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SUMMARY

Most loci identified by GWAS have been found in populations of European ancestry (EUR). In 

trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 

non-EUR individuals, we identified 5,552 trait-variant associations at P<5×10−9, including 71 

novel loci not found in EUR populations. We also identified 28 additional novel variants in 

ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians 

associated with lymphocyte count in vivo and IL7 secretion levels in vitro. Fine-mapping 

prioritized variants annotated as functional, and generated 95% credible sets that were 30% 

smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical 

significance and predictive value of trans-ethnic variants in multiple populations, and compared 

genetic architecture and the impact of natural selection on these blood phenotypes between 

populations. Altogether, our results for hematological traits highlight the value of a more global 

representation of populations in genetic studies.
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Delineation of the genetic architecture of hematological traits in a multi-ethnic cohort allows for 

the identification of rare variants with strong effect specific to non-European populations and 

improved fine mapping of GWAS variants using the trans-ethnic approach.

Graphical Abstract

INTRODUCTION

Blood-cell counts and indices are quantitative clinical laboratory measures that reflect 

hematopoietic progenitor cell production, hemoglobin synthesis, maturation and release 

from the bone marrow, and clearance of mature or senescent blood cells from the circulation. 

Quantitative red blood cell (RBC), white blood cell (WBC) and platelet (PLT) traits exhibit 

strong heritability (h2~30–80%) (Evans et al., 1999; Hinckley et al., 2013) and have been the 

subject of various genome-wide association studies (GWAS), including a large study that 

identified >1000 genomic loci in ~150,000 individuals of European-ancestry (EUR) (Astle 

et al., 2016).

Importantly, the distribution of hematologic traits and prevalence of inherited hematologic 

conditions differs by ethnicity. For example, the prevalence of anemia and microcytosis is 

higher among African-ancestry (AFR) individuals compared to EUR individuals in part due 

to the presence of globin gene mutations (e.g. sickle cell, α/β-thalassemia) more common 

among African, Mediterranean and Asian populations (Beutler and West, 2005; Raffield et 
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al., 2018; Rana et al., 1993). AFR individuals tend to have lower WBC and neutrophil 

counts partly because of the Duffy/DARC null variant (Rappoport et al., 2019). Among 

Hispanics/Latinos (HA), a common Native American functional intronic variant of ACTN1 
is associated with lower PLT count (Schick et al., 2016).

Despite these observations, non-EUR populations have been severely under-represented in 

most blood-cell genetic studies to date (Popejoy and Fullerton, 2016; Popejoy et al., 2018; 

Wojcik et al., 2019). Multiethnic GWAS have been recognized as more powerful for gene 

mapping due to ancestry-specific differences in allele frequency, linkage disequilibrium 

(LD), and effect size of causal variants (Li and Keating, 2014). Since blood cells play a key 

role in pathogen invasion, defense and inflammatory responses, hematologic-associated 

genetic loci are particularly predisposed to be differentiated across ancestral populations as a 

result of population history and local evolutionary selective pressures (Ding et al., 2013; Lo 

et al., 2011; Raj et al., 2013). Given the essential role of blood cells in tissue oxygen 

delivery, inflammatory responses, atherosclerosis, and thrombosis (Byrnes and Wolberg, 

2017; Chu et al., 2010; Colin et al., 2014; Tajuddin et al., 2016), factors that contribute to 

such interpopulation differences in blood-cell traits may also play appreciable roles in the 

pathogenesis of chronic diseases and health disparities between populations.

