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ABSTRACT Ammonia-oxidizing archaea (AOA) are ubiquitous in diverse ecosystems
and play a pivotal role in global nitrogen and carbon cycling. Although AOA diver-
sity and distribution are widely studied, mainly based on the amoA (alpha subunit of
ammonia monooxygenase) genotypes, only limited investigations have addressed
the relationship between AOA genetic adaptation, metabolic features, and ecological
niches, especially in estuaries. Here, we describe the AOA communities along the
Jiulong River estuary in southern China. Nine high-quality AOA metagenome-
assembled genomes (MAGs) were obtained by metagenomics. Five of the MAGs are
proposed to constitute a new species, “Candidatus Nitrosopumilus aestuariumsis” sp.
nov., based on the phylogenies of the 16S and 23S rRNA genes and concatenated ri-
bosomal proteins, as well as the average amino acid identity. Comparative genomic
analysis revealed unique features of the new species, including a high number of
genes related to diverse carbohydrate-active enzymes, phosphatases, heavy-metal
transport systems, flagellation, and chemotaxis. These genes may be crucial for AOA
adaptation to the eutrophic and heavy-metal-contaminated Jiulong River estuary.
The uncovered detailed genomic characteristics of the new estuarine AOA species
highlight AOA contributions to ammonia oxidation in the Jiulong River estuary.

IMPORTANCE In this study, AOA communities along a river in southern China were
characterized, and metagenome-assembled genomes (MAGs) of a novel AOA clade
were also obtained. Based on the characterization of AOA genomes, the study sug-
gests adaptation of the novel AOAs to estuarine environments, providing new infor-
mation on the ecology of estuarine AOA and the nitrogen cycle in contaminated es-
tuarine environments.

KEYWORDS Jiulong River estuary, nitrification, ammonia-oxidizing archaeon,
metagenome

Microbial nitrification is an important and regulatory process in the terrestrial and
aquatic nitrogen cycles. Ammonia oxidation is the first, and rate-limiting, meta-

bolic reaction catalyzed by ammonia-oxidizing bacteria (AOB) (1), ammonia-oxidizing
archaea (AOA) (2, 3), and complete ammonia oxidizers (comammox bacteria) (4, 5).

AOA are ubiquitous and abundant in the terrestrial and marine biosphere, including
the soil (6) and oceanic water and sediment (3, 7), and in acidic and geothermal habitats
(8, 9). According to previous surveys, AOA distribution is environment driven, which
leads to the formation of different ecotypes with various metabolic capacities (10–12).

To date, AOA (class Nitrososphaeria) consist of four identified orders, i.e., Nitros-
opumilales (MG-1; group 1.1a), “Candidatus Nitrosotaleales” (SAGMCG-1; group 1.1a
associated), Nitrososphaerales (SCG; group 1.1b), and “Candidatus Nitrosocaldales”

Citation Zou D, Wan R, Han L, Xu MN, Liu Y, Liu
H, Kao S-J, Li M. 2020. Genomic characteristics
of a novel species of ammonia-oxidizing
archaea from the Jiulong River estuary. Appl
Environ Microbiol 86:e00736-20. https://doi
.org/10.1128/AEM.00736-20.

Editor Haruyuki Atomi, Kyoto University

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Shuh-Ji Kao,
sjkao@xmu.edu.cn, or Meng Li,
limeng848@szu.edu.cn.

Received 26 March 2020
Accepted 30 June 2020

Accepted manuscript posted online 6 July
2020
Published

ENVIRONMENTAL MICROBIOLOGY

crossm

September 2020 Volume 86 Issue 18 e00736-20 aem.asm.org 1Applied and Environmental Microbiology

1 September 2020

https://orcid.org/0000-0001-8675-0758
https://doi.org/10.1128/AEM.00736-20
https://doi.org/10.1128/AEM.00736-20
https://doi.org/10.1128/ASMCopyrightv2
mailto:sjkao@xmu.edu.cn
mailto:limeng848@szu.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1128/AEM.00736-20&domain=pdf&date_stamp=2020-7-6
https://aem.asm.org


(HWCGIII; ThAOA) (13). Nitrosopumilus-like AOA are the most abundant AOA in shallow
water and surface sediments, especially in estuarine and coastal regions (13–15).
However, the phylogeny of the 16S rRNA genes and amoA genes indicates that the
diversity of AOA exceeds the current understanding (10, 16). The ever-increasing
amount of genomic information on novel types of AOA illustrates their ecological roles
and metabolic functions.

Following the initial discovery of Nitrosopumilus maritimus strain SCM1 (SCM1) (2),
AOA have been isolated or enriched from diverse environments, suggesting that the
ability to adapt is one of the crucial characteristics underpinning the ubiquitous AOA
distribution. Some examples are mesophilic and neutrophilic “Candidatus Nitrosoma-
rinus catalina” SPOT01 (SPOT01) (17) from open-ocean waters, “Candidatus Nitrosocos-
micus oleophilus” MY3 (18) from a coal tar-contaminated sediment, and Nitrososphaera
viennensis EN76 (19) from garden soil; acidophilic Nitrosopumilus ureiphilus PS0 (20) and
“Candidatus Nitrosotalea devanaterra” Nd1 (21), isolated from coastal water and soil,
respectively; thermophilic “Candidatus Nitrosocaldus islandicus” (22), and “Candidatus
Nitrosocaldus cavascurensis” (23), both from hot springs; and “Candidatus Nitrosopumi-
lus salaria” BD31 (24) and “Candidatus Nitrosoarchaeum limnia” SFB1 (25), isolated from
low-salinity estuarine sediments. Although knowledge of AOA physiology has been
largely supported by cultivation experiments, most lineages remain uncultured. There-
fore, detailed genomic mechanisms underpinning adaptation to distinct environments
are pivotal to improving our understanding of AOA universality and diversification.

