATGGTGCGCTGTACAGTCGACAAAAATAAAC	mCherry F (middle arm)	
BBC 206	tatagactagagctacttcttacttatacagctcgtccatg	mCherry R (middle arm)	
ABD 785		P $_{ij}$ stitch to $lacZ \in (down arm)$	
ABD 255		$\Lambda lacZ E2$ (down arm)	
ABD 256	CCCAAATACGCCAACTTCGCC	$\Delta lacZ B2$ (down arm)	
ABD 241		$\Delta V(C1807 E2 (down arm))$	
		$\Delta V C 1807 T 2 (down arm)$	
BBC 3083	tggataactttacggcatgcataaggctcgtataatatattcagggagaccacaacggtttccctctac	P_{const2} F	
PPC 2002			
BBC 3082	tatacgagccttatgCatgCccgtaaagttatccagcaaccactatagacctagggcagcagtagatagg gacgacgtggtgttagctgtgCTCATTAGGCACCCCAGGC	P _{const2} K	
Used for SOE deletion, FLAG fusions,			
and point mutants			
BBC 742	attccggggatccgtcgacCTGCAGTTCagaagcagctccagcctaca	MiniFRI F	
BBC 743	tgtaggctggagctgcttctGAACTGCAGgtcgacggatccccggaat	MiniFRT R Kapi Speci Carbi Cmi or Tmi	
ADD 123		cassette F	
ABD 124		cassette R	
ABD 796	TTAGAATCTGCGCCAGAAGCG	Δcbp F1 (up arm)	
ABD 797	gtcgacggatccccggaatCATAGCTGTTCCTTACTAGTTGC	Δ <i>cbp</i> R1 (up arm)	
BBC 920	gtcgacggatccccggaatGCTCATCAGGTCGTCAGCC	Δ3' <i>cbp</i> R1 (up arm)	
ABD 798	gaagcagctccagcctacaGTACTGGATCTGAAACCAGTTAAG	Δ <i>cbp</i> F2 (down arm)	
ABD 799	GTATTGCGGAATGACCAGCATG	Δ <i>cbp</i> R2 (down arm)	
BBC 2755	TTACCCCTAAGTCGGCGAGC	ΔVC0995 F1 (up arm)	
BBC 2756	gtcgacggatccccggaatAATATTCACCTTAAGTTCCCCC	ΔVC0995 R1 (up arm)	
BBC 2757	gaagcagctccagcctacaCTGCCTTAATCGAGTTTAAACCC	ΔVC0995 F2 (down arm)	
BBC 2758	GCACCACGATAGCAATAAGC	ΔVC0995 R2 (down arm)	
CAK 407	GCTACGCACTGCCAAATTACC	Δ <i>clpA</i> or Δ <i>clpS</i> F1 (up arm)	
CAK 408	gtcgacggatccccggaatAAGCATAAGGCCTCCTTAAGGAAC	$\Delta clpA$ R1 (up arm)	
CAK 409	gaagcagctccagcctacaCACTAGACATCTCACAATACGC	$\Delta clpA$ F2 (down arm)	
CAK 410	CCGCTAACATCTCAGGACTG	$\Delta clpA$ or $\Delta clpS$ R2 (down arm)	
CKP 449	TGCTCGGTTTTGATCCGTTC	$\Delta clpP$ or $\Delta clpX$ F1 (up arm)	
CKP 450	gtcgacggatccccggaatGGGCGACATTGCATTTTTTC	$\Delta clpP$ R1 (up arm)	
CKP 451	gaagcagctccagcctacaGGCGAGTAAGCTCGTAATTG	$\Delta clpP$ F2 (down arm)	
CKP 454	GTCAAACTAGAAACCAGCGC	$\Delta clpP$ or $\Delta clpX$ B2 (down arm)	
CKP 447		$\Delta clnS B1$ (up arm)	
CKP 448	gaageageteeegguuttinketernenenenen and a	$\Delta c \ln S E2$ (down arm)	
CKD 452	atcascagatccccagatGTCTGTCATTCGCTAACCTC	$\Delta clp X R1$ (up arm)	
CKD 452		$\Delta clp X = R^2 (down arm)$	
CKD 180	σααγταγτιταγτιαταστουλοιλαιτιταποταλα ΤΤΓΩΔΓΩΓΤΓΓΩΔΔΔΩΓΩΔΩΔΩ	$\Delta (\mu \pi + 2 (\mu \mu \pi m))$	
		$\Delta lon \Lambda P1 (up all l)$	
		AlonA E2 (down arm)	
	yaaycayciicayciiada i uca i aucaaaaa i aau i aaa i c		
		Дларк FI (up arm)	
BBC 423	gtcgacggatccccggaat1111CGA11GA1GCG1CCA1AG		
	GICTUGTCatCgtcatccttataatcCATAGGGGTATATCCTIGCC	$I \times FLAG-napK R1 (up arm)$	
BBC 408	gaagcagctccagcctacaAACIAGIIICIIGGGCAGCACAA	$\Delta napR + 2$ (down arm)	
CKP 510	AIGgattataaggatgacgatgacaaaGACGCAICAAICGAAAAACG	$I \times FLAG-hapR F2$ (down arm)	
BBC 409	GIICAIAATGATTTCCTTGGTGCC	$\Delta hapR$ R2 (down arm)	
BBC 374	TGGCAAAAAGCGAGAGAAGAAG	∆ <i>luxO</i> F1 (up arm)	

(Continued on next page)

TABLE 1 (Continued)