RESULTS

Trans-ethnic and ancestry-specific blood-cell traits genetic associations

We analyzed genotype-phenotype associations at up to 45 million autosomal variants in 

746,667 participants, including 184,424 individuals of non-EUR descent, for 15 traits 

(Figure 1, Figure S1, Tables S1A–D and S2, and Methods). The association results of the 

EUR-specific meta-analyses are reported separately in a companion paper (Vuckovic et al., 

2020). In the trans-ethnic meta-analyses, we identified 5,552 trait-variant associations at 

P<5×10−9, including 71 novel associations not reported in the EUR-specific manuscript 

(Table S3A). Of the 5,552 trans-ethnic loci, 128 showed strong evidence of allelic effect 

heterogeneity across populations (Pancestry.hetero <5×10−9) (Table S3A). Ancestry-specific 

meta-analyses revealed 28 additional novel trait-variant associations (Figure 1b and Table 

S3B–F). However, 21 of these 28 novel loci were identified in AFR-ancestry participants, 

and 19 of these 21 novel AFR-specific associations map to chromosome 1 and are associated 

with WBC or neutrophil counts, therefore reflecting long-range associations due to the 

admixture signal at the Duffy/DARC locus that confers resistance to Plasmodium vivax 
infections (Reich et al., 2009). We attempted to replicate all novel trans-ethnic or ancestry-

specific genetic associations in the Million Veteran Program (MVP) cohort (Gaziano et al., 

2016). Of the 88 variant-trait associations that we could test in MVP, 85 had a consistent 

direction of effect (binomial P=6×10−24), 83 were confirmed with a false discovery rate 

<5%, and 44 met the Bonferroni-adjusted significance threshold of P<6×10−4 (Table S3G).

For 3,552 loci in which conditional analyses identified a single genome-wide significant 

variant in EUR, we generated fine-mapping results for each trans-ethnic or ancestry-specific 

dataset using an approximate Bayesian approach (Methods) (Wellcome Trust Case Control 

et al., 2012). The 95% credible sets were smaller in the trans-ethnic meta-analyses than in 

the EUR or EAS meta-analyses (Figure 2a). When comparing loci discovered in both the 
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trans-ethnic and EUR analyses, we found that the 95% credible sets were 30% smaller 

among the trans-ethnic results (median (interquartile range) number of variants per 95% 

credible set was 4 (2–13) in trans vs. 5 (2–16) in EUR, Wilcoxon’s P=3×10−4). For instance, 

a locus on chromosome 9 associated with PLT count included seven variants in the EUR 

95% credible set but only one in the trans-ethnic set, an increase in fine-mapping resolution 

likely driven by limited LD at the locus in EAS (Figure 2b). In the trans-ethnic and EUR 

results, respectively, we identified 433 and 403 loci with a single variant in the 95% credible 

sets (Figure 2c), and >300 variants with a posterior inclusion probability (PIP) ≥0.99 (Figure 

2d). To determine the reason for the improved resolution in the trans-ethnic results, we sub-

sampled the data and re-ran the EUR-only (N=141,636), EAS-only (N=143,085), and trans-

ethnic (N=137,702) meta-analyses on similarly sized sample sets for PLT, RBC, WBC and 

HGB. The resulting 95% credible sets were still smaller in the trans-ethnic meta-analyses, 

suggesting that the improved resolution was due to LD structure rather than an increase in 

sample size (Figure S2).

Next, we assessed our fine-mapped 95% credible sets for the presence of functional variants, 

which we defined as variants with coding consequences or those mapping to accessible 

chromatin in hematopoietic cells. Genomic annotation of the 95% credible sets of the trans-

ethnic, EUR and EAS hematological trait-associated loci revealed that the proportion of 

likely functional variants was higher among those with high PIP (Figure 3a). The enrichment 

within high-PIP categories was particularly notable for missense variants, but also observed 

for intronic and intergenic variants that map to open chromatin regions in progenitor or 

mature blood cells (Figure 3a)(Corces et al., 2016). We used g-chromVAR to quantify the 

enrichment of trans, EUR and EAS 95% credible set variants within regions of accessible 

chromatin identified by the assay for transpose accessible chromatin by sequencing (ATAC-

seq) in 18 hematopoietic populations (Ulirsch et al., 2019). We noted 22 significant trait-cell 

type enrichments using the trans-ethnic credible sets, all of which were lineage specific, 

including RBC traits in erythroid progenitors, platelet traits in megakaryocytes, and 

monocyte count in granulocyte-macrophage progenitors (GMP) (Figure 3b and Table S3H). 