The Jiulong River estuary is located in southeast China. Pronounced nitrification and
denitrification processes have been reported in the estuary (26, 27). Although relatively
high microbial activity related to nitrogen metabolism in the area, including AOA (28,
29), was reported in several studies, the distribution and genomic adaptations of AOA
there are poorly understood. In the current study, we quantified the abundance of AOA
and AOB amoA genes in surface waters and sediments in the Jiulong River estuary. We
observed that the ratio of AOA over AOB increased with increasing salinity. Using
metagenomic analysis, we categorized the genotypes of identified archaeal amoA
genes. Further, we reconstructed nine nearly complete AOA metagenome-assembled
genomes (MAGs) from the water and sediment samples. Notably, five AOA MAGs
constituted a potential new species within the genus Nitrosopumilus, which was
supported by phylogenetic analysis of concatenated ribosomal proteins, average
amino acid identity (AAI), and 16S rRNA gene similarity analyses; the species was
named “Candidatus Nitrosopumilus aestuariumsis” sp. nov., according to recently
proposed roadmaps for nomenclature of uncultivated archaea (30). Genomic and
pangenomic analyses revealed that the novel AOA species carries a high number of
genes related to carbohydrate metabolism, transport systems, and chemotaxic
proteins. We also demonstrated clear community compositions and variations of
AOA in the study area and revealed specific genetic features associated with the
different adaptations.

RESULTS
Geographic locations, environmental variables, and nitrification rates. The

concentrations of inorganic nutrients (NO2
�, NO3

�, NH4
�, and PO4

3�) and environ-
mental parameters (dissolved oxygen [DO], salinity, and pH) at all sampling sites are
presented in Table 1. The salinity of the surface water increased from 0.5‰ in water
sample W1 to 27.0‰ in water sample W3. The concentration of inorganic nutrients
determined in the current study decreased gradually from W1 to W3, with the salinity
increasing along the estuary from head to mouth. The highest nitrification rate was
detected at W1 and was reduced to the lowest at W3. DO concentrations were much
lower in the bottom water (1.35 to 2.03 mg/liter) than in the surface water (2.46 to
7.46 mg/liter), which indicated a microaerobic condition in the former at the time of
sampling.

Archaeal abundance and community composition. The copy numbers of all
prokaryotic (bacterial and archaeal) 16S rRNA genes were approximately 7.25 � 105 to
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7.91 � 105 copies/ml in water samples and approximately 1.05 � 109 to 4.80 � 109

copies/g in sediment samples (Fig. 1B; see Table S2 in the supplemental material). The
abundance of archaeal 16S rRNA genes increased from approximately 1.41 � 105

copies/ml in low-salinity water sample W1 to approximately 3.09 � 105 copies/ml in
high-salinity water sample W3, accounting for 19.4% to 39.3% of all prokaryotes. In
sediment samples, the abundance of archaeal 16S rRNA genes was lowest in sample S3
(ca. 3.72 � 108 copies/g) and highest in sample S2 (ca. 2.14 � 109 copies/g), and
archaea accounted for 31.4% to 44.6% of all prokaryotes. Gel electrophoretograms for
each primer pair (see Fig. S1 in the supplemental material) and melting curve plots for
each real-time quantitative-PCR (qPCR) experiment (see Fig. S2 in the supplemental
material) indicated that the results were reliable.

The N50 for the total assembled scaffolds for each sample exceeded 1,350 bp,
indicating the high quality of the assembly (see Table S3 in the supplemental material).
All the bacterial and archaeal 16S rRNA genes were extracted from the assembled
scaffolds to calculate the relative abundance (see Fig. S3A in the supplemental mate-

TABLE 1 Summary information for sampling sites

Station
Longitude
[°E]

Latitude
[°N] Water depth (m)

NO2
�

(�M)
NO3

�

(�M)
NH4

�

(�M)
DO
(mg/liter)

PO4
3�

(�M)
Salinity
(‰) pH

Chl a
(�g/liter)

Ammonia oxidation
rate (nM/h)a

Shallow-water
samples

W1 117.79 24.47 2.0 13.30 214.8 35.18 2.46 2.07 0.5 7.23 11.49 81.57 � 8.69
W2 117.97 24.40 2.0 12.85 99.1 12.83 6.73 1.92 15.8 7.56 5.85 10.25 � 0.12
W3 118.11 24.38 2.0 6.23 43.1 2.68 7.46 1.25 27.0 7.81 5.22 9.88 � 0.23

Sediment
samplesb

S1 117.79 24.47 7.0 10.41 203.6 19.69 1.93 1.66 0.1 7.39 10.73
S2 117.92 24.39 6.0 12.73 132.1 15.61 2.03 0.83 12.3 7.45 6.23
S3 113.105 24.42 10.3 6.81 53.8 3.00 1.35 3.19 26.7 7.76 5.7

aThe rate was not determined for bottom-water samples.
bThe environmental factor measured was the bottom water above each sediment sample.