BRC 375 grcgarcggatcCaggatCATCAGCGACATATTTCTTC Alb CKP 319 TCATATCTGCCAAACTAATCACCACAGA Mux BRC 376 gaagcagttccagctacaTAAGCCATCAGCAATGACTCAAC Alu BRC 377 TCACACCCGAATTCCATCAC Alu CKP 318 TGACTTAAGCCAGATATGACG Alu BRC 377 TCACACCCGAATTCCATCAC Alu CKP 353 grcgacggatcccaggatCTGTTCATCGCAGATATACCCAG Acq CKP 354 GTCTCTTGACCAGCGGTTGTTCATCGCAAAAAAACC Acq CKP 355 grcgacggatcccaggatGCCGggatCTGTGTCATCGCAAAAAAAACC Acq CKP 359 gaagcagtcccaggatGCCGggatGCCGCGG Alu CKP 350 grcgacggatCcCGggatGCCCGGCACTCATAGCCAAAAAAAAAAAAAAAAAAAAAA	Description	
CKP 519 TCATATCTGGCAAACGTAACGCAGGATTAAGTCAGGG Intelligend of the second of the se	Δ <i>luxO</i> R1 (up arm)	
BRC 376 gaagcagtecagtecagtacaTAAGCGATAGAGGAATGAATCAAC Abu CKP 518 TGACTTAATCCTGTCGAGATAGATGGACG Abu BRC 377 TCACACCCGAATTTACTGC Abu CRP 554 GTCTCTTAATCGC Acq CRP 555 gatogargetecaggeatCTTGTCATGG Acq CRP 556 gaagcagtecaggeatCTTGTCATAGCCATATATCCTAG Acq CRP 557 AGTGGAACCACTTCTTGTC Acq CRP 558 gatogargetecaggeatCTTGTCATAGGCATATAATAACAAAAAC Acq CRP 559 gatogargetecaggeatCTTGTCATAATGCATAATAACAAAAAC Acq CRP 551 gaagcagtecaggeatCACCACTAAGGCAACTAGGCA Au CRP 552 TTCTTAAGCTGATACATTGC Au ABD 334 AGTGCTCCGCGAACTTGCTGTGAAACG Au ABD 255 gaagcagteccaggatCACTCGCCACATAAGCCAAGAGCCTAAAG Au ABD 255 gaagcaggateccaggatCACTCACCCACATAAGCCAAGAGCCTAAAG Au ABD 725 GGAAGCAACTCAACTCACCCACATAGCCAAGAGCCTAAAG Au ABD 725 GGAAGCAACACTCAACCTCACAC Det CRP 463 CACATATCGGCCAATTGGCG Au CRP 463 CACATATCGGCCAATTGGCG Ac CRP 463 CACATATCCAGCTCAACCCTCAC Ac CRP 463 CACTATACGCGAAACTTGGCGAATTTGGC Ac CRP 463 CACATGCCAGTAACTCAGCCTCACCCCAC Ac <t< td=""><td>luxOD47E R1 (up arm)</td></t<>	luxOD47E R1 (up arm)	
CKP 518 TGACTTAATCGTGCTGAGATTACGATTGCCAGATATGACG Juke GRB 377 TCACACCCGAATTCCATCATGC Muke CKP 553 GTGTCTTAGCCGAGGTACTG ACAC CKP 555 gtagaggatcccoggattGTGTGTTCATAGCCAATTATACTCAG ACAC CKP 557 AGTGGAACACTTCTTGTC ACAC CKP 558 gtagaggatcccoggattGGCGC ALI CKP 559 gtagaggatcccoggattGGCGC ALI CKP 550 gtagaggatcccoggattGGCGC ALI CKP 551 gtagaggatcccoggattGGCGC ALI CKP 552 TTCTTAGCTGGAACTCCCTGTTCCTCTC ALI CKP 551 gtagaggatcccoggattGCGCGCAACTTGGCG ALI CKP 552 TTCTAGCGGAACTTTGCTTGCTGG ALI CKP 553 gtagaggatcccoggattGCCGCGGAGTTAGG ALI CKP 550 gtagatggatcccoggattGCCGGGAGTTAGG ALI CKP 551 gtagatggatcccoggattGCCGGGAGTTAGG ALI ABD 255 gtagatggatcccoggattGCCCGGAGTTAGG ALI ABD 255 gtagatggatcccoggattGCCCGGAGTTAGG ALI ABD 255 GtagatggattCGCGGgattGCCAATTAGGC ALI CKP 463 TTGCCAAATTAGGCCAATTAGG ALI CKP 464 TTGCCAGTATTGCACCAGG ALI CKP 465 CCATGTGGTGGAAAGCCTTAGC ALI CKP 464 TTGCCAGTATTGGCAGCAATT	$\Delta luxO$ F2 (down arm)	
BBC 377 TCACACCCGAATTTCCATCATCC Aug CKP 554 GTCCTTLAGCCGACGTACTG Aug CKP 555 gragagatrcacgotasTTTGTTAATTCATAGCATATATCCTAG Aug CKP 556 gragagatrcacgotasTTTGTTAATTGCATAATAACCAAAAC Aug CKP 557 AGTTGGAACCACTTCTTGTC Aug CKP 550 gragagatrcacgotasTTGGTAATTGCATAATAACCAAAAAC Aug CKP 551 gragaggatrcacgotasTGGCAATTTCCTTGTCTCC Aug CKP 551 gragaggatrcacgotasTGGCAACCACTGGGTGTGAAACG Aug CKP 552 TTCTTAGCGTGGATCAATTGC Aug ABD 334 AGTGGTGGGACATTGGCG Aug ABD 235 gragaggatrcacgotacCACAATAGCCCAGAAAAGG Aug ABD 235 gragaggatrcacgotacCACAATAGCCAGAAAAGGCCTAAAG Aug ABD 235 gragaggatrcacgotacCACACATAGGGC Aug CKP 461 TTGGTAGCAACTTGGGG Aug CKP 463 CCAATATACGGGCTTGAGAACTTGGGG Aug CKP 463 CAAACTATGCAGCAACTTGGGG Aug CKP 463 CAAGTATCCAGGCTAAGGG Aug CKP 464 TTGGTAGCAACTTGGGG Aug CKP 465 CCATATGAAGGCTGAGGAATTAGG Aug CKP 465 CCATGTGGGATAGAACGCT Aug CKP 465 CCATGTGGGATAGAACGCT Aug CKP 465 CCATATGAAGGCTGGAA	luxOD47E F2 (down arm)	
CPD 554 GTCTTTAGCCCAAGGTACTG LCG CPD 555 gtcgacgattaccggattaCTGTTATATGCAAATATATCCTAG LCG CPD 556 gtagtcagtcasgcattaCTTGTTAATGCAAAATAACAAAAAC LCG CPD 557 AGTTGGAACCACTTGTCC LCG CPD 559 gtagtcagtcasgcattaCTTGTTAATGCATAAATAACAAAAAC LCG CPD 559 gtagtcagtcasgcattaCTTGTTAAATGCATAAATAACAAAAAAC LCG CPD 550 gtagtcagtcasgcattaCCGGCATTGTCTCTC LGG CPD 551 gtagtcagtcasgcattaCCGGCATCTGTTGTAAAGCG LLG ABD 235 gtagtcagtcaggtaTCGCGGATGAGGCAGAGGATAAAG LLG ABD 235 gtagtcaggtagtcaggtaCCCGGAGATAAGCCAAGAGGCCAACGCCAAGAGGCCTAAGG LLG ABD 235 gtagtcagtcaggtaCCCGGATGAGCCAAGAGCCAACCCACCAAGAGCCCAACGCCAAGAGCCTAACGCAAGAGGCCTAAGC LLG ABD 235 gtagtcagtcaggtaCCCGGaTGACAGCCAAGAGCCAACCCACCAG LLG ABD 235 gtagtcagtcaggtaCCCGGaTGACAGCCAAGAGCCAACCCCAGC LLG BBC 082 gtcagtcaggtaCCCGGaTGACACCCACAAGCCCACCAGC LLG CKP 443 AAAGTCCACCTGCAGCGCCACCGC LLG CKP 445 CCATGTGTGATAGACACCCACGG LLG CKP 443 CAGTCGCACTGCTCGCACCGC LLG BBC 1911 CCTATACCACCAGAACCTGACCCAGAG LLG CKP 558 AATTCGTACCACGAAACCTGACCCAGAG LLG CKP 559 TTGCCAAAACGTGT	$\Lambda \mu x O B2$ (down arm)	
CKP 955 orgacgatzczeggaatCTGTCTCATCGCAATATATCCTAG bcq CKP 956 gaagcagtcczeggaatCTGTCTCATCGCAATATAACCAAAAAC bcq CKP 957 AGTTGGAACCACTCTTGTC bcq CKP 550 gragcagtcczggaatGGGATTCCTTGTC bcq CKP 551 gaagcagtcczggaatGGCATTCCTTGTC bcq CKP 550 gragcaggtcczggaatGGCATTCCTTGTCACC blu CKP 551 gaagcagtcczggaatGCAATTGCTTGTAAACG blu ABD 253 gaagcagtcczggaatGCACGATCTTGCTCG blu ABD 254 gtcgacggatccccggaatGCACGATCATTGCC blu ABD 255 gaagcagtcczggataCCAGCATAATGCCAAGGCAGGAGTAAAG blu ABD 256 CCCAAATACGGCAATCTGGCCA bet BBC 082 gtcgacggatccccggataCATGGACTAACTACACTTACCCCAG bdu CKP 463 CAATATCGGACATTGGCACTACGGGG bdu CKP 463 CAATATCGGACATTGGCACTG bdu BBC 010 TAAATGGGACATCGGACAACC bdu CKP 463 CAATGGGACATTGGTCACCGG bdu CKP 463 CAATGGCACTTGGTCACCG bdu CKP 463 CAATGCGAAACTGGCACAGC bdu BBC 010 TAACAGGGCATTGGTCACCG bdu CKP 453 CAGTGCACTTGGTCACCG bdu BBC 1910 CAATGCGAAACTGCACGG bdu BBC 744 cagttgcggtgatg	$\Delta casA = F1$ (up arm)	
Chi 322 gragagaticagicaciaTTCGTTAATGCATAATGACAAAAAC Lac CKP 356 gragagaticagiccagicataTTCGTTAATGCATAATGACAAAAAC Lac CKP 359 TICGAACCACTTCTTCC Lac CKP 350 gragagaticagiccacicaGCACCGC Mui CKP 351 gragagaticagiccacicaGCACACTTCCTTGTAAACG Mui CKP 352 TTCTTAGCGTGATCATTGC Mui CKP 353 gragaggaticagiccacicaGCACACTAATGCCCAGGAGTAAAG Mai ABD 334 ACTGCTCCGGACCTTTGCTCTG Mai ABD 255 gragaggaticagiccacicCACACATAGCCCAGACCCAAGAGCCTAACG Mai ABD 255 gragaggaticagiccacicCACAATAGCCCAACCCACACCACACCCAGGAGCTTAACG Mai ABD 255 GAAGCACCTCCACCCCCACAC Det BBC 082 gragaggaticagiccacicCAGACACCCAACACCCAAGAGCCCACCCAGA Mai CKP 463 AAAGTTCCAGCTCACGCGG Mai CKP 463 CAGTGCACTTGGGACTGCAGCGG Mai BBC 082 GCAGTGCACTTGGCACCTG Mai BBC 1911 CGTAATCCAACGCCAGACCCCACCCCGG Mai CKP 533 TGGACCACGAAACGTTAACGCCAGACTCAG Mai BBC 7759 TTGCAACTGAAGGAATTAG Mai BBC 744 cagcttcgggatagagaga X ABD 245 CCATATAGCAGAAAAGCATTTGCTCAGC Mai CKP 520 TCATATCTAACTGGAAGAAGGAATTAGAAAAGCCAAGA	$\Delta cqsA B1 (up arm)$	
Chr. 330 glaguaguaguctua ITTOTACIDA IDA IDA IDA IDA IDA IDA IDA IDA IDA	AcasA E2 (down arm)	
CM 337 AGTIGOLCACTICITICSTC Diag CM 349 TACAGGARCCACTCITICSTC Diag CM 549 TACAGGARCCACTGC Diag CKP 550 gtcgacgattccccggaatTGGCAGC Diag CKP 551 gacgagctccccgtcaccACTTAGTCGTTGTAAACG Diag ABD 334 AGTGCTCGGACTCTTTCGTCTG Diag ABD 354 gtcgacgagtccccgtcaccCCTACATTGC Diag ABD 255 gacgagctccccgtcaccCCACATAGCCCAGGGGGTAAAG Det ABD 255 GGACACGTCCCACCTTCGC Det BBC 082 gtcgacgagtccccgtcaccCTACA Det BBC 082 gtcgacgagtccccgtcacCTACA Det BBC 083 AAGTTGGTGCGATAATGTGC Det BBC 084 TTGGCAGAACATCTTTGGTC Det CKP 463 CCATGTGCGATAACGCC Det CKP 463 CCATGTGCGATAGACAACC Det BBC 082 CATGTGCGATAGACAACC Det BBC 101 TAAATGGGGCTTGGCACATG Dia BBC 1911 CGTAATCAAACTGGGAGATTTAG Dia BBC 759 TGGACACGAGACCTTTAACG Dia BBC 744 Caggttcggtgacgagagaga IX ABD 330 CACTGAGACAGTCTTAGGCAAACGTCACAGC Dia BBC 744 CaggttcggtgacGGGAAATGTAGAAAACCTAAG Pad CKP 505 TAAGCAAAC	Acquire A P2 (down ann)	
CKP 349 IACAAC USC INGCACGC Mut CKP 550 gragagateccaggattacGCATTICCTTCCCC Mut CKP 551 gaagcagtcccaggattacGACTTAAGTCGGTTCTGTAAACG Mut ABD 334 AGTGCTCCGGACTCTTTGCTCTG Mut ABD 254 gragagatcccaggattacagcattacCCCTCAAGCCGAGGATAAAG Mat ABD 255 gaagcagttccaggattacagcattacCCCTCAAGCCGAGGAGGACTAAG Mat ABD 256 CCCAAATACGGCAACTTGGCG Mat ABD 255 gaagcagttccaggattacagcattacCCCTAAGCAACAAGGGCCTTAAG Mat ABD 256 CCCAAATACGGCAACTTGGCG Mat ABD 255 GAAGCAGCTCCAGCCTACA Det BBC 082 gtgatgagttccaggatCATAACTTCAACCTTACCCACG Mat ABD 256 CCAATGTGTGGGATAACACC Act CKP 463 CAAGTGCCCACTGGCTACGG Mat CKP 463 CAAGTGCCCACTGGCAACGG Mat BBC 1911 CGTATCAAACTCGCGAAACG Mat CKP 558 CAATGCCACTGACCTTAACG Mat BBC 744 CAGTGCCACTGAGCACTTAACG Mat BBC 93 ttgattataaggatgagtag 1× ABD 399 AACTGATGCGCAAAGTGC Mat ABD 399 AACTGATGCGCAAAGTGC Mat ABD 399 AACTGATGCGCAAAAGGCACTTAAGG Mat CKP 520 TCATATACTGGCAAAAGTGACCAGACCTACCTAG	$\Delta cqsA R2$ (down arm)	
CKP 550 gtcgacgattccccgaatTGGCATTTCCTTCCCC Alu CKP 551 gaaggattcccggtaatTGGCATTTGAAACG Alu ABD 334 AGTGCTCGGACTCTTGCTG Alu ABD 344 AGTGCTCGGACTCTTGCTG Alu ABD 255 gaaggattccaggtaatCATAACTGG Alu ABD 256 CCCAAATACGGCAACTTGGCG Alu ABD 256 GCCAAATACGGCAACTTGGCG Alu ABD 256 GCCAAATACGGCACTTGGCG Alu ABD 256 GCCAAATACGGCACCTTGGCG Alu ABD 256 GCCAAATACGGCACTTGGCG Alu CKP 461 TTGGCGAACTTGGCGATATTGG Ack CKP 463 CAATGTCCACGCTCACGCGG Ack CKP 463 CAATGTGCCACTTGGTCACTGGCG Alu BBC 682 CCATGTGCACTTGGCACTGG Alu CKP 463 CAATGCCACACACCC Ack CKP 463 CCATGTGCACTGGGGAATTTAG Alu BBC 610 TAAATGGGCTTGCAGCTG Alu BBC 611 CGTATCAAACTGCGAAAAGGCACTCAG Alu BBC 753 TGGCACACAGAACTCTGACGG Alu BBC 744 CGTGCCAAAGGAGCTTAAGG Alu BBC 744 CGGTGCTGCAGAAGGTTAGGCAACTAACGAAAGGCACCTAA Pab CKP 505 TAAGCAAACTGTAAGAAAAGGCACACTAACTAACAAACCTAA Pab CKP 506 TGCATTAGGG	$\Delta luxS$ F1 (up arm)	
CKP 551 gaagcagtccagctacaCATAAGTCGGTTCTGTAAACG Alu ABD 254 GTCTTAGCGGATCTTTGCTCTG Alu ABD 254 gtcgacgatcccaggatCCGCGACATTAAGC Alu ABD 255 gaagcagttccagcctacaCCACAATAAGCCAGAGAGCCTTAAG Alu ABD 256 CCCAAATACGGCAACTTGACCACAATAAGCCAGAGAGCCTTAAG Alu ABD 256 CCCAAATACGGCAACTTGACCACAATAAGCCAGAGAGCCTTAAG Alu ABD 256 CCCAAATACGGCAACTTGACCACAATAAGCCAGAGAGCCTTAAG Det BBC 062 gtcgacgatcccaggatCCGGGACCAA Det BBC 062 gtcgacgatCCCGGGC Alu CKP 463 CAAGTGCCACTGGCACCAG Act CKP 463 CAAGTGCCACTGGCACCTG Alu BBC 1911 CGTACCACTGACCTGGAAACTG Alu CKP 538 CAATGCCACTGACCTG Alu BBC 1911 CGTAACAACTCTGACCAGAACCTGA Au CKP 533 TGCAACAAGCACTTAAACG Au BBC 784 CATGCACTGAGCACTCAAG Alu BBC 784 CATGATGGCAGAAAAGGCTTTGCAC Au ABD 399 AACTGCAATGAGTCTAAGCG Au ABD 399 TGCAAAAAGGCAGAAACTCTAG Au ABD 399 TGCAAAAAGGCAGAAACTCTAGC Au ABD 399 AACTGCAATGAGTGACTGAG Au ABC 693 TTGCAAGAAAGGTTATAGCGCTGAAAGG Au <td>Δ<i>lux</i>S R1 (up arm)</td>	Δ <i>lux</i> S R1 (up arm)	