FIG 1 (A) Relative abundances and community compositions of amoA genes at the sampling stations based on metagenomic sequences. (B and C) Quantified
abundances (log10) of total bacterial and archaeal 16S rRNA genes (B) and bacterial and archaeal amoA genes (C) in samples. The maps were created using
Ocean Data View software.
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rial), and Bathyarchaeota, Euryarchaeota, Woesearchaeota, and Thaumarchaeota were
the major archaeal phyla identified in the current study (see Fig. S3B). Further, the
abundance of Thaumarchaeota in water samples increased with increasing salinity, but
it did not follow any clear pattern in sediment samples. All the MAGs were of relatively
high quality (completeness, �70%, and contamination, �10%) (Table 2).

AOA abundance, diversity, and distribution. Notably, the archaeal amoA gene
copy number dramatically increased from the low-salinity sample W1 (ca. 4.69 � 102

copies/ml) to the high-salinity sample W3 (ca. 1.81 � 105 copies/ml), while the abun-
dance of bacterial amoA genes decreased with increasing salinity, from approximately
1.36 � 106 copies/liter to approximately 3.46 � 105 copies/liter (Fig. 1C; see Table S2).
In contrast, the abundances of both bacterial and archaeal amoA genes were highest
in the sediment sample S1 (ca. 2.27 � 107 copies/g and ca. 1.10 � 107 copies/g,
respectively) and gradually decreased along the salinity gradient. The abundance of
archaeal amoA genes exceeded that of bacterial genes in sample S3 (ca. 1.80 � 106

copies/g versus ca. 4.62 � 105 copies/g, respectively) (Fig. 1C; see Table S2). Similar
patterns were apparent in the metagenomic data, in that the relative abundance of
amoA genes increased along the estuary in water samples but decreased in
sediment samples, and archaeal amoA genes dominated in high-salinity regions
(Fig. 1A).

All the bacterial amoA genes identified in the current study were from �-AOB (genus
Nitrosomonas), while all archaeal amoA genes belonged to the order Nitrosopumilales
(NP) and were classified into several subgroups defined by Alves et al. (16), i.e., NP-�
(Nitrosopumilus SCM1-like group [SCM1-like]) and NP-� (water column A group [WCA])
(Fig. 2). Both NP-�-2.1.3.2 and NP-�-2.2.2.1 genotypes were commonly categorized in
the sediment and water samples, while genes within NP-�-2.1.Incertae_sedis and
NP-�-2.1.3.1 were identified exclusively in the sediment and water samples, respec-
tively. Notably, amoA genes affiliated with NP-�-2.2.2.1 were observed in all the
samples, i.e., in five MAGs (S1bin1, S2bin1, S3bin1, W1bin1, and W2bin3) and two
unbinned sequences from W3 (Fig. 2 and 3). Along the salinity increase, more geno-
types of archaeal amoA genes were observed (Fig. 1A). The predominant genotype of
archaeal amoA genes in the water changed from NP-�-2.2.2.1 to NP-�-2.1.3.1, while the
NP-�-2.2.2.1 genotype was dominant in all the sediment samples.

All AOA MAGs reconstructed in the current study were identified based on the
phylogeny of 15 concatenated ribosomal-protein sequences, including reference ge-
nomes of AOA isolates/enrichments and other reported MAGs (Fig. 3). W2bin1, W2bin2,
and W3bin2 were affiliated with the marine AOA strain SCM1, while W3bin1 was
located close to the coastal strain SPOT01 in the phylogenetic tree. Based on the
relative abundance, the predominant AOA shifted to SCM1-like and SPOT-like in
high-salinity regions, but these types were rarely detected in low-salinity samples.
Intriguingly, five AOA MAGs (S1bin1, S2bin1, S3bin1, W1bin1, and W2bin3) were
clustered together but not affiliated with any known “Candidatus” genera or species
from the family Nitrosopumilales. According to the relative-abundance analysis, the
novel AOA cluster may inhabit both aquatic and sedimentary environments along the
estuary but be enriched in low-salinity regions.

TABLE 2 Basic information for reconstructed AOA MAGs

Bin Size (Mb) Completeness (%) Contamination (%) No. of genesa

S1bin1 1.31 91.64 1.94 1,698
S2bin1 1.44 95.63 0.97 1,861
S3bin1 1.24 89.81 3.87 1,669
W1bin1 1.40 91.75 4.37 1,795
W2bin1 0.85 72.98 5.83 1,145
W2bin2 1.13 89.32 4.85 1,530
W2bin3 1.28 78.02 3.88 1,796
W3bin1 1.26 64.89 5.34 1,779
W3bin2 0.88 79.29 7.77 1,152
aGenes were predicted using Prodigal (version 2.6.3).
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Phylogenetic identification and genomic features of the novel AOA genus. To
confirm the taxonomy unit of the novel AOA cluster, the phylogeny and identity of 16S
and 23S rRNA genes and AAI shared with different AOA species were used. The AAI
among all MAGs in this cluster exceeded 96.3%, with �80.2% and �83.6% values for
the genera Nitrosopumilus and “Candidatus Nitrosoarchaeum,” respectively (Fig. 4A).
Further, the novel AOA cluster shared 74.6 to 76.3%, 74.8 to 75.7%, and 73.3 to 73.6%
similarity with the genera Nitrosopumilus, “Ca. Nitrosoarchaeum,” and “Candidatus
Nitrosomarinus,” respectively. These values are similar to the AAI values between the
current “Candidatus” genera in the family Nitrosopumilaceae (i.e., �70%) (Fig. 4A). For
the 16S rRNA genes, the novel AOA shared �97.6% similarity with other “Candidatus”
genera in the family Nitrosopumilaceae, while these values were similar among other