CKP 552TICTTAGCGTGATCATTGCΔlaABD 334AGTGCTCCGACTCTTGCTCTGΔlaABD 255gagagatccaggaatCATTAGCCTGAGAGAGAGCCTTAAGΔlaABD 256CCCAAATAGCGCACTTGGCGΔlaABD 725GAAGCAGCTCCAGCCTACADetBBC 082gtgacggatcccaggaatCATAACTAACCACTTACTCACCCAGΔcbCKP 444TIGGTGGCATTATTGGΔcbCKP 445CCATGCAGCACTTGGCGCATTATTGGΔcbCKP 445CCATGCGCACTTGGCGCATTATTGGΔcbCKP 445CCATGCGCACTTGGCGCATTATTGGΔbbBBC 101TAAAGTGGCCTGGGAGATTTAGΔbbBBC 410TAAAGTGGCCTGGGAGATTTAGΔbbBBC 410TGAATGGGCAACTTGGGAAATTAGΔbbBBC 410TGAATGGGCAACTGGGAAATTAGΔbbBBC 410TGAATGCGCAACATGGAACTGΔbbBBC 410TGAATGCGGAACTTGGAGAATTAGΔbbBBC 410TGAACGAGCATCAAACTGGGAAATTAGΔbbBBC 410TGAACGAGCAACGAACAGGΔbbBBC 325TGGACCACGAACAACGGGTTCGCΔbbBBC 325TGGACCACGAACAACGGGTTCGCΔbbBBC 326CCATAACGGGTTCTGCΔbbBBC 328GCCAATAACATGTTCTGCACCACGCAAGGPabbBBC 744CagettcgcgtcctggtaGCGAAATTAACTCAGGCAAAGPabbCKP 865TAAGCAAACTGTACACTAACTAACTAAGCAAGGTAGPabbCKP 865TAAGCAAACTGTGACCTACAGPabbCKP 505TAAGCAAACTGTACATTACTCAGCTAGGAAGAPabbCKP 865TAAGCAAACTGTACAATTACTCAGCTAGCATAHapbCKP 950AACCTCTCCAAGCGCGTTCACAGCPabbCKP 865TAAGCAAA	Δ <i>luxS</i> F2 (down arm)	
ABD 334 AGTGCTCCGGACTCTTTGCTCG Main ABD 254 gtogacgagatcATCCCTCAACCCGAAGCGAGTAAAG Main ABD 255 gaagcagtccagctacaCACACATAAGCCGAGGAGTAAAG Main ABD 725 GAAGCAACTTGCAACCTGAGCG Main BBC 082 gtogacggatcccaggaatCATCCTCACCCTACACCCAG Det BBC 082 gtogacggatcccggagatCATACCTTACCCCAG Main CKP 443 CAAGTATCTAGGCAACATTTAGC Main CKP 443 CAAGTGCCACTGGCACTGG Main CKP 443 CAAGTGCCACTGGCACTG Main BBC 101 TAAATGGGGCTTGGAACATCTG Main BBC 110 CGTAATCGAAACTGCTGACAGG Main BBC 2759 TTGCACAACGGCATTCGAACTG Main BBC 2759 TTGCACAAACGGCAATTGAGCAGG Main BBC 2759 TTGCACAAAGCGGTTTCTGC Main BBC 2759 TTGCACAAAGCGCATCTAGGCA Main BBC 2759 TTGCACAAAGCGGTTTCTGC Main BBC 2759 TTGCACAAAGCGCTTAACGCA Main BBC 2759 TTGCACAACGGCATCTAGGCA Main BBC 276 CCATATACGGCAAAAGCGTTCTGC Main ABD 286 GCCATATACGGCAAACGGTTCTGC Main BBC 2759 TTGCACAAGCGGTTCTGCACGG Pain CKP 280 CATATATCGGCAAAAGGCTACGCAGGAGTAAGAACACCTAG	Δ <i>lux</i> S R2 (down arm)	
ABD 254 gtcgacggatcCTCCGGAGGAGTAAGG Mar ABD 255 gaagcatcccagcatcATCAACCCTAAGCCGAGGAGAGCCTTAAG Mar ABD 256 CCCAAATACGGCAACTTGGCG Mar ABD 256 GCCAAATACGGCAACTTGGCG Mar ABD 256 GCCAAATACGGCAACTTGGCG Mar ABC 082 gtcgacggatcCCCggatCATAACTAACTACACCTTACCCCAG Mar CKP 444 TGGCAGAACTTGTGGCGATTATTGG Mar CKP 445 CCATGGTGGATACTTGGTCACCC Mar CKP 445 CCATGTGTGGATGATTAGCACCC Mar BBC 1911 CGTAACAACTGGCGCTGGGACATG Mar BBC 1911 CGTAACAACTGGCACCAGG Mar CKP 558 AATTGTAACTCTGAGCAATG Mar BBC 1911 CGTAACAAACGCACTTGAACG Mar BBC 759 TGTCAAAAAGGGTTCTGC Mar ABD 399 AACTGATGAACGCCACTGAG Mar ABD 399 AACTGATGGCAGAAAAAGCCACTCAG Mar ABD 399 AACTGATGACGCAGAAAAAGCCACTCAG Mar ABD 399 AACTGATGGCAGAAAAAGCCACTCAG Mar ABD 399 AACTGATGGCAGAAAAAGCCACTCAG Mar ABD 399 AACTGATGGCAGAAAAAGCCACTCAG Mar ABD 30 CCCAATGAAATCAGTCAGCTAGCGTAG Mar ABC 744 CagcttgcggatcctggtgaGCAAATATAACTAACAGGAAAGCACTAG Par <td colspan="2">∆<i>lacZ</i> F1 (up arm)</td>	∆ <i>lacZ</i> F1 (up arm)	
ABD 255 gaagcagretcagcitacagCACATAAGCCAGAGAGCCTTAAG Max ABD 256 CCCANATAGCGCAACTTGCCG Max ABD 725 GAAGCAGCTCCAGCCTACA Det BBC 082 gtcgacggatcCTAACTTACCACCTTACTCACCCAG Act CKP 441 TTGTTGGGCAGACATTTGCG Act CKP 443 CAAGTATCCAGCGCA Act CKP 443 CAAGTGCCACTGGC Act CKP 443 CAAGTGCCACTGGCACTG Adot BBC 1910 TAAATGGGGCTTGGCAACTG Adot BBC 1911 CGTACTGCACTGGCGAAAGTG Adot BBC 1911 CGTACTGCACTGGCGAAAGTG Adot BBC 7553 TGGACCACGAACCTTAAACG Act BBC 759 TTGCACAAAGCGCATTGAC Act BBC 759 TGCACAAGGCGTTCTGC ADot BBC 759 TGCACAAGGCGTTCTGC ACV ABD 286 CATAAACAGTGCTCTGAGCAAAAAGCCACTCAG Act BBC 993 ttgatatagagtagacgagtaca 1 × BBC 993 ttgatatagagtagacgacgacgaca 1 × BBC 993 ttgatatagacgagtacaCTTAGGCAAATTAACTCAGGCAAAG Pad CKP 850 TAAGCTAACTGGCAAAATTAGCCACCTAAG Pad CKP 902 CCATTACTGGCAAAATTAGCCACCTAGCAG Pad CKP 903 ttgattagagatgacagataca 1 × BBC 990 <	Δ <i>lacZ</i> R1 (up arm)	
ABD 256 CCCAATACGCCAATGCCG Max ABD 725 GAAGCAGCTCCAGCTTCACA Det BBC 082 gtcgacggatcCaTAACTTACATACCTACACCCAG Act CAK 411 TTGTTIGGTGCGATTATTGG Act CKP 464 TTGGCAGAACATCTTTGATC Act CKP 465 CCCATGCTGGATACACCACC Act CKP 463 CACTGCCACTTGGTGACACTG Add BBC 101 TAAATGGGGCTTGGGAGATTTAG Add BBC 410 TAAATGGGGCTTGGGAGATTAGG Add BBC 1911 CGTAATCAAACTGGGAATGG Add CKP 558 AATCGTACCTGGACACTG Add BBC 993 TTGGACACACGACACCTTAACG Add BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTCATGGCACACTGACGG Add BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTCATGGCACAAAAGGCACTCAAG Add BBC 744 CagcttcgcgtcctcggtaCGCAAATAAAAACACCTA Hag CKP 505 TAAGCAAACTGTTTGGCAAACGAAACGCACTA Padd CKP 505 TAAGCAAACTGTACGCAAACGTAAACAACCTAA Padd CKP 506 TCATATCTGGCACAACGTAAAACCTAAACAAACCTAA Padd CKP 505 TAAGCAAACTGTAACCAAACCTAAAACCTAA Padd CKP 506 TAAGCAAACTGTAAACTAAACTAAAACCTAAACTAAACT	$\Delta lacZ$ F2 (down arm)	
ABD 725GAAGCAGCTCCAGCCTACADetBBC 082gtcgacggatcCCCqggatCATAATGCACCTTACACCCAGCAc/cBBC 082gtcgacggatcCCCqgatCATAATGGAc/cCKP 464TTGGCAGATACATCTTGGCAc/cCKP 463AAAGTATCCAGCTCACGGCGAc/cCKP 465CCATGTGTGGATAGACACCCAc/cCKP 485CCATGTGTGGATAGACAACCAc/cCKP 485CCATGTGTGGATAGACAACCAc/cCKP 583CATTCGTAACTCGGAAAGTGAl/oBBC 101TAAATGGGGCTTGGAAAATTAGAl/oBBC 1911CGTAATCAAACTGGAAAGTGAl/oBBC 2759TTGCACAAAGCGTTTCTGCAl/oBBC 2759TTGCACAAAGCGTTTCTGCAl/oBBC 2759TTGTCACAAAGCGTTTCTGCAl/oBBC 2759TTGTCACAAAGCGTTTCTGCAl/oBBC 2759TTGTCACAAACGGTTTCTGCAl/oBBC 2759TTGTCACAAACGGTTTCTGCAl/oBBC 2760CCATAAACATTCTTGGCAAAAGGCATCTAAGAl/oBBC 2780GCCAATAGAATGAGCTATTGGCTGAl/oBBC 2744cagcttcgcgtcctcggtaGCGAAATATAACTCAGGCAAAGPabCKP 865TAAGCAAACTGTAGTGACGAACGAAGCTAAHagCKP 505TAGGATTGATGAGTAGAAACACCTAAHagCKP 505TAGGATTGATGGTGAGCGTAGCAAACGTAGPabCKP 507ACACCTGCCGGTAGAAPabCKP 507ACACCTGCCGGTGCAAACGTGPabBBC 299GCATCTAGGTTTTGACGTAGCAGGGTGTHagABD 133TTCTACCAAGCGCGGTAGCAAGGPabJDN 92agcagcggcctggtgccgcgcgcaccaatggaaaaaClorJDN 93tcagtggtggtggtggtggtggtGCCGA	$\Delta lacZ R2$ (down arm)	
BBC 082 gtcgacggatccccgggatCATAACTTACACCTACCCAG Action BBC 082 gtcgacggatcccccggaatCATAACTTACACCCTACCCAG Action CAK 411 TTGTTIGGTGCGATTATTGG Action CKP 463 AAAGTATICCAGCTCACGGGG Action CKP 463 CAGTGCCACTTGGTACCCTG Action BBC 1913 CAGTGCCACTTGGTCACCTG Action BBC 1911 CGTATCTAAACTGCGAAAGTG Muin CKP 558 AATTCGTAACTGCAACAGG Action BBC 2759 TTGCAGAAAGCGTTTCTGC Action BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTGATGGCACACGAAAAGCCATCAG Action BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTGATGGCACACAGAAAAGCCATCAG Action BBC 980 GCCAATAGAAAGCTGTTTCTGC Muin BBC 980 CCAATAACATGTTTCTGCAGAAAAAGCCATCAG Pain BBC 980 GCACATAACATGACGCACAGA Naction CKP 850 TAAGCAACATGTTGGCAAATAGAACCAGG Pain CKP 965 TAAGCAAACTGTAGCGTAAGA Pain CKP 505 TAAGCAAACTGAACCATAACAAACCTA Hap CKP 506 AATTGCAATGACACATAACAAACCTA Pain CKP 505 TAAGCAAATGAACTGTAACGAAAACCTAA Pain CKP 505 TAAGCAAATGAACTGTAACGAAAACCTAA<	Detect F for all deletions	
CAX 411 TIGTTIGGTGCGATTATTGG CAGATAGTGG AAAAAAAAAAAAAA	Achn detect B	
CKP 444 TTGGCAGAACATCITTGATC ACG CKP 443 AAAGTATCCAGCTCACGGG ACC CKP 443 CCATGGTGGAACATCITTGATC ACG CKP 443 CCATGGTCACCTG ACC CKP 443 CCATGGCGAACATCACG CKP 433 CCGTGCACCTGAACACC ACC Aba BBC 101 TAAATGGGGCTTGGAGAAGTG Aba BBC 1911 CGTAATCAAACTGCGAAAGTG Aba BBC 1911 CGTAATCAAACTGCGAACTG Aba BBC 1911 CGTAATCAAACGCGCAACTTAAACG Aba BBC 2759 TTGGACCACGACCTTAAACG Aba BBC 2759 TTGGACCACGACCTTAAACG Aba BBC 93 ttgattataagagtacgatgac 1× ABD 399 AACTGATGGCAAGAATAACG Aba BBC 93 ttgattataaggatgacgatgac 1× ABD 390 CCAATGGAACTGTTGCAGCAG Aba BBC 93 ttgattataggatgacgatgac 1× ABD 846 CCATAAACATGTTTCTGATCAGCAG CKP 520 TCATATCTGGCAAACGAGT CKP 520 TCATATCTGGCAAACGAGAATAAACCCACTCAG CKP 520 TCATATCTGGCAAACGAGAA BBC 391 CGCAATAGAATGATTATGGCTG bac CKP 520 TCATATCTGGCAAACGAGAAAACCCACTAG P _{chb} CKP 555 TAAGCAAACTGTAGCAGAAAGCCTA CKP 505 TAAGCAAACTGTAGCGAAAGGCAAACGCTAG P _{chb} CKP 505 TAAGCAAACTGTAGCGAAAGCTAATTAAACTCAGGCAAAGG P _{chb} CKP 505 TAGGTTTGTGAGGAGGAAATTATACCTAGCAAACCCTA Hap CKP 505 TAGGCTTGAGTAGTAGATAATAACCTAACAAACCCTA Hap CKP 505 TAGGCATTGAGTAGTAAGTAAATCACTAACAACCTA Hap CKP 506 AATTGCAATGGTAGTAGATTATTATCTGGCT CKP 507 ACCCCAAGCAAAGTAGATCATTAACCATAACACTA ACACCTAGCCAAGGAAATTTATCTGCAGGTGT Hap CKP 505 TAGGCTTGAGGAGGTAAGACACTTA ABD 132 CTGTCTCAAGCCAGGAGAGTAAGACACTTA ABD 132 CTGTCTCAAGCCAGGAGAGTAAG CKP 867 TCGTGTCTGAGGCGTTACAA pod ABD 132 CTGTCTCAAGCCGGTTACAA ABD 132 CTGTCTCAAGCCGGTTACAA ABD 132 CTGTCTCAAGCCGGTACGAGAGT CKP 867 TCGTATGAGCGCGCGCCCACG P _{chb} JDN 92 agcagcggcctggtgccgcgcgcgcagcCatatggacgcatcaatcgaaaaa Clor P JDN 92 CTGGAGGaccacccacca Am DDN 23 atGgctgccgcggcgccaca Am	AcinA detect R	
CKP 463ITGGCAGAACTITIGATCDataCKP 463CCATGGTCACGGCGAcfgCKP 453CCATGGTCACGTCACGGCGAcfgBBC 410TAAATGGGGCTTGGAAAACACCAbraBBC 410TAAATGGGGCTTGGAAAACTGAbraBBC 1911CGTAATCAAACTGCGAAACTGAbraCKP 553AATTCGTAACTTGACAATGAbraBBC 2759TTGCAGAAACCGTTACACGAbraBBC 2759TTGTCAGAAAGCGTTTCTGCAVCABD 390AACTGATGGCAGAAAAAAGCCACTCAGAbraBBC 2933ttgattataaggatgacgatgac1×BBC 380GCCAATAGAAATGGAGCTTATGGCTGIuxCCKP 520TCATATCTGGCAGAAACGTAGCPabbUsed for EMSA probesEEBBC 744CagcttccggtacctggtaCGCAAATATAACTCAGGCAAAAGPabbCKP 505TAAGCAAATGTATGGCGTAGAACGTAGCPabbCKP 506AATTGCAATTGAACGTAAGCAAHapCKP 505TAGGCAAATAGAAAGTAAACACTAACAAACCTAHapCKP 506AATTGCAATTTAGGTATAAGTAACACTAACAAACCTAHapCKP 507ACACCTAGCCAAGAAATTTACGPabbCKP 508TAAGCAAACTGTAAGCGATTTATCAGAATTHapCKP 507ACACCTAGCCTAGCACCTCPabbCKP 508TAAGCAAACTGTAACGCTAACCAAACCTAHapCKP 509AACACTCTCCAAGAGATGCPabbCKP 507ACACCTAGCCAGGTACAAPabbCKP 508TAAGCAAACTGTAACGCTACCTCPabbJDN 92agcagcggcctggtgccgcgcgccCatatggacgcatcaatggaaaaaClorJDN 93tcagtggtggtggtggtggtggtgCTCGAGCtatggacgcatcaatggaaaaaClorJDN 23	AdpR detect R	
CKP 463AAAAG IATCCAGCICACGGGDefCKP 465CCATGTGTGGATAGACACCCACCKP 465CCATGTGTGCACTTGMoBBC 410TAAATGGGGATAGACAACTGMoBBC 1911CGTAATCAAACTGCGAAAGTGMuCKP 553TGGACCACGACACTTAAACGMuBBC 2759TTGTCAGAAACGCACTTAAACGMuBBC 93tigattataaggatgacgatgac1×ABD 399AACTGATGGCAGAAAAACGCACTCAGMuBBC 293tigattataaggatgacgatgac1×ABD 399AACTGATGGCAGAAAAAGCCACTCAGMuBBC 380GCAATTGAAATTGGCTGIuxCCKP 520TCATATCTGGCAAACGTAGCPabCKP 520TCATATCTGGCAAACGAGAAAAACCCAGCAGAPabCKP 655TAAGCAAACTGTAGCGCAAAAGGAGAAAAACCCTAGPabCKP 720cccgggatcctgtgtgaaatgCTTTGGCAGGAGAAAAAACCCTAGPabCKP 865TAAGCAAACTGTAGCGTAGAAAGPabCKP 505TAAGCAAACTGTAGCGTAGAAACCTAACAAACCTAHagCKP 506AATGCAATTTAGCTGTGACGTAGAATHagCKP 507ACACCTAGCCTAGCAGAAGTTATCACAATTHagCKP 508CGATCTAGGTTTTAGTGTAGCGTTHagCKP 507ACACCTAGCCAAGAAGTGCPabUsed for qPCR and qRT-PCREUsed for qPCR and qRT-PCRCTGTCTCAAGCCGGTTACAAPabBC 50TAAGCAACTGTAGCGTACCTCPabJDN 92agcagcggcctggtgccgcggcgcCatatggacgcatcaatggaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtgcCCGAGACatggacgcataatggaaaaaClorJDN 23atGgtqccgcggggaccaaAmJDN 23atGgtqc	Adus detect R	