FIG 2 Phylogenetic tree of amoA genes extracted from AOA MAGs (boldface red) and unbinned metagenomic data for samples (boldface black), using an
mtZOA�G4 model with 248 aligned amino acid residues. No amoA genes were identified in bins W2bin2 and W3bin1. Bootstrap values of �90% are denoted
by solid circles.
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“Candidatus” genera (i.e., �97%) (Fig. 4B). Thus, according to previous studies (31, 32),
these results suggested equal taxonomic levels for the AOA cluster and other “Candi-
datus” genera, and they should be reclassified as species level under the genus
Nitrosopumilus based on the AAI and 16S rRNA gene similarity. In the phylogenetic tree
of concatenated 16S and 23S rRNA genes, the novel AOA formed a cluster located

FIG 3 Phylogenetic tree of 15 concatenated ribosomal proteins for AOA MAGs (boldface), AOA reference genomes, and other archaea from the TACK
superphylum. Euryarchaeotal genomes were used as the outgroup, using an LG�C60�F model with 4,680 aligned amino acid residues. Bootstrap
values of �90% are denoted by solid circles. The heat map represents the relative abundance of each MAG in all samples.
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separately in Nitrosopumilaceae (see Fig. S4 in the supplemental material). This was in
agreement with the phylogeny based on ribosomal proteins and amoA genes (Fig. 2 and
3). Here, we name the novel species “Candidatus Nitrosopumilus aestuariumsis” sp. nov.

Based on the reconstructed metabolic pathways, the novel AOA species encodes
major carbon metabolic pathways commonly shared by other AOA, including a nearly
complete gluconeogenesis pathway, a nonoxidative pentose-phosphate pathway, a
tri-carboxylic acid cycle pathway, and a 3-hydroxypropionate/4-hydroxybutyrate path-
way (see Fig. S5 in the supplemental material). Further, a nearly complete pathway for
cobalamin (vitamin B12) biosynthesis was annotated in all the MAGs. Single copies of
amoC and nirK genes, but no ureC gene, were also identified in the novel AOA genus.
MAGs in the novel AOA genus also encoded an A-type ATPase, as determined by BLAST
analysis of atp genes. The arrangement of eight A-type ATPase genes (encoding
subunits F, E, A, B, D, K, I, and C) was consistent with those of other coastal and
estuarine AOA isolates/enrichments, such as strain SPOT01. The novel AOA also en-
coded transporters for oligopeptides, dipeptides, and amino acids, as well as the
NitT/TauT family transport system (for nitrate, sulfonate, and bicarbonate), the ABC-2-
type transport system (for polysaccharides and polyol-phosphate), and fluoride ion and
lipoprotein export systems. Heavy-metal transporters for magnesium, potassium, zinc,
copper, nickel, cobalt, and iron were also identified. No high-affinity pst transporter
genes (pstABCS) were apparent, while genes for the low-affinity pit transporter and
phosphonate transporters (phnCDE) were widely carried. In addition, genes for
polyphosphate utilization (ppA) were present, as well as 2 types of ammonium trans-
porters for both high affinity (amt-1) and low affinity (amt-2) (33) in all MAGs.

Carbohydrate-active enzymes (CAZys) and extracellular peptidases were anno-
tated in the novel genus and compared with those of other AOA isolates (see Tables
S4 and S5 in the supplemental material). The major glycosyltransferases belonged
to family 2 (GT2), which is commonly encoded by other AOA isolates; the enzymes
include cellulose synthase, dolichyl-phosphate �-D-mannosyltransferase, N-acetyl-
glucosaminyltransferase, and chitin oligosaccharide synthase. Glycosyltransferases from
the families GT1 (UDP-glucuronosyltransferase) and GT66 (dolichyl-diphosphooligo-
saccharide glycotransferase) were also prevalent. Interestingly, genes encoding chiti-

FIG 4 Heat maps illustrating results for AAI (A) and 16S rRNA gene identity (B) analyses between AOA MAGs from the current study (i.e., S1bin1, S2bin1, S3bin1,
W1bin1, and W2bin3) and other AOA isolates from different genera. No 16S rRNA genes were identified in bins S3bin1 and W2bin3.
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nase (glycoside hydrolase family 18 [GH18]) were identified in all novel AOA MAGs, but
not in other Nitrosopumilaceae AOA. BLAST annotation revealed that these hydrolase
genes were more similar to bacterial chitinase genes than to archaeal chitinase genes,
which was confirmed by phylogenetic analysis (see Fig. S6 in the supplemental
material). It is highly probable that the chitinase genes were transferred from bacteria
via horizontal gene transfer. Genes for extracellular peptidases, including ggt (gamma-
glutamyltranspeptidase/glutathione hydrolase) and aprE (serine protease from the
peptidase S8 family), were identified, and genes encoding extracellular enzymes, such
as superoxide dismutase and RNase, were also commonly observed.

Genomic comparisons and pangenomic analysis of different AOA species. The
cluster of orthologous genes (COG) function categories in the estuarine AOA gene pool
and the marine AOA gene pool are compared in Fig. S7 and Table S6 in the supple-
mental material. Generally, genes carried only by the estuarine AOA represented 198
categories; those carried only by the marine AOA represented 71 categories. Estuarine
AOA carried more unique genes for amino acid and lipid metabolism, signal transduc-
tion, cell mobility, and transport than marine AOA.

To better understand the unique genomic features of the novel AOA species from
the Jiulong River estuary, genome comparisons against each AOA species were made
based on the COG gene categories (see Fig. S8 and Table S7 in the supplemental
material). No significant differences in the compositions of COG categories were
apparent among them. However, detailed pairwise comparison revealed that the novel
AOA species comprised 30, 40, and 82 unique COG gene categories compared with
Nitrosopumilus, “Ca. Nitrosoarchaeum,” and “Ca. Nitrosomarinus,” respectively. Except
for the genes with unknown function, the majority of unique genes were associated
with amino acid and carbohydrate metabolism, inorganic ion transport, and signal
transduction.

Genes from the AOA isolates and MAGs reconstructed in the current study were
then clustered based on similarity. Subsequent pangenomic analysis revealed genes
carried only by the novel AOA (see Fig. S9 in the supplemental material). Overall, 206
gene clusters were identified as uniquely carried by the novel AOA, with detailed
annotation for only 50 (others mainly encoded hypothetical proteins with unknown
functions [see Table S8 in the supplemental material]). Notably, the unique genes
encoded a variety of enzymes related to carbohydrate metabolism, such as chitinase,
polyketide cyclase, peptidoglycan/xylan/chitin deacetylase, 2-hydroxy-3-oxopropionate
reductase, Zn-dependent protease, glyoxylase dehydrogenase, and arylsulfatase. Genes
for phosphoserine phosphatase, phosphoglycolate phosphatase, and flavin mononu-
cleotide phosphatase were also identified. In addition, genes related to chemotaxis and
archaellum biogenesis, signal transduction, and DNA repair and recombination were
prevalent in the novel species.

DISCUSSION
Shift of the ammonia oxidizer community along the Jiulong River estuary. The

rates of ammonia oxidation detected in the current study varied from approximately
10 nM/h to �80 nM/h (approximately 240 nM/day to �1,920 nM/day) in the surface
water. These values were much higher than those reported for pelagic surface water in
the Pacific (�25 nM/day) (34) and the Atlantic (�10 nM/day) (35). Also, the rates were
comparable to those in other coastal and estuarine surface waters, such as the Pearl
River estuary (36), the Changjiang River estuary (37), the San Francisco Bay estuary (38),
the Cochin estuary (39), and the Ems estuary (40). Pronounced ammonia oxidation in
the waters of the Jiulong River estuary indicated potentially higher activity of ammonia
oxidizers therein. Although comammox bacteria were reported to be widely distributed
in both man-made systems and natural environments, including terrestrial, coastal, and
open-ocean sites (41–44), yet no amoA genes of the bacteria were detected in the
current study based on metagenomics, suggesting that AOA and AOB were major
ammonia oxidizers in the estuary. The abundances of both archaeal and bacterial amoA
genes in the estuarine waters exceeded those reported for the Dongjiang River (45) and

Zou et al. Applied and Environmental Microbiology

September 2020 Volume 86 Issue 18 e00736-20 aem.asm.org 8

https://aem.asm.org


the Pearl River delta (46). The abundances of sedimentary amoA genes detected in the
current study were higher than those in other subtropical estuarine sediments, such as
the Pearl River estuary (47) and the San Francisco Bay estuary (48).

Salinity is one of the most important factors that shape the microbial community
and affect microbial activities, especially in the estuarine ecosystem (49, 50). In the
current study, the abundance and composition of ammonia oxidizers dramatically
changed along the salinity gradient, with the abundance of AOA overwhelmingly
greater than that of �-AOB in high-salinity samples (Fig. 1). �-AOB are widely distrib-
uted in diverse environments, and members of the genus Nitrosomonas are commonly
observed in both terrestrial and marine environments (51–54), as well as in the drinking
water system and wastewater treatment plants (55, 56). Based on culture experiments
(57) and in situ estuarine samples (58–60), Nitrosomonas organisms are more abundant
and active under low-salinity conditions than under high-salinity conditions. In contrast,
AOA tend to tolerate a wide salinity range, which is their key characteristic as the most
ubiquitous ammonia oxidizers globally (2, 16, 17, 25). Furthermore, AOA have a higher
affinity for ammonia than AOB and thus can survive and outcompete them in extremely
low ammonium concentrations (61). That is in agreement with the findings of the
current study on AOA dominance with decreasing ammonium concentrations in the
estuary (Table 1). The abundance of archaeal 16S and amoA genes increased with
salinity in the surface water but decreased in the surface sediment (Fig. 1; see Table S1
in the supplemental material), which was analogous to the changes in archaeal and
thaumarcheotal abundance fractions (Fig. S3A and B). Besides salinity, the abundance
of AOA was reported to be positively correlated with pH and DO and ammonium
concentrations in estuarine and coastal sediments (47, 62–65). The decreased DO and
ammonium concentrations along the estuary may be responsible for the decreased
abundance of AOA in this study.