CKP 465CCATGGCGGATAACACCCDACKCP 493CAGTGCCACTTGGTCACCTGGAlorBBC 410TAAATGGGGCTTGGAGAATTTAGAlorBBC 1911CGTAATCAAACTGCGAACTGAlorCKP 553TGGACCACGAACCTTAACCGAlorBBC 2759TTGTCAGAACTGGCACATGAlorBBC 293ttgattataaggatgacgatgac1 ×BBC 380GCCAATAGAACGTTTCTGATCAACGGAlorCKP 520TCATACTGACGCATGGCAACGTGIwcUsed for EMSA probesGCCAATAGAACGTTCTGGCAACGTAGCPainBBC 744cagtttgcgtccttggtgaGGCAAATATAACTCAGGCAAAGPainCKP 865TAAGCAAACTGTAGCGTAGAAGPainCKP 504GCCAATAAGTAAGTAAGTAACTAACTCAAGGCAAAGPainCKP 505TAAGCAAACTGTAGCGTAGAAGPainCKP 506AATTGCAATGATAGCATAGCATAACAAACCTAHagCKP 507ACACCTAGCAAAAATTAACTCAGGCAAATTHagCKP 507ACACCTAGCCAAGAAATTTAACGAAACCTAHagCKP 508GCAATTAGTAAGTAAACTAACAAACCTAHagCKP 507ACACCTAGCCAAGAAATTTATGGCAATTHagCKP 507ACACCTAGCCAAGAAATTTATGCAATTCHagCKP 507ACACCTAGCCAAGAAATTTACGPainCKP 865TAAGCAAACTGTAGCAGAGAGCPainCKP 865TAAGCAAACTGTAGCAGAGAGPainCKP 865TAAGCAAACTGTAGCAGAGAGCPainCKP 865TAAGCAAACTGTAGCAGAGAGCPainCKP 865TAAGCAAACTGTAGCGTACAACPainJDN 92agcagcggcctggtggtggtggtggtggtggtggtggtggtggt	$\Delta clpS$ detect R	
CKP 493CAGIGCCACTIGGTCACCTGDoBBC 410TAAATGGGCCTIGGCAGAATTAGAbraBBC 1911CGTAATCAAACTGCGGAAAGTGAbraCKP 558AATTCGTAACTCTGAGCATGAcraBBC 2759TIGGACCAGCGAACGTTAAACGAbraBBC 93ttgattataagatgacgatgac1×ABD 399AACTGATGGCAGAAATAGCAGCACTCAGAbraBBC 93ttgattataaggatgacgatgac1×ABD 399AACTGATGGCAGAAAAGCCACTCAGAbraBBC 93ttgattataaggatgacgatgac1×ABD 3846CATAAACATGTTICTGATCAGCAGAIwxCKP 520TCATATCIGGCAAAACGTAgcIwxUsed for EMSA probesCCRP 72ccggggtcctggtaCGCAAATGAAACCTCAGGCAAAGP _{chb} CKP 855TAAGCAAACTGTAGCGTAGGAGAAAACACCTAGP _{chb} CKP 866TGCATTTTTTCTGGTAGCP _{chb} CKP 504GCCAAATAGATGAAGTAAGCACTAACAAACACTAAHagCKP 505TAGGTTCTAGGTTTGTAGTGGCHapCKP 506AATTGCAATTGATGAGTAGCACCTAACAAACCCTAHapCKP 507ACACTCTCCCAAGAAATTTATCTGGCTAGGTGTHapCKP 509AACACTCTCCCAAGAACATTAACATTAACTTGGCAGGTGGP _{chb} ABD 132CTGTCTCAAGCGCTTAGGCAGAGAGGP _{chb} CKP 867TCGTATGAGCGTAGGAGAGAGP _{chb} JDN 92agcagcggcctggtgccgcgcgcGcatatggacgacatcaatcgaaaaaaClorJDN 22CTCGAGcaccaccaccaAmJDN 23atGgctqccgcggcgcacaAm	$\Delta clp X$ detect R	
BBC 110 TAAATGGGGCTTGGAGAATTTAG Δhc BBC 1911 CGTAATCAACTGGAAACATG Δhc CKP 553 TGGACCACGAACCTTAAACG Δhc BBC 2759 TTGTCAGAAACGGTTCTGC Δhc BBC 2993 ttgattataaggatgacgatga 1× BBC 380 GCCAATGGCAGAAAAGGTTTCTGAC Δhc BBC 380 GCCAATAGATGGCAGAAAAAGCCACTCAG Jax BBC 380 GCCAATAGAATGAGTCTATGGCAG Jax BBC 380 GCCAATAGAATGAGTCTATGGCTG Jux Used for EMSA probes CCCggatcctggtaCGCAAATATAACTCAGGGCAAAG Pab BBC 744 cagctttggtgtaCGCAAAATGAGCTATGGCAGAAGAACACCTAG Pab CKP 865 TAAGCAAACTGTAGCGTAGAAG Pab CKP 865 TAAGCAAACTGTAACGTAACACAAACCTAA Hap CKP 504 GCCAATAAGTAAACATAACACACACACACACCTA Hap CKP 505 TAGGCAAATGATGATTATTGGCAGGTT Hap CKP 506 AATTGCAATGATAAACATTAACAAAACCTAA Hap CKP 507 ACACCTAGCCAGAAAATTTATCTACTTATTTGGCAGT Pab BBC 980 GCATCTAGGTTTTGACGAGAATTTATCAATT Hap CKP 507 ACACCTAGCCAGAGAAATTAACCATAACAAGCTA Pab BBC 980 GCATCTAGGTTTTGACGTTACGAG Pab ABD 132 CTGTCTAAGCGTGTAGCAAGAG Pab CKP 865 TAAGCA	Δ <i>lonA</i> detect R	
BBC 1911 CGTAATCAAACTGGGAAAGTG Δ/Li CKP 558 AATTGGTAACTGTGAGCATG Δ/Li BC 2759 TGGACCACGAACGTTCAACG Δ/Li BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTGATAGAAAAGCCACTCAG Δ/Li BBC 993 ttgattataaggatgacgatgac 1× ABD 399 AACTGATAGAATAGATGCAGAAAAAGCCACTCAG Δ/Li BBC 993 ttgattataaggatgacgatgac 1× ABD 390 GCCAATAGAATGAGCTATTGGCTG LuxC CKP 520 TCATATCTGGCAAAAGTCTATGGCAGA P,ab BBC 744 CagcttcgcgtcctcggtaCGCAAATATAACTCAGGGCAAAG P,ab CKP 855 TAAGCAAACTGTAGCGTAGAGAGAAAAAACACCACTAG P,ab CKP 865 TAAGCAAACTGTAGCGTAGAAAAAACACCTAA P,ab CKP 866 TGCATTTTTTCTGGTAGC P,ab CKP 505 TAAGCAAACTGTAGCGTAGAAAAACACTAACAAACCTA Hag CKP 506 AATTGCAATGAAAGTAAACTAAACAAACCTA Hag CKP 506 AATTGCAAGAAAATTTATCAATTGCAATT Hag CKP 507 ACACCTAGCCAAGAAATTTAACCATGTGCA P,ab BBC 990 AACACTCTCCAAGACCTACCTC P,ab BBC 990 AACACTCTAGGTTAGAAGTAAAG PoD ABD 132 CTGTCTAAGCCGGTTACAA PoD CKP 865 TAAGCAAACTGTAGCGTAGAAAG	∆ <i>hapR</i> detect R	
CKP 558AATTGTAACTCTGAGCATGΔcqCKP 558TGGACCACGAACTTGAACGΔluxBBC 2759TTGTCAGAAAGCGTTTCTGCΔluxBBC 993ttgattataggatgacgatgac1×ABD 846CATAAACATGTTCTGACAAAGCGTACGAGluxBBC 2759TCATAACATGTTCTGACAGAGluxCKP 520TCATATCTGGCAAACGTAGCluxBBC 744cagctttcgcgtcctcggtaCGCAAATATAACTCAGGCAAAGP _{abb} CKP 865TAAGCAAACTGTACTAGCGTAGAAGGP _{dip} CKP 866TGCATTTTTCTGGTAGCAGAGAGAAACCTAHapCKP 505TAAGCAAACTGTATCTGGTAGGCTAHapCKP 505TAGGTTTGTAAGTGATAGTAACCTAACAAACCTAHapCKP 505TAGGTTTGTAGTGTTACTTACTTATTGGCTAGGGTHapCKP 505TAGGTTTGTAGTGTTTACTTACTTATTGGCTAGGGTHapCKP 506AATGCAATGGTTTTGACAGAAACTTACTATTGCAATTHapCKP 507ACACCTCCAAGAGATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCREEBBC 990ACACCTCTCAAGGCGTTTCTAAGCP _{abb} BBC 980GCATCTAGGTTTTGACGAGAGAGCP _{abb} ABD 132CTGTCTCAAGCCGGTTACAArpodABD 133TTTCTACCAGTGCAGAGATGCP _{abp} JDN 92agcagcggcctggtgcgcgcccatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtggtggtggtggtg	$\Delta luxO$ detect R	
CKP553TGGACCACGAACCTTAAACGMuxBBC 2759TTGCAGAAAGGCATTCTGCAACBBC 993ttgattataaggatgacgatgac1×ABD 399AACTGATGGCAGAAAAAGCCACTCAGAACBBC 993ttgattataaggatgacgatgac1×ABD 380GCCAATAAACATGTTTCTGATCAGCAGIxBBC 380GCCAATAAGAATGAGTCTATTGGCTGIuxCCKP 520TCATATCTGGCAAACGTAGCP _{chb} BBC 744cagcttcgcgtcctcggtaCGCAAATATAACTCAGGCAAAGP _{chb} CKP 855TAAGCAAACGTAGCGTAGAAGP _{chb} CKP 866TGCATTTTTTCTTGGTAGCP _{chb} CKP 504GCCAAATGATAGAATGAACCTAACAAACCTAACAAACCTAHapCKP 505TAGGTTGTAAGTAAAATTCTGGCTAGGTGTHapCKP 506AATTGCAATGATAAATTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGCAATTAACATAACTAACATAACCTAHapCKP 508TAGGTTGTGACGTTTTGACGAGGTGTHapCKP 509GCATCTAGGTTTGACGTTTTAACTGCAATTHapCKP 507ACACCTAGCCAAGAAATTAACGP _{chb} BBC 990AACACTCTCCAAGACCTACCAAGCP _{chb} BBC 990AACACTCTCCAAGACGTACAAP _{chb} BBC 990AACACTCTCCAAGACGTACAAPodABD 132CTGTCTCAAGCCTGCAGGAAGGP _{chb} JDN 92agcagcggcctggtgcgcgcgcgcgcaccaatcagaaaaaClorJDN 92CTCGAGcaccaccaccaAmJDN 22CTCGAGcaccaccaccacAmJDN 23atGgtgcgcgcgcgcacaAm	$\Delta cqsA$ detect R	
BBC 2759TIGTCAGAAAGCGTTTCGCAVCABD 399AACTGATGGCAGAAAAAGCCACTCAGAdaBBC 993ttgattaagagtagagagagagagagagagagagagaga	$\Delta luxS$ detect R	
ABD 399AACTGATGGCAGAAAAAGCCACTCAGAdaBBC 993ttgattataggatgacgatgac1×ABD 846CATAAAACATGTTTCGCATCAGCAG1×BBC 380GCCAATAGAATGAGTCTATTGGCTG///////////////////////////////	ΔVC0995 detect R	
Note of the construction of th	AlacZ detect B	
Duc DSDtight attagging by gright of the second	$1 \times EI AG detect E$	
ADD 040CHTARACHTECHTATGACGI/ABBC 380GCCAATAGAATGAATGATGACGTGAI/axCCKP 520TCATATCTGGCAAACGTAgcI/axCUsed for EMSA probesEBBC 744cagcttcgcgtcctcggtaCGCAAATATAACTCAGGCAAAGP_{obb}CKP 072cccgggatcctgtgtgaaatugCTTTGGCAGGAGTAAGAAAACACCTAGP_{obb}CKP 865TAAGCAAACTGTAGCGTAGAAGP_{obp}CKP 504GCCAAATAAGTAAGTAAGTAAACACTAACAAACCTAHapCKP 505TAGGTTIGTTACTTGGTAGGP_{obp}CKP 506AATTGCAATTGATAAATTCTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTACTTACTTATTTGGCHapCKP 507ACACCTAGCCAAGAACTTACAATTGCAATTHapUsed for qPCR and qRT-PCRBBBSC 990AACACTCTCCAAGACCTACCTCP_{obb}BBC 990AACACTCTCCAAGACCTACCACArpolABD 132CTGTCTCAAGCCGATAGAAGrpolABD 133TTTCTACCAGTGCAGAGATGCrpolJDN 92agcagcggcctggtgcggcggcgcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtgCTCGAGctagttcttatagatacacagcatattgaggpJDN 22CTCGAGcaccaccaccaaAmJDN 23atGgctgccgcgcgcaccaAm	$1 \times ELAG banP dotoct P$	
bbC 380 GCCAATACGGCTATTGGCTG JJAK CKP 520 TCATATCTGGCAAACGTAgc IJAK Used for EMSA probes EBC 744 cagcttcgcgtcctcggtaCGCAAATATAACTCAGGCAAAG P _{db} BBC 744 cagcttcgcgtcctcggtaCGCAAAAGGAGAAAGACACCTAG P _{db} CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{db} CKP 866 TGCATTITTTCTTGGTAGC P _{db} CKP 505 TAAGCAAATAGTAAGTAAACACCTAA Hap CKP 506 AATTGCAATTGATTAAGTATAACAACCTA Hap CKP 507 ACACCTAGCCAAGGAAATTTATCTAGTTTTGGCT Hap CKP 508 CTATGCGCAAGGAAATTTATCAATTGCAATT Hap CKP 507 ACACCTAGCCAAGGAAATTTATCAATTGCAATT Hap Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTTGACGTTTTTAACG P _{db} BBC 989 GCATCTAGGTTTTGACGTTTTTAACG P _{db} ABD 132 CTGTCTAAGCCGGTACAA rpod ABD 133 TTTCTACCAGTGCAGAGAGG P _{db} CKP 867 TCGTATGAACGCTCACCACG P _{db} JDN 92 agcagcggcctggtggcggcggcggcgccacaacacagcatattggagg Clor JDN 23 atGgctgcgcgcgcgcaca Am		
Used for EMSA probes BBC 744 cagcttcggggacctggggaaattgCTTGGCAAAGGAAGGAAAGAACACCTAG P _{dbb} CKP 072 cccggggatcctggtgaaattgCTTGGCAGGAGAAAGAAACACCTAG P _{dbb} CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{db} CKP 866 TGCATTTTTTCTTGGTAGC P _{db} CKP 504 GCCAAATAAGTAAGTAAACACAAACCTA Hap CKP 505 TAGGTTTGTAGTGTTACTTACTTATTGGC Hap CKP 506 AATTGCAATTGATAATTTCTTGGCAGGTGT Hap CKP 507 ACACCTAGCCAAGAAATTTATCAATTGCAATT Hap Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTTGACGTTTTAACG P _{db} BBC 990 AACACTCTCCAAGACGTACAA MATTTATCAATTGCAATT Hap Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTTGACGTTTTAACG P _{db} BBC 989 GCATCTAGGTTTGACGTAGAA MATTTACAATTGCAATT Hap Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTGACGTTTTAACG P _{db} BBC 990 AACACTGTCAGGCGTACAA <i>ppol</i> ABD 132 CTGTCTCAAGCCGTACAA <i>ppol</i> ABD 133 CTTCTACCAGTGCAGAGATGC <i>ppol</i> CKP 865 TAAGCAAACTGTAGCGTAGAAG <i>ppol</i> CKP 867 TCGTATGAAACGCTCACCAG <i>ppol</i> JDN 92 agcagcggcctggtggcgcgcgcagcCatatggacgcatcaatcgaaaaa Clor <i>p</i> JDN 92 CTCGAGcaccaccaccaca <i>pp</i> JDN 22 CTCGAGcaccaccaccaca <i>pp</i> JDN 22 CTCGAGcaccaccaccaca <i>ppol</i> JDN 23 atGgctgccgcggggaccCatatggacgcatcaattgagg <i>ppol</i> AtGgctgccgcggggaccCa		
Used for EMSA probes BBC 744 cagcttcgcgtcctcggtaCGCAAATATAACTCAGGCAAAG P _{ch} CKP 072 cccgggatcctgtgtgaaattgCTTTGGCAGGAGATAAGAAAACACCTAG P _{ch} CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{ch} CKP 866 TGCATTITTCTTGGTAGC P _c CKP 504 GCCAAATAAGTAAACACTAACAAACCTA Hap CKP 505 TAGGTTTGTAGTGTTTACTTACTTACTTACTTGCC Hap CKP 506 AATTGCAATGATAAATTTACTTACTTACTTGCTAGGTGT Hap CKP 507 ACCCTAGCCAAGAAATTTATCAATTGCAATT Hap Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTTGACGTTACCTAC P _c BBC 980 AACACTCTCCAAGACCTACCTC P _c BBC 980 AACACTCTCCAAGACCTACCTC P _c BBC 980 AACACTCTCCAAGACCTACCTC P _c BBC 980 CTGTCTCAAGCCGTTACAA <i>trpol</i> ABD 132 CTGTCTCAAGCCGTAGAAG <i>trpol</i> ABD 133 TTTCTACCAGTGCAGAGATGC <i>trpol</i> CKP 865 TAAGCAAACTGTAGCGTAGAAG P _c JDN 92 agcagcggcctggtgccgcgcagcCatatggacgcatcaatcgaaaaa Clor JDN 93 tcagtggtggtggtggtggtggtgCTCGAGCtagttcttatagatacacagcatattgagg JDN 22 CTCGAGcaccaccaccaa Amm JDN 23 atGgctgccgcggggacca	luxObare detect R	