Of note, the AOA diversity also increased from the estuary head to its mouth, based
on the genotype of archaeal amoA genes (Fig. 1). The oceanic NP-�-2.1.3.1 (SPOT01-
like) and NP-�-2.1.3.2 (SCM1-like) were the major amoA genotypes in intermediate- and
high-salinity waters in the current study, which was in agreement with the findings for
the Pearl River estuary (36). The AOA distribution reported here also indicated that the
oceanic SPOT01-like and SCM1-like AOA were more abundant in high-salinity waters
(Fig. 3). In contrast, the seldom-reported genotype NP-�-2.2.2.1 was dominant in
low-salinity waters and all sediment samples. The reference sequences for genotype
NP-�-2.2.2.1 in the phylogenetic tree shown in Fig. 2 were obtained from sediments in
the South China Sea and the San Francisco Bay estuary. The identification of genotype
NP-�-2.2.2.1 amoA genes in low- and high-salinity waters offered additional information
on the abundance and distribution of the genotype. Notably, the genotype NP-�-2.2.2.1
AOA were widely distributed in the Jiulong River estuary, based on the distribution and
relative abundance of both amoA genes and MAGs, implying their contributions to
both aquatic and sedimentary ammonia oxidation and highlighting their unquestion-
ably important role in the local ecosystem.

Genomic characteristics of the novel AOA species. Phylogenetic analysis revealed
that five MAGs representing the NP-�-2.2.2.1 amoA genotype formed a unique clus-
tered branch within the family Nitrosopumilaceae and were not affiliated with any
known AOA species (Fig. 3; see Fig. S4). In the current study, we suggest a species level
taxonomy unit for these AOA in the genus Nitrosopumilus. Although the distribution of
NP-�-2.2.2.1-type AOA has been mainly based on the analysis of amoA and 16S rRNA
genes (48, 66), limited genomic information is available for this AOA group, as no
cultured strains or MAGs have been reported. Here, we reconstructed five high-quality
genomes potentially representing a new species for the NP-�-2.2.2.1-type AOA and
reported their detailed genomic characteristics and metabolic capacities.

According to the COG functional-category analysis, estuarine AOA harbor multiple
genes related to metabolism, signaling, mobility, and transport, which may illustrate
their strategy to thrive in the changeable estuarine environment. Based on the pro-
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posed thaumarchaeotal core genome (67), the major metabolic pathways common
among AOA isolates from the family Nitrosopumilaceae, such as carbon fixation via the
3-hydroxypropionate/4-hydroxybutyrate cycle (68), were reconstructed in the current
study (see Fig. S5). Environment-specific energy-yielding ATPases in Thaumarchaeota
that use A-type ATPases are mainly identified in neutrophilic AOA from terrestrial,
shallow marine, estuarine, and coastal environments (12). The observations on the AOA
MAGs from the current study were in agreement with previous findings in that the
composition and organization of A-type ATPase gene operons were like those in other
AOA isolates from the estuarine and coastal group.

Nitric oxide (NO) is a central intermediate of archaeal ammonia oxidation. A putative
copper-containing nitrite reductase (encoded by nirK) may be responsible for NO
production and is widely encoded by marine and soil AOA species (69, 70). A single-
copy nirK gene was identified in the current study, which was consistent with obser-
vations for other marine AOA species from the family Nitrosopumilaceae. No urea
utilization gene (ureC) was detected in the AOA MAGs from the Jiulong River estuary.
Since the concentration of ammonia is relatively high in the estuary because of river
runoff, estuary AOA might not need to use urea as a nitrogen source, unlike in the
pelagic ocean.

Flagellation is widespread in archaea and is important for cell motility, DNA uptake,
and pathogenicity (71, 72). Most marine Nitrosopumilus strains identified to date (e.g.,
strains SCM1 [2], PS0 and HCA1 [20], and D3C [73]), except for some cells of strain NF5
(73), lack flagella. However, strains SFB1 and BG20 (genus “Ca. Nitrosoarchaeum”),
isolated from estuarine sediments, have flagella and carry the associated genes (25, 74).
Further, genes related to the archaeal flagellin were identified in the genome of “Ca.
Nitrosopumilus salaria” BD31 in the San Francisco Bay estuary (24). AOA identified in
the current study may also have archaeal flagella, as they carry archaeal flagellin genes
(flaFGHIJ) and the preflagellin peptidase gene (flaK).

Chemotaxis is an important characteristic of estuarine AOA species, which harbor
the related proteins (encoded by cheB) and response regulators (encoded by cheY) (25,
74). These genes were also identified in the novel AOA in the current study. Further,
mechanosensitive channel proteins can protect AOA against osmotic stress in the
estuary, and the encoding genes were also identified here. Although the relationship
between archaeal flagella and AOA ecotype distribution is not well understood, AOA
may thrive in the dynamic estuarine environment by relying on cell mobility.

CAZys are a prerequisite for cellular metabolism in diverse carbohydrates, such as
glycoproteins, glycolipids, and polysaccharides (75). Chemoautotrophic AOA are cur-
rently considered to be mixotrophic in certain environments, which is supported by the
presence of CAZy-encoding genes and extracellular peptidases detected in AOA ge-
nomes in pure cultures (20) and pelagic (76) and coastal (36) environments. Genes for
several glycosyltransferases from the families GT2, GT1, and GT66 were identified in the
novel AOA, and also genes for extracellular peptidase (gamma-glutamyltranspeptidase)
and serine protease. Notably, the novel AOA genus uniquely harbors chitinase (GH18)
genes, which are lacking in other AOA isolates from the family Nitrosopumilaceae.
Eutrophication-induced hypoxia and algal blooms are often reported in the Jiulong
River estuary (27, 77), and hence, chitin is one of the most abundant carbon sources
derived from dead organisms in the local ecosystem. Chitinases are common in bacteria
and eukaryotes, and a possible horizontal transfer of chitinase genes may imply
potentially close interactions between AOA and other microorganisms. Production of
diverse CAZys and extracellular peptidases may expand the capacity for carbohydrate
metabolism in AOA and be advantageous in the presence of a variety of anthropogenic
pollutants, including organic fertilizers, pesticides, and polycyclic aromatic hydrocar-
bons, in the Jiulong River estuary.