BBC 744cagcttcgcgtcctcggtaCGCAAATATAAACTCAGGCAAAGP_dthCKP 072cccgggatcctgtgtgaaattgCTTTGGCAGGAGTAAGAAAACACCTAGP_dthCKP 865TAAGCAAACTGTAGCGTAGAAGP_dthCKP 866TGCATTITTTCTTGGTAGCP_dthCKP 504GCCAAATAAGTAAGTAAACACTAACAAAACCTAHapCKP 505TAGGTTTGTTAGTGTTTACTTACTTACTTAGGCHapCKP 506AATTGCAATGATAAGTAAATAATTTCTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapCKP 507CGCATCTAGGTTTTGACGTTTTAACTGCAATTHapUsed for qPCR and qRT-PCRCTGTCTCAAGCCGGTTACAAIf polBBC 989GCATCTAGGTTTTGACGTTTTAACGP_{chb}BBC 990AACACTCTCCAAGACCTACCTCP_{chb}ABD 132CTGTCTCAAGCCGGTTACAAIf polABD 133TTTCTACCAGTGGCAGAGATGCIf polABD 133TTCTACCAGTGGCGAGAAGGP_{chp}CKP 865TAAGCAAACTGTAGCAGCTACCACGP_{chp}Used for purification vectorJDN 92agcagcggcctggtgccgcgcggcagcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtgCTCGAGCtagttcttatagatacacagcatattgaggClorPJDN 22CTCGAGcaccaccaccacaAmMJDN 23atGgctgccgcgcggcaccaAm		
CKP 072cccgggatcctgtgtgaaatgCTTTGGCAGGAGTAAGAAAACACCTAGP chpCKP 865TAAGCAAACTGTAGCGTAGAAGP chpCKP 866TGCATTTTTTCTGGTAGCP chpCKP 504GCCAAATAAGTAAGTAAACAACTAACAAAACCTAHapCKP 505TAGGTTTGATGTTTAGCTTACTTACTTATTTGGCHapCKP 506AATTGCAATTGATAAATTTCTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTACTAATTGCAATTHapUsed for qPCR and qRT-PCRBBC 989GCATCTAGGTTTGACGTTTTAACGP chbBBC 989GCATCTAGGCTTCCAAGACCTACCTCP chbP chbABD 132CTGTCTCAAGCCGGTTACAArpodABD 133TTTCTACCAGTGCAGAGAAGCrpodCKP 865TAAGCAAACTGTAGCGTAGAAGP chpiCKP 867TCGTATGAACGCTCACCGP chpiJDN 92agcagcggcctggtgccgcgcggcagcCatatggacgcatcaatcgaaaaaClorJDN 22CTCGAGcacaccaccaaAm b bJDN 23atGgtgcgcgcggggaccaAm	P F	
CKP 865TAAGCAAACTGTAGCGTAGAAGPCKP 866TGCATTTTTTCTTGGTAGCPCKP 504GCCAAATAAGTAAGTAAACACTAACAAACCTAHapCKP 505TAGGTTTGTTAGTGTTTACTTACTTACTTACTTAGGCHapCKP 506AATTGCAATTGATAAATTTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAAATTTATCAATTGCAATTGHapUsed for qPCR and qRT-PCRGCATCTAGGTTTTGACGTTTTTAACGPBBC 989GCATCTAGGTTTTGACGTTTTTAACGPABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGAGAAGrpolCKP 865TAAGCAAACTGTAGCGTAGAAGPCKP 867TCGTATGAACGCTCACCACPJDN 92agcagcggcctggtgccgcgcggcagcCatatggacgcatcaatcgaaaaaClorJDN 22CTCGAGcaccaccaccacaAmJDN 23atGgctgccgcggggaccaAm	P R	
CKP 805TAGCAAACTOTAGCGTAGAGPCKP 806TGCATTITTITCTIGGTAGCPCKP 504GCCAAATAAGTAAGTAAACACTAACAAACCTAHapCKP 505TAGGTTIGTTAGTGTTTACTTACTTACTTAGTGGCHapCKP 506AATTGCAATTGATAAATTTCTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRBBC 989GCATCTAGGTTTTGACGTTTTAACGPBBC 989GCATCTAGGTTTTGACGTTTTAACGPBBC 980AACACTCTCCAAGACCTACCTCPABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGGAGAGCPCKP 865TAAGCAAACTGTAGCGTAGAAGPCKP 867TCGTATGAACGCTCACCACGPUsed for purification vectorJDN 92agcagcggcctggtgcgcgcgcgcgccatcaatcgaaaaaClorJDN 22CTCGAGcaccaccaccaaAmbJDN 23atGgctgccgcgcggcgccacaAm	D E	
CKP 300TICATIATITICITIGGTAACFreipiCKP 504GCCAAATAAGTAAGTAAACACTAACAAACCTAHapCKP 505TAGGTTIGTTAGTGTTTACTTACTTATTTGGCHapCKP 506AATTGCAATTGATAAATTTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRgCCATCTAGGTTTTGACGTTTTAACGP_chbBBC 989GCATCTAGGTTTGACGTTTTAACGP_chbABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGAGATGCrpolCKP 865TAAGCAAACTGTGAGCGTAGAAGP_chbCKP 867TCGTATGAACGCTCACCACGP_chbUsed for purification vectorJDN 92agcagcggcctggtgcgcgcgcgcagcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtggtgcTCGAGctagttcttatagatacacagcatattgaggClorJDN 22CTCGAGcaccaccaccaaAmJDN 23atGgctgccgcgcggcagccaaAm		
CKP 504GCCAAATAAGTAAGTAAGTAAGTAACACTAAHapCKP 505TAGGTTTGTTAGTGTTTACTTACTTATTTGGCHapCKP 506AATTGCAATTGATAAATTTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRgCATCTAGGTTTTGACGTTTTTAACGP_{chb}BBC 989GCATCTAGGTTTTGACGTTTTTAACGP_{chb}BBC 990AACACTCTCCCAAGACCTACCTCP_{chb}ABD 132CTGTCTCAAGCCGGTTACAArpolCKP 865TAAGCAAACTGTAGGCGTAGAAGP_{chp}CKP 865TAAGCAAACTGTAGCGTAGAAGP_{chp}Used for purification vectorJDN 92agcagcggcctggtgccgcgcgcgcgccatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtgCTCGAGctagttcttatagatacacagcatattgaggClorJDN 22CTCGAGcaccaccaccacAmJDN 23atGgctgccgcgcggcaccaAm		
CKP 505IAGGITIGITAGIGITIACITACITATIGGCHapCKP 506AATTGCAATTGATAAATTTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRBBC 989GCATCTAGGTTTTGACGTTTTAACGP_{chb}BBC 990AACACTCTCCAAGACCTACCTCP_{chb}ABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGAGATGCrpolCKP 865TAAGCAAACTGTAGCGTAGAAGP_{chp}CKP 867TCGTATGAACGCTCACCACGP_{chp}JDN 92agcagcggcctggtgccgcgcgcgcagcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtggtgctCGAGCatatggacgcatattgaggClorJDN 22CTCGAGcaccaccaccaaAmJDN 23atGgctgccgcggcggcagccaAm	Нарк вз т Р	
CKP 506AATTGCAATTGATAAATTTCTTGGCTAGGTGTHapCKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRBBC 989GCATCTAGGTTTTGACGTTTTAACGPBBC 990AACACTCTCCAAGACCTACCTCPABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGAGATGCrpolCKP 865TAAGCAAACTGTAGCGTAGAAGPCKP 867TCGTATGAACGCTCACCACGPUsed for purification vectorJDN 92agcagcggcctggtgccgcgcgcgcagcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtggtgctCGAGctagttcttatagatacacagcatattgaggClorJDN 22CTCGAAGcaccaccaccaaAmJDN 23atGgctgccgcgcgcgcagcCataAm	HapR BS 1 R	
CKP 507ACACCTAGCCAAGAAATTTATCAATTGCAATTHapUsed for qPCR and qRT-PCRGCATCTAGGTTTTGACGTTTTTAACGP_chbBBC 989GCATCTAGGTTTTGACGTTTTTAACGP_chbBBC 990AACACTCTCCAAGACCTACCTCP_chbABD 132CTGTCTCAAGCCGGTTACAArpolABD 133TTTCTACCAGTGCAGAGATGCrpolCKP 865TAAGCAAACTGTAGCGTAGAAGP_chpiCKP 867TCGTATGAACGCTCACCACGP_chpiUsed for purification vectorJDN 92agcagcggcctggtgccgcgcgcagcCatatggacgcatcaatcgaaaaaClorJDN 93tcagtggtggtggtggtggtggtggtggtggtggtgctCCGAGctagttcttatagatacacagcatattgaggClorJDN 22CTCGAAGcaccaccaaccaAmjJDN 23atGgctgccgcggcggcagcCataAmj	HapR BS 2 F	
Used for qPCR and qRT-PCR BBC 989 GCATCTAGGTTTTGACGTTTTAACG P _{chb} BBC 990 AACACTCTCCAAGACCTACCTC P _{chb} 132 CTGTCTCAAGCCGGTTACAA rpol ABD 133 TTTCTACCAGTGCAGAGATGC rpol CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{clp} CKP 867 TCGTATGAACGCTCACCACG P _{clp} Used for purification vector JDN 92 agcagcggcctggtggccgcgcgcagcCatatggacgcatcaatcgaaaaa Clor p JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtggtg	HapR BS 2 R	
BBC 989 GCATCTAGGTTTTGACGTTTTAACG P _{chb} BBC 990 AACACTCTCCAAGACCTACCTC P _{chb} ABD 132 CTGTCTCAAGCCGGTTACAA rpol ABD 133 TTTCTACCAGTGCAGAGATGC rpol CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{chp} CKP 867 TCGTATGAACGCTCACCACG P _{chp} Used for purification vector JDN 92 agcagcggcctggtgccgcgcgcagcCatatggacgcatcaatcgaaaaa Clor p JDN 93 tcagtggtggtggtggtggtggtggtggtggtgctCGGAGctagttcttatagatacacagcatattgagg Clor JDN 22 CTCGAGcaccaccacca Amj JDN 23 atGgctgcgcgcggcagcCata		
BBC 990 ACACTCTCCCANGACCTACCTC P BBC 990 ACACTCTCCCAAGACCTACCTC P ABD 132 CTGTCTCAAGCCGGTTACAA rpol ABD 133 TTTCTACCAGTGCAGAGATGC rpol CKP 865 TAAGCAAACTGTAGCGTAGAAG P CKP 867 TCGTATGAACGCTCACCACG P Used for purification vector JDN 92 agcagcggcctggtgccgcgcgcagcCatatggacgcatcaatcgaaaaa Clor JDN 93 tcagtggtggtggtggtggtggtggtggtggtgcCTCGAGctagttcttatagatacacagcatattgagg Clor JDN 22 CTCGAGcaccaccaaccaa Amj JDN 23 atGgctgccgcggcggcagcca Amj	P amplify F	
ABD 132 CTGTCTAAGACCGGTTACAA rpol ABD 132 CTGTCTCAAGACCGGTTACAA rpol ABD 133 TTTCTACCAGTGCAGAGATGC rpol CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{clpi} CKP 867 TCGTATGAACGCTCACCACG P _{clpi} Used for purification vector JDN 92 agcagcggcctggtgccgcggcagcCatatggacgcatcaatcgaaaaa Clor p JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtgCTCGAGctagttcttatagatacacagcatattgagg Clor p JDN 22 CTCGAGcaccaccacca Amj	P amplify D	
ABD 132 CIGICICAAGCCGGIAGCAA rpoi ABD 133 TTTCTACCAGTGCAGAGATGC rpoi CKP 865 TAAGCAAACTGTAGCGTAGAAG P _{clpi} CKP 867 TCGTATGAACGCTCACCACG P _{clpi} Used for purification vector JDN 92 agcagcggcctggtgccgcggcagcCatatggacgcatcaatcgaaaaa Clor p JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtgctCGAGctagttcttatagatacacagcatattgagg Clor p JDN 22 CTCGAGcaccaccacca Amj b	P _{chb} amplify R	
ABD 133 TTICTACCAGTGCAGAGATGC rpol CKP 865 TAAGCAAACTGTAGCGTAGAAG P_clpi CKP 867 TCGTATGAACGCTCACCACG P_clpi Used for purification vector gcagcggcctggtgccgcgcggcagcCatatggacgcatcaatcgaaaaa Clor JDN 92 agcagtggtggtggtggtggtggtggtggtggtgccccatatggacgcatcaatcgaaaaa Clor JDN 93 tcagtggtggtggtggtggtggtggtggtgccccacaccaacca	rpoB amplify F	
CKP 865 TAAGCAAACTGTAGCGTAGAAG P_dpl CKP 867 TCGTATGAACGCTCACCACG P_dpl Used for purification vector JDN 92 agcagcggcctggtgccgcgcgcgcagcCatatggacgcatcaatcgaaaaa Clor JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtgccccacaccaacca	rpoB amplify R	
CKP 867 TCGTATGAACGCTCACCACG P _{clpi} Used for purification vector agcagcggcctggtgccgcggcagcCatatggacgcatcaatcgaaaaa Clor JDN 92 agcagtggtggtggtggtggtggtggtggtggtggtggtggtg	P _{clpP} amplify F	
Used for purification vector JDN 92 agcagcggctggtgccgcggcggcagcCatatggacgcatcaatcgaaaaa Clor p JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtggtg	P _{clpP} amplify R	
JDN 92 agcagcggctggtggcggcggcagcCatatggacgcatcaatcgaaaaa Cloi p JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtggtg		
JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtggtg	Cloning 6×His-hanR into	
JDN 93 tcagtggtggtggtggtggtggtggtggtggtggtggtggtg		
p JDN 22 CTCGAGcaccaccacca b JDN 23 atGgctgccgcggcacca Ami	Cloning 6×His-hapR into	
JDN 23 atGgctgccgcggcacca Ami	pET28b vector via IDA, R	
JDN 23 atGgctgccgcggcacca Ami	backbone for IDA F	
JDN 25 aldyclycycycycycacca Allia	Amplify pET29b voctor	
b	backbone for IDA. R	
~	······································	
Used for complementation constructs		
BBC 832 GCTTTTGCTACAACGACCG ΔVC	ΔVCA0692 F1 for up arm	
BBC 828 CACCATACCCACGCCGAAACAACAGTGATGTAGCGAATCGGAC ΔVC	ΔVCA0692 R1 for up arm	
BBC 243 TIGTTICGGCGTGGGTATGGTG Tm ^r	Tm ^r or Zeo ^r F for middle arm	
BBC 647 tttttctatttctgaatcgattcatacgaCTCATTAGGCACCCCAGGC Tm ^r	Tm ^r F or Zeo ^r for middle arm	
CKP 948 tratataatraatraaaaaaACCATICTCGTIGTGTGGGG P	P han R F for middle arm	
BRC 729 totagerengenergenergenergenergenergenergene	$P_{intro and R}$ $P_{intro a$	