Massive anthropogenic input influences the local ecosystems in the Jiulong River
estuary, resulting in eutrophication and predominantly phosphorus-limited conditions
(77–79). Therefore, the acquisition of phosphorus is extremely important for organisms
if they have to survive in and adapt to that environment. A recent study suggested that
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AOA uniquely encode high-affinity phosphate transporters and inorganic-phosphate-
dependent regulators to adapt to the phosphorus limitation in the Pearl River estuary
(36). No genes encoding high-affinity phosphate transporters were identified in the
AOA MAGs in the current study. However, the MAGs encode phosphonate transporters
and additional phosphatases, which might constitute a strategy for acquiring phos-
phorus from diverse substrates. Further, they harbor genes for polyphosphate utiliza-
tion (ppA), which may be essential for utilizing intracellular phosphate reserves in
response to phosphorus starvation (80–82).

Conclusions. In summary, we have presented potential explanations for the shift of
ammonia oxidizers along the Jiulong River estuary and have clearly demonstrated the
abundance, diversity, and distribution of AOA in the region. Further, we reconstructed
five high-quality MAGs belonging to a novel potential estuarine AOA genus, “Ca.
Nitrosopumilaceae” nov. gen., and characterized their genomic features. Genomic
comparisons underlined the unique genomic characteristics of estuarine AOA that
enable them to thrive in the local environment. Further, pangenomic analysis revealed
the potential survival strategies of AOA dwelling in the eutrophic and polluted Jiulong
River estuary. The genomic information for estuarine AOA from different ecological
niches may further enhance our understanding of the evolution and adaptation of the
AOA community and highlights their importance in global nitrification.

MATERIALS AND METHODS
Sample collection, DNA extraction, and sequencing. Three water samples and three sediment

samples were collected in December 2018 during a cruise on the Jiulong River estuary (Fig. 1A). At each
sampling station, 500 ml of water was collected using a conductivity-temperature-depth rosette system
(CTD) (General Oceanics) in X-Niskin bottles (General Oceanics) 2 m below the surface. The water was
then filtered through 0.22-�m polycarbonate filter (EMD Millipore). The surface sediment was collected
using a grabber and immediately sealed in 50-ml tubes (Falcon). The filters and sediments were quickly
frozen in liquid nitrogen and stored at �80°C until DNA extraction was performed. In situ environmental
parameters (depth, salinity, and pH) were measured by using the CTD. The DO concentration was
determined using the Winkler method (83). The concentrations of nutrients (NO3

�, NO2
�, NH4

�, and
PO4

3�) were determined using an autoanalyzer (QuAAtro; BLTEC Co., Ltd.). Chlorophyll (Chl) a was
processed following the Joint Global Ocean Flux Study protocol (84). Microbial nitrification rates were
measured using a dark isotopic incubation approach (85). DNA was extracted using a PowerMax soil kit
(Qiagen), following the manufacturer’s instructions. The DNA fragments were purified and then end
repaired, A tailed, and ligated with Illumina-compatible adapters before sequencing, according to the
method in a previous study (36). Shotgun sequencing was performed using the Illumina (San Diego, CA,
USA) HiSeq 2000 paired-end 150-bp platform with a HiSeq cluster kit v4.

Quantitative-PCR analysis of the microbial community. The determination of the copy numbers
of the 16S rRNA gene for all prokaryotes and total archaea and the amoA gene for bacteria and archaea
was performed via qPCR using a QuantStudio 3 instrument (Thermo Fisher Scientific). Primer pairs and
settings were based on previous reports, as follows: Uni515F/Uni806R for total prokaryotic 16S rRNA
genes (86), Arch519F/Arch908R for total archaeal 16S rRNA genes (87, 88), amoA-1F/amoA-2R for
bacterial amoA genes (89, 90), and crenamoA23f/crenamoA616r for archaeal amoA genes (6, 8) (Table 3;
see Table S1). The analyses were done in triplicate for each sample and were performed in 20-�l qPCR
mixtures containing 10 �l of PowerUp SYBR green master mix (Applied Biosystems), 2 �l of DNA
template, 0.5 �l of each of the forward and reverse primers (10 �M), and 7 �l of double-distilled water
(ddH2O). Standard qPCR curves were generated using a sequential 10-fold dilution series of the pMD19-T
vector, as previously described (91). Gel electrophoretograms for each primer pair and melting curves for
each qPCR experiment were used to verify the results. Gene copy numbers in the standard dilution series
were calculated by first determining the DNA concentration with a Nanodrop (Thermo Scientific) and
then using the following equation: gene copies per microliter � (amount per microliter � 6.022 � 1023)/
(length � 1 � 109 � 324.5).

TABLE 3 Primers and conditions used for qPCR experiments

Target gene Target description Primer name Sequence (5=-3=) Annealing temp (°C) R2 Efficiency (%) Reference(s)

16S rRNA Bacteria plus archaea Uni515F GTGYCAGCMGCCGCGGTAA 60 0.998 87.63 86
Uni806R GGACTACNVGGGTWTCTAAT

16S rRNA Archaea Arch519F CAGCCGCCGCGGTAA 60 0.994 85.17 87, 88
Arch908R CCCGCC AATTCCTTT AAGTT

amoA AOB amoA genes amoA-1F GGGGHTTYTACTGGTGGT 55 0.993 101 89, 90
amoA-2R CCCCTCKGSAAAGCCTTCTTC

amoA AOA amoA genes CrenamoA23f ATGGTCTGGCTWAGACG 55 0.997 98.8 6, 8
CrenamoA616r GCCATCCABCKRTANGTCCA
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Metagenomic assembly, genome binning, and annotation. Raw reads after metagenomic shot-
gun sequencing were dereplicated at 100% identity and trimmed using Sickle (https://github.com/
najoshi/sickle) with default settings. The trimmed forward and reverse reads from each sample were de
novo assembled using IDBA-UD (version 1.1.1) with the following parameters: -mink 65, -maxk 145, and
-step 10 (92). The small-subunit (SSU) rRNA genes were extracted from the assembled scaffolds for each
sample using Metaxa2 software (version 2.2) (93). For each sample, Metabat2 (version 2.12.1) was employed
for automatic binning from the assembly 12 times with different parameters for further refinement (94). All
the binning results were merged and then refined using the standard pipeline of DASTools (version 1.0) (95).
In addition, the genomes were reassembled and refined under the standard procedures of anvio (version 5.5)
for improved data quality before downstream analysis (96). MAG completeness, contamination, and strain
heterogeneity were then determined by using CheckM (97). MAGs with completeness exceeding 60% and
contamination below 10% were selected for further analysis.

rRNA coding regions (16S and 23S rRNA) in each genome were identified using both CheckM
SSU_finder (97) and Metaxa2 (93). Genes were called by Prodigal (version 2.6.3) with the “�p meta”
option for each genome (98). The genes were annotated using the KEGG server (BlastKOALA) (99) and
BLASTP against the nonredundant protein database (October 2016 version; E value cutoff, �1e�5).
Further, all proteins were assigned to existing COG and archaeal clusters of orthologous genes (arCOG)
by eggNOG-mapper (100). PRED-SIGNAL (101) and PSORTb (102) were used to identify extracellular
peptidases, and the dbCAN Web server (103) was used for carbohydrate-active-gene identification.

Phylogenetic analysis. The amoA gene sequences extracted from the MAGs and assembled
scaffolds were aligned using Mafft-LINSi (104) and categorized with reference sequences, as previously
described (16). The maximum-likelihood phylogenetic tree of amoA genes was inferred using IQ-TREE
(105) and the best-fit mtZOA�G4 model selected by the -m TEST option with ultrafast bootstrapping
(-bb 1,000) (106). The 16S and 23S rRNA genes of MAGs and references (16) were aligned and
concatenated by Mafft (104). The maximum-likelihood phylogeny tree of concatenated 16S and 23S rRNA
genes was inferred using IQ-TREE and a GTR�F�R6 model with ultrafast bootstrapping (-bb 1,000). The
maximum-likelihood phylogenetic tree of MAGs was constructed using the IQ-TREE (LG�C60�F model),
based on 15 concatenated ribosomal proteins (L2, L3, L4, L5, L6, L14, L15e, L18p, L22, L24e, S3Ae, S8, S11,
S17, and S19) extracted from MAGs from the current study and some major archaeal phyla (reference
genomes) using the anvio 5 pipeline. Chitinase protein sequences extracted from AOA MAGs from the
current study were aligned with other bacterial and archaeal chitinase reference sequences using Mafft
(104); the phylogenetic tree of chitinase proteins was built using IQ-TREE. All the phylogenetic trees were
visualized using the online tool iTOL (version 5.0) (107). To indicate the abundances of amoA genes and
16S rRNA genes, the number of reads per kilobase per million sequenced reads (RPKM) was used to
normalize the variations in gene length and data set size. The relative abundances for MAGs in each
sample were normalized with the following formula, as described previously (36): MAG coverage/total
coverage for each sample.

Genomic comparisons and analysis. The AAI between MAGs from the current study and genomes
of AOA representing different archaeal genera or species was calculated using compareM (https://github
.com/dparks1134/CompareM). The similarity of 16S rRNA genes of MAGs from the current study and
reference AOA genomes was determined by pairwise BLASTN (E value cutoff, �1e�5). AOA MAGs from
the current study and other reported genomes, such as those of “Ca. Nitrosopumilus salaria” BD31 (24)
and “Ca. Nitrosoarchaeum” strains SFB1 and BG20 (25), and MAGs (36) within the family Nitrosopumi-
laceae obtained from estuaries were combined in an estuarine gene pool and compared with the marine
AOA gene pool (i.e., strains SCM1, D3C, NF5, AR1, AR2, and SPOT01) based on COG functional categories.
Similarly, MAGs of the novel AOA species identified in the current study were pooled in a single gene
pool to identify composition differences and unique genes by comparison with other AOA species within
the genus Nitrosopumilus. Pangenomic analysis of MAGs from the current study and AOA isolates/
enrichments from the genus Nitrosopumilus was performed using the anvio 5 pangenome pipeline (108).
Genes unique to the genomes reported in the current study were identified and then annotated by
BLASTP analysis against the nonredundant protein database (October 2016 version; E value cutoff,
�1e�5).

Data availability. The raw reads for all six samples are available in the National Omics Data
Encyclopedia (NODE) database (http://www.biosino.org/node) under accession numbers OER057292 to
OER057297, and nine AOA genomic bins are available under accession numbers OER057298 to
OER057306.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 10.3 MB.
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