TABLE 1 (Continued)

Primer	Sequence ^a	Description
CKP 949	tcgtatgaatcgattcagaaatagaaaaaCCCTCATGCATTTTATAACTG	P _{clpSA} -clpSA F for middle arm
CKP 950	tgtaggctggagctgcttcCTAGTGGACCACCTCTTCGC	P _{clpSA} -clpSA R for middle arm
BBC 830	gaagcagctccagcctacaGTTGAGTTGGATGCAGCACC	ΔVCA0692 F2 for down arm
BBC 834	CACAATTTCTCGCTTAAAATGTCC	ΔVCA0692 R2 for down arm
CKP 509	gcaggtggagcaggtggaGACGCATCAATCGAAAAACG	∆VCA0692::P _{hapR} -hapR detect F
BBC 1101	CAGACGTACTATTAACAGGACTGAC	ΔVCA0692::P _{hapR} -hapR detect R
CKP 235	gtcgacggatccccggaatCAAATATATCCTCCTCACTATTTTGATTAG	ΔVCA0692::P _{clpSA} -clpSA detect F
CKP 447	gtcgacggatccccggaatTTTACTCATGACACTTCAATATTTG	$\Delta VCA0692::P_{clpSA}$ -clpSA detect R

^aLowercase letters in primers indicate the sequence of overlap sequences needed for SOE PCR. ^bIDA, isothermal DNA assembly.

were placed under a 0.2% Gelzan pad and imaged on an inverted Nikon Ti2 microscope with a Plan Apo $60 \times$ objective, yellow fluorescent protein (YFP) and mCherry filter cubes, a Hamamatsu ORCA-Flash 4.0 camera, and Nikon NIS-Elements imaging software.

The strains used to examine P_{chb} expression across a population contained (i) a P_{chb} -mCherry reporter and (ii) a reporter that drove constitutive expression of GFP, P_{const2} -GFP. By using these reporters, the expression of the P_{chb} -mCherry could be normalized to GFP expression in each cell. Images were analyzed on Fiji using the MicrobeJ plugin (60) to determine mean intensity of cells in the YFP and mCherry channels. GFP was assessed using a YFP filter set to avoid background fluorescence from chitin beads, which was stronger in the GFP channel. Background fluorescence was subtracted from each channel, and the mCherry/GFP fluorescence was determined for each individual cell.

HapR protein purification. A plasmid expressing a hexahistidine-tagged hapR wild-type (WT) allele was generated using Gibson assembly. The hapR insert was amplified from V. cholerae E7946 and inserted into a pET28b vector (Novagen) using the primers listed in Table 1. The plasmid was then electroporated into E. coli BL21(DE3) for protein overexpression. This strain was grown overnight in LB medium with kanamycin, back-diluted 1:100 into 1 liter of LB medium with kanamycin, and grown to an OD₆₀₀ of 0.4 to 0.6 at 30°C. Expression of HapR was induced by IPTG to a final concentration of 1 mM, and cultures were grown for 4 h shaking at 30°C. The cells were pelleted and frozen at -80°C. The pellet was resuspended in 25 ml buffer A (25 mM Tris, pH 8, 500 mM NaCl), and an Avestin EmulsiFlex-C3 emulsifier was used to lyse cells. The soluble lysate was applied to a HisTrap HP nickel nitrilotriacetic acid (Ni-NTA) column using an Äkta Pure fast protein liquid chromatography (FPLC) system in buffer A and eluted from the column with a gradient of buffer B (25 mM Tris, pH 8, 500 mM NaCl, 1 M imidazole). The purified protein was concentrated to approximately 5 ml using Sartorius Vivaspin turbo 10,000 molecular weight cutoff (MWCO) centrifugal concentrators. The sample was manually injected into the Äkta Pure and separated via size exclusion chromatography on a HiLoad 16/600 Superdex 75-pg column equilibrated with gel filtration buffer (25 mM Tris, pH 7.5, 200 mM NaCl). Eluted fractions were analyzed by SDS-PAGE (15% gel), pooled, and concentrated using the same centrifugal concentrators previously mentioned. The samples were then immediately frozen in liquid nitrogen with a final concentration of 10% glycerol and stored at -80°C.

Electrophoretic mobility shift assay. Binding reactions contained 10 mM Tris HCl, pH 7.5, 1 mM EDTA, 10 mM KCl, 1 mM dithiothreitol (DTT), 50 μ g/ml bovine serum albumin (BSA), 0.1 mg/ml salmon sperm DNA, 5% glycerol, 1 nM Cy5-labeled DNA probe, and HapR at the indicated concentrations (diluted in 10 mM Tris, pH 7.5, 10 mM KCl, 1 mM DTT, and 5% glycerol). Reaction mixtures were incubated at room temperature for 20 min in the dark and then electrophoretically separated on polyacrylamide gels in 0.5× Tris-borate-EDTA (TBE) buffer. Gels were imaged for Cy5 fluorescence on a Typhoon 9210 instrument. Short DNA probes (30 bp) were made by end-labeling one primer of a complementary pair (primers listed in Table 1) using 20 μ M Cy5-dCTP and terminal deoxynucleotidyl transferase (TdT; Promega). Complementary primers (one labeled with Cy5 and the other unlabeled) were annealed by slow cooling at equimolar concentrations in annealing buffer (10 mM Tris, pH 7.5, and 50 mM NaCl). P_{chb} and P_{cipP} probes were made by Phusion PCR, where Cy5-dCTP was included in the reaction at a level that would result in incorporation of 1 to 2 Cy5-labeled nucleotides in the final probe as previously described.

ChIP-qPCR assays. Assays were carried out exactly as previously described (10). Briefly, overnight cultures were diluted to an OD₆₀₀ of 0.08 and then grown for 6 h at 30°C. Cultures were cross-linked using 1% paraformaldehyde and then quenched with a 1.2 molar excess of Tris. Cells were washed with phosphate-buffered saline (PBS) and stored at -80°C overnight. The next day, cells were resuspended in lysis buffer (1 \times FastBreak cell lysis reagent [Promega], 50 μ g/ml lysozyme, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride [PMSF], and 1 \times protease inhibitor cocktail; 100 \times inhibitor cocktail contained the following: 0.07 mg/ml phosphoramidon [Santa Cruz], 0.006 mg/ml bestatin [MP Biomedicals/ Fisher Scientific], 1.67 mg/ml AEBSF [4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride; DOT Scientific], 0.07 mg/ml pepstatin A [GoldBio], and 0.07 mg/ml E64 [Gold Bio]) and then lysed by sonication, resulting in a DNA shear size of ~500 bp. Lysates were incubated with anti-FLAG M2 magnetic beads (Sigma), washed to remove unbound proteins, and then bound protein-DNA complexes were eluted off with SDS. Samples were digested with proteinase K, then cross-links were reversed. DNA samples were cleaned up and used as a template for quantitative PCR (qPCR) using iTaq Universal SYBR green supermix (Bio-Rad) and primers specific for the genes indicated (primers are listed in Table 1) on a StepOne qPCR system. Standard curves of genomic DNA were included in each experiment and were used to determine the abundance of each amplicon in the input (derived from the lysate prior to ChIP) and output (derived

TABLE 2 Strains used in this study

Strain			
designation	Reference(s) in this report	Genotype	Reference
SAD 030	V. cholerae E7946 WT; parent for all	V. cholerae E7946 O1 El Tor	50
SAD 2825	Activator screen strain	V. cholerae E7946 ΔVC1807::P _{chb} -mCherry, Kan ^r ; P _{chb} -lacZ, Spec ^r ; ΔVCA0692::chiS, Tm ^r ; Δ3' cbp, pDL1086 Cm ^r Carb ^r	This study
SAD 2826	$\Delta clpA$ strain counterscreen	V. cholerae E7946 ΔVC1807::P _{chb} -mCherry, Kan ^r ; P _{chb} -lacZ, Spec ^r ; ΔclpA; Δcbp::Tm ^r ; pDL1086, Cm ^r Carb ^r	This study
SAD 1309	Fig. 1 and 4 parent; Fig. S5 HapR WT	V. cholerae E7946 ΔlacZ::P _{cbb} -GFP, Kan ^r ; Δcbp::Spec ^r	11
SAD 2827	Fig. 1 and 4 $\Delta clpA$ strain	V. cholerae E7946 $\Delta lacZ::P_{chb}$ -GFP, Kan'; $\Delta clpA::Carb'; \Delta cbp::Spec'$	This study
SAD 2828	Fig. 1 $\Delta clpP$ strain	V. cholerae E7946 ΔlacZ::P _{cbb} -GFP, Kan ^r ; ΔclpP::Carb ^r ; Δcbp::Tm ^r	This study
SAD 2829	Fig. 1 $\Delta clpAP$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔclpA::Carb ^r ; ΔclpP::Tm ^r ; Δcbp::Spec ^r	This study
SAD 2830	Fig. 1 $\Delta clpS$ strain	V. cholerae E7946 AlacZ::P_++-GFP, Kan': AclpS::Carb': Acbp::Tm'	This study
SAD 2831	Fig. 1 $\Delta clpX$ strain	V. cholerae E7946 AlacZ::P-++-GFP, Kan'; AclpX::Carb'; Acbp::Tm'	This study
SAD 2832	Fig. 1 $\Delta lonA$ strain	V. cholerae E7946 ΔlacZ::P _{skb} -GFP, Kan ^r ; ΔlonA::Tm ^r ; Δcbp::Carb ^r	This study
SAD 2833	Fig. 1 $\Delta hapR \Delta clpA$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔhapR::Spec ^r ; ΔclpA:: Carb ^r : Δchp:Tm ^r	This study
SAD 2834	Fig. 1 <i>∆hapR</i> strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔhapR::Spec ^r ; Δcbp::Carb ^r	This study
SAD 2835	Fig. 2 parent	V. cholerae E7946 ΔlacZ::P _{chb} -mCherry, Kan ^r ; ΔVCA0692::P _{const2} - GFP, Spec ^r	This study
SAD 2836	Fig. 2 ∆ <i>hapR</i> strain	V. cholerae E7946 ΔlacZ::P _{chb} -mCherry, Kan ^r ; ΔVCA0692::P _{const2} - GFP, Spec ^r ; ΔhapR::Cm ^r	This study
SAD 2837	Fig. 2 Δ <i>cbp</i> strain and Fig. S3 E7946 parent	V. cholerae E7946 ΔlacZ::P _{chb} -mCherry, Kan ^r ; ΔVCA0692::P _{const2} - GFP, Spec ^r ; Δcbp::Tm ^r	This study
SAD 2838	Fig. 2 Δ <i>hapR</i> Δ <i>cbp</i> strain and Fig. S3 E7946 Δ <i>hapR</i> strain	V. cholerae E7946 ΔlacZ::P _{chb} -mCherry, Kan ^r ; ΔVCA0692::P _{const2} - GFP, Specr; ΔhapR::Cm ^r ; Δcbp::Tm ^r	This study
SAD 2839	Fig. 3 ChIP strain and Fig. S5 $1 \times$ FLAG-HapR	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; 1× FLAG-hapR; Δcbp::Tm ^r	This study
SAD 2840	Fig. 4 $\Delta luxO$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔluxO::Spec ^r ; Δcbp::Carb ^r	This study
SAD 2841	Fig. 4 luxOD47E strain	V. cholerae E7946 ΔlacZ::P _{cbb} -GFP, Kan ^r ; luxO ^{D47E} ; Δcbp::Spec ^r	This study
SAD 2842	Fig. 4 $\Delta luxS$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔluxS::Cm ^r ; Δcbp::Spec ^r	This study
SAD 2843	Fig. 4 $\Delta cqsA$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔcqsA::Tm ^r ; Δcbp::Spec ^r	This study
SAD 2844	Fig. 4 $\Delta cqsA \Delta hapR$ strain	V. cholerae E7946 ΔlacZ::P _{chb} -GFP, Kan ^r ; ΔcqsA::Tm ^r ; ΔhapR::Cm ^r ; Δcbp::Spec ^r	This study
SAD 306	V. cholerae A1552 WT; parent for all other A1552 strains	V. cholerae A1552 O1 El Tor	51
SAD 2908	E. coli strain used to mate pMMB tfoX-qstR into complementation strains used in Fig. S1	E. coli S17 harboring pMMB67EH tfoX qstR, Cm ^r	This study
SAD 2909	Fig. S1 $\Delta hapR$ strain P_{hapR} -hapR	V. cholerae E7946 ΔlacZ::P _{chb} -GFP Kan ^r ; ΔhapR::Spec ^r ; Δcbp::Carb ^r ; ΔVCA0692::P _{bage} -hapR, Tm ^r	This study
SAD 2910	Fig. S1 ΔhapR ΔclpA strain P _{hape} -hapR	V. cholerae E7946 ΔlacZ::P _{chb} -GFP Kan ^τ ; ΔhapR::Spec ^τ ; ΔclpA:: Carb ^τ ; Δcbp::Tm ^τ ; ΔVCA0692::P _{hap8} -hapR, Zeo ^τ	This study
SAD 2911	Fig. S1 $\Delta clpA$ strain P_{clpSA} -clpSA	V. cholerae E7946 ΔlacZ::P _{chb} -GFP Kan'; ΔclpA::Carb'; Δcbp::Spec'; ΔVCA0692::P _{closa} -clpSA, Tm ^r	This study
SAD 2912	Fig. S2 $\Delta hapR$ strain	V. cholerae E7946 ΔhapR::Cm ^r	This study
SAD 2845	Fig. S3 A1552 parent	V. cholerae A1552 ΔVCA0692::P _{const2} -GFP, Spec ^r ; ΔlacZ::P _{chb} - mCherry, Kan ^r ; Δcbp::Tm ^r	This study
SAD 2846	Fig. S3 A1552 <i>∆hapR</i> strain	V. cholerae A1552 ΔVCA0692::P _{const2} -GFP, Spec ^r ; ΔlacZ::P _{chb} - mCherry, Kan ^r ; ΔhapR::Cm ^r ; Δcbp::Tm ^r	This study
SAD 2847	Fig. S4 in WT <i>lacZ</i> ⁺ strain	V. cholerae E7946 ΔVC1807::Cm ^r ; ΔVC0995	This study
SAD 2848	Fig. S4 WT $\Delta lacZ$ strain	V. cholerae E7946 ΔlacZ::Spec ^r ; ΔVC1807::Cm ^r ; ΔVC0995	This study
SAD 2849	Fig. S4 $\Delta hapR \Delta lacZ$ strain	V. cholerae E7946 ΔlacZ::Spec ^r ; ΔVC1807::Cm ^r ; ΔVC0995; ΔhapR::Tm ^r	This study
JDN 71	Fig. 3B and C purified HapR	E. coli BL21(DE3) harboring pET28b-6×His-hapR, Kan ^r	This study

from the samples after ChIP). Primers to amplify *rpoB* served as a baseline control in this assay because HapR does not bind this locus. Data are reported as "fold enrichment," which is defined as the ratio of the test promoter (P_{chb} or P_{cloP})/*rpoB* found in the output divided by the same ratio found in the input.

Chitobiose competition. Overnight cultures grown in LB were washed with M9 medium and mixed 1:1. For each growth reaction mixture, 10² cells of this mixture was added to M9 medium supplemented with 0.2% chitobiose and 10 μ M synthetic CAI-1 and grown shaking at 30°C for 24 h. After 24 h, \sim 10² cells from this mixture was used to inoculate fresh growth reactions to achieve additional generations of growth on chitobiose. This was repeated a third time after another 24 h. CAI-1 was supplemented

throughout these experiments to ensure consistently high levels of HapR expression throughout transfer steps. After each 24-h growth period, the CFU per milliliter was determined for each strain in the mixture by dilution plating on LB agar supplemented with X-Gal. Competing strains were discerned by blue/ white screening as one was a *lacZ*⁺ strain and the other was a *ΔlacZ* strain. A *lacZ*⁺ strain was competed against a *ΔlacZ* strain (*ΔnapR* strain-parent competition). *V. cholerae* can grow on chitobiose through the activity of the following two sugar transporters: the GlcNAc phosphotransferase system (PTS) transporter (VC095) or the chitobiose ABC transporter (VC0616-0620). Because we wanted to study the regulation of the transporter encoded within the *chb* locus, all strains for this assay had a deletion in VC0995 that renders growth on chitobiose dependent on the *chb* locus as previously described (11). Competitive indices were calculated as the CFU ratio of the *ΔlacZ* strain/*lacZ*⁺ strain after growth for the indicated number of generations divided by the CFU ratio of the *ΔlacZ* strain/*lacZ*⁺ strain in the initial inoculum.

Statistics. Statistical comparisons were determined using Student's *t* test or one-way analysis of variance (ANOVA) with Tukey's posttest using GraphPad Prism software.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. **SUPPLEMENTAL FILE 1**, PDF file, 0.9 MB.

ACKNOWLEDGMENTS

We thank Ryan Chaparian for offering experimental advice, David Grainger for helpful discussions, and Wai-Leung Ng for providing synthetic CAI-1.

This work was supported by grant R35GM128674 from the National Institutes of Health to A.B.D. and grant R35GM124698 from the National Institutes of Health to J.C.V.K.

REFERENCES

- 1. Pruzzo C, Vezzulli L, Colwell RR. 2008. Global impact of *Vibrio cholerae* interactions with chitin. Environ Microbiol 10:1400–1410. https://doi .org/10.1111/j.1462-2920.2007.01559.x.
- Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between *Vibrio cholerae* and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283. https://doi.org/10.1128/ AEM.45.1.275-283.1983.
- Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M. 2011. Role of shrimp chitin in the ecology of toxigenic *Vibrio cholerae* and cholera transmission. Front Microbiol 2:260. https://doi.org/10.3389/fmicb.2011.00260.
- Hunt DE, Gevers D, Vahora NM, Polz MF. 2008. Conservation of the chitin utilization pathway in the *Vibrionaceae*. Appl Environ Microbiol 74: 44–51. https://doi.org/10.1128/AEM.01412-07.
- Colwell RR, Huq A, Islam MS, Aziz KM, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J, Sack DA, Russek-Cohen E. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci U S A 100:1051–1055. https://doi.org/10.1073/pnas.0237386100.
- Huq A, Yunus M, Sohel SS, Bhuiya A, Emch M, Luby SP, Russek-Cohen E, Nair GB, Sack RB, Colwell RR. 2010. Simple sari cloth filtration of water is sustainable and continues to protect villagers from cholera in Matlab, Bangladesh. mBio 1:e00034-10. https://doi.org/10.1128/mBio.00034-10.
- Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101:2524–2529. https://doi.org/10.1073/pnas.0308707101.
- Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. 2005. Chitin induces natural competence in *Vibrio cholerae*. Science 310: 1824–1827. https://doi.org/10.1126/science.1120096.
- Li X, Roseman S. 2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/ kinase. Proc Natl Acad Sci U S A 101:627–631. https://doi.org/10.1073/ pnas.0307645100.
- Klancher CA, Yamamoto S, Dalia TN, Dalia AB. 2020. ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in *Vibrio cholerae*. bioRxiv https://doi.org/10 .1101/2020.01.10.902320.
- 11. Klancher CA, Hayes CA, Dalia AB. 2017. The nucleoid occlusion protein SlmA is a direct transcriptional activator of chitobiose utilization in *Vibrio cholerae*. PLoS Genet 13:e1006877. https://doi.org/10.1371/journal.pgen .1006877.

- Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. https://doi.org/10.1128/jb.176.2.269-275.1994.
- Jung SA, Chapman CA, Ng WL. 2015. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog 11:e1004837. https://doi.org/10.1371/journal.ppat.1004837.
- Ball AS, Chaparian RR, van Kessel JC. 2017. Quorum sensing gene regulation by LuxR/HapR master regulators in vibrios. J Bacteriol 199: e00105-17. https://doi.org/10.1128/JB.00105-17.
- Suckow G, Seitz P, Blokesch M. 2011. Quorum sensing contributes to natural transformation of *Vibrio cholerae* in a species-specific manner. J Bacteriol 193:4914–4924. https://doi.org/10.1128/JB.05396-11.
- Sun S, Tay QX, Kjelleberg S, Rice SA, McDougald D. 2015. Quorum sensing-regulated chitin metabolism provides grazing resistance to *Vibrio cholerae* biofilms. ISME J 9:1812–1820. https://doi.org/10.1038/ ismej.2014.265.
- Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. 2014. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in *Vibrio cholerae*. Mol Microbiol 91:326–347. https://doi.org/10.1111/mmi.12462.
- Yamamoto S, Ohnishi M. 2017. Glucose-specific enzyme IIA of the phosphoenolpyruvate:carbohydrate phosphotransferase system modulates chitin signaling pathways in *Vibrio cholerae*. J Bacteriol 199:e00127-17. https://doi.org/10.1128/JB.00127-17.
- Blokesch M. 2012. Chitin colonization, chitin degradation and chitininduced natural competence of *Vibrio cholerae* are subject to catabolite repression. Environ Microbiol 14:1898–1912. https://doi.org/10.1111/j .1462-2920.2011.02689.x.
- 20. Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612. https://doi.org/10 .1146/annurev-biochem-060408-172623.
- Lee KJ, Jung YC, Park SJ, Lee KH. 2018. Role of heat shock proteases in quorum-sensing-mediated regulation of biofilm formation by *Vibrio* species. mBio 9:e02086-17. https://doi.org/10.1128/mBio.02086-17.
- Davis JH, Rubin AJ, Sauer RT. 2011. Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141. https://doi.org/10.1093/nar/gkq810.
- Lo Scrudato M, Blokesch M. 2012. The regulatory network of natural competence and transformation of *Vibrio cholerae*. PLoS Genet 8:e1002778. https://doi.org/10.1371/journal.pgen.1002778.

- Zhu J, Mekalanos JJ. 2003. Quorum sensing-dependent biofilms enhance colonization in *Vibrio cholerae*. Dev Cell 5:647–656. https://doi.org/10 .1016/s1534-5807(03)00295-8.
- 25. van Kessel JC, Ulrich LE, Zhulin IB, Bassler BL. 2013. Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in *Vibrio harveyi*. mBio 4:e00378-13. https://doi.org/10.1128/mBio.00378-13.
- Lee DH, Jeong HS, Jeong HG, Kim KM, Kim H, Choi SH. 2008. A consensus sequence for binding of SmcR, a Vibrio vulnificus LuxR homologue, and genome-wide identification of the SmcR regulon. J Biol Chem 283: 23610–23618. https://doi.org/10.1074/jbc.M801480200.
- Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335.
- Chaparian RR, Tran MLN, Miller Conrad LC, Rusch DB, van Kessel JC. 2020. Global H-NS counter-silencing by LuxR activates quorum sensing gene expression. Nucleic Acids Res 48:171–183. https://doi.org/10.1093/nar/ gkz1089.
- 29. Jobling MG, Holmes RK. 1997. Characterization of *hapR*, a positive regulator of the *Vibrio cholerae* HA/protease gene *hap*, and its identification as a functional homologue of the *Vibrio harveyi luxR* gene. Mol Microbiol 26: 1023–1034. https://doi.org/10.1046/j.1365-2958.1997.6402011.x.
- Freeman JA, Lilley BN, Bassler BL. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in *Vibrio harveyi*. Mol Microbiol 35:139–149. https://doi .org/10.1046/j.1365-2958.2000.01684.x.
- Freeman JA, Bassler BL. 1999. Sequence and function of LuxU: a twocomponent phosphorelay protein that regulates quorum sensing in *Vibrio harveyi*. J Bacteriol 181:899–906. https://doi.org/10.1128/JB.181.3 .899-906.1999.
- 32. Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM. 2005. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell 18:507–518. https://doi.org/10.1016/j.molcel .2005.04.020.
- Tu KC, Bassler BL. 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in *Vibrio harveyi*. Genes Dev 21:221–233. https://doi.org/10.1101/gad.1502407.
- 34. Freeman JA, Bassler BL. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in *Vibrio harveyi*. Mol Microbiol 31:665–677. https://doi.org/10.1046/j.1365 -2958.1999.01208.x.
- Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314. https://doi.org/10.1016/s0092-8674(02)00829-2.
- Surette MG, Miller MB, Bassler BL. 1999. Quorum sensing in *Escherichia coli, Salmonella* Typhimurium, and *Vibrio harveyi*: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 96: 1639–1644. https://doi.org/10.1073/pnas.96.4.1639.
- Bridges AA, Bassler BL. 2019. The intragenus and interspecies quorumsensing autoinducers exert distinct control over *Vibrio cholerae* biofilm formation and dispersal. PLoS Biol 17:e3000429. https://doi.org/10.1371/ journal.pbio.3000429.
- Hurley A, Bassler BL. 2017. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in *Vibrio cholerae*. PLoS Genet 13:e1006826. https://doi.org/10.1371/journal .pgen.1006826.
- Kroh HE, Simon LD. 1990. The ClpP component of Clp protease is the sigma 32-dependent heat shock protein F21.5. J Bacteriol 172: 6026-6034. https://doi.org/10.1128/jb.172.10.6026-6034.1990.
- Grossman AD, Erickson JW, Gross CA. 1984. The *htpR* gene product of *E. coli* is a sigma factor for heat-shock promoters. Cell 38:383–390. https://doi.org/10.1016/0092-8674(84)90493-8.
- Katayama Y, Gottesman S, Pumphrey J, Rudikoff S, Clark WP, Maurizi MR. 1988. The two-component, ATP-dependent Clp protease of *Escherichia coli*. Purification, cloning, and mutational analysis of the ATP-binding component. J Biol Chem 263:15226–15236.
- 42. Gerth U, Kruger E, Derre I, Msadek T, Hecker M. 1998. Stress induction of

the Bacillus subtilis *clpP* gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802. https://doi.org/10.1046/j.1365-2958.1998.00840.x.

- Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S. 2019. Regulated proteolysis in *Vibrio cholerae* allowing rapid adaptation to stress conditions. Front Cell Infect Microbiol 9:214. https://doi.org/10 .3389/fcimb.2019.00214.
- 44. Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. 2007. Genes induced late in infection increase fitness of *Vibrio cholerae* after release into the environment. Cell Host Microbe 2:264–277. https://doi .org/10.1016/j.chom.2007.09.004.
- Benitez JA, Spelbrink RG, Silva A, Phillips TE, Stanley CM, Boesman-Finkelstein M, Finkelstein RA. 1997. Adherence of *Vibrio cholerae* to cultured differentiated human intestinal cells: an *in vitro* colonization model. Infect Immun 65:3474–3477. https://doi.org/10.1128/IAI.65.8 .3474-3477.1997.
- Benitez JA, Silva AJ, Finkelstein RA. 2001. Environmental signals controlling production of hemagglutinin/protease in *Vibrio cholerae*. Infect Immun 69:6549–6553. https://doi.org/10.1128/IAI.69.10.6549-6553.2001.
- Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol 24: 50–55. https://doi.org/10.1016/j.cub.2013.10.030.
- Hawver LA, Giulietti JM, Baleja JD, Ng WL. 2016. Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. mBio 7:e01863-16. https://doi.org/10.1128/mBio.01863-16.
- McDonough E, Kamp H, Camilli A. 2016. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources. Mol Microbiol 99:453–469. https://doi.org/10.1111/ mmi.13128.
- Miller VL, DiRita VJ, Mekalanos JJ. 1989. Identification of *toxS*, a regulatory gene whose product enhances *toxR*-mediated activation of the cholera toxin promoter. J Bacteriol 171:1288–1293. https://doi.org/10.1128/jb.171.3.1288-1293.1989.
- Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515. https://doi.org/10.1111/j.1365-2958.2004.04154.x.
- Dalia AB, Lazinski DW, Camilli A. 2013. Characterization of undermethylated sites in *Vibrio cholerae*. J Bacteriol 195:2389–2399. https://doi.org/ 10.1128/JB.02112-12.
- Dalia AB, McDonough E, Camilli A. 2014. Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 111:8937–8942. https:// doi.org/10.1073/pnas.1406478111.
- Dalia AB. 2018. Natural cotransformation and multiplex genome editing by natural transformation (MuGENT) of *Vibrio cholerae*. Methods Mol Biol 1839:53–64. https://doi.org/10.1007/978-1-4939-8685-9_6.
- Simpson CA, Podicheti R, Rusch DB, Dalia AB, van Kessel JC. 2019. Diversity in natural transformation frequencies and regulation across *Vibrio* species. mBio 10:e02788-19. https://doi.org/10.1128/mBio.02788-19.
- Cha RS, Zarbl H, Keohavong P, Thilly WG. 1992. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2:14–20. https://doi.org/10.1101/gr.2.1.14.
- Dalia AB. 2016. RpoS is required for natural transformation of Vibrio cholerae through regulation of chitinases. Environ Microbiol 18:3758–3767. https:// doi.org/10.1111/1462-2920.13302.
- Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL. 2011. Signal production and detection specificity in Vibrio CqsA/CqsS quorumsensing systems. Mol Microbiol 79:1407–1417. https://doi.org/10.1111/j .1365-2958.2011.07548.x.
- Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. 2016. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in *Vibrio harveyi*. Mol Microbiol 101: 823–840. https://doi.org/10.1111/mmi.13425.
- Ducret A, Quardokus EM, Brun YV. 2016. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1:16077. https://doi.org/10.1038/nmicrobiol.2016.77.