Cell-type enrichments were largely consistent between fine-mapped variants found in the 

trans, EUR and EAS loci. However, we observed two noteworthy ancestry-specific 

differences: the EAS results revealed significant enrichments (defined as Bonferroni-

corrected threshold P<1.9×10−4) in basophil count for common myeloid progenitors (CMP)

(PEAS-BASO-CMP=7.6×10−5) and eosinophil count for GMP (PEAS-EOS-GMP=4.5×10−6), but 

neither pairing reached significance in the larger EUR meta-analyses (PEUR-BASO-CMP=0.08 

and PEUR-EOS-GMP=0.01)(Figure S3). These differences persisted even after controlling for 

the number of loci tested in each ancestry.

Among the novel loci identified in the trans-ethnic meta-analyses, several included excellent 

candidate causal variants with high fine-mapping PIP and overlap with open chromatin 

regions found in hematopoietic cells (Figure S4 and Table S3I). For instance, rs115906455, 

located in an intron of the RNA polymerase II elongation factor ELL2, is strongly associated 

with MCV (P=4.2×10−12, PIP=0.57) and maps to an accessible chromatin region found in 

RBC progenitors (CMP, megakaryocyte–erythroid progenitor and erythroblasts) but not 

megakaryocytes (Figure 3c). This variant is common in AFR populations (minor allele 

frequency (MAF)=4.7%) but rare or monomorphic in non-AFR populations. A different 
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variant at the ELL2 locus has previously been associated with multiple myeloma and IgG 

levels (Swaminathan et al., 2015). Another example is rs941616, a common variant in an 

intergenic region on chromosome 14 that is associated with eosinophil count (P=2.4×10−9, 

PIP=0.2) and maps to a region of chromatin accessibility in CMP, CD8+ lymphocytes and 

natural killer cells (Figure 3d). This variant, which is in LD with another eosinophil-

associated variant recently identified (Kichaev et al., 2019), is an eQTL for PTGDR (Võsa et 

al., 2018), which encodes prostaglandin D2 receptor. Prostaglandins can activate 

eosinophils, which in turn contribute to the etiology of asthma, chronic obstructive 

pulmonary disease (COPD), and allergies (Brusselle et al., 2016). In the UK Biobank 

(UKBB), rs941616 is associated with allergic rhinitis (P=5×10−4) but not asthma (P=0.077) 

(Canela-Xandri et al., 2018).

Phenome-wide association studies (pheWAS)

We queried the 5,552 trans-ethnic genome-wide significant variants associated with blood-

cell traits in three ancestrally distinct biobanks including 408,961 EUR individuals from the 

UKBB with 1,403 disease states, 143,988 individuals of Japanese descent from BioBank 

Japan (BBJ) with 22 disease states, and 5,275 African Americans from the Vanderbilt 

University Biobank (BioVU) with 1,403 disease states (Methods). We found 366 variant-

disease associations in the UKBB (Table S4A). Of these 366 associations, the BBJ had 

matching phenotypes for 95, 26 of which were replicated. Only one of these 366 

associations was replicated in BioVU. In only three cases did we observe a variant-disease 

association in UKBB that failed to replicate when BBJ was well-powered (power >80%) and 

the matching phenotype was available. We found 133 variant-disease associations in BBJ 

(Table S4A). Of these 133 associations, the UKBB had matching phenotypes for 90, 55 of 

which were replicated in UKBB and one of which was replicated in BioVU. Almost all of 

the non-replicated associations were well-powered to replicate in UKBB, suggesting 

heterogeneity across populations in genetic effects, in clinical definitions of disease states, or 

in disease prevalence and relevant environmental exposures. Only three of the non-replicated 

associations were well-powered to replicate in BioVU. Finally, in BioVU we observed 19 

variant-disease associations (Table S4A), 18 of which were located at the β-globin locus that 

reflect the known clinical sequelae of sickle cell disease. Unsurprisingly, these were not 

replicated in UKBB and BBJ because the variant is monomorphic.

Many of the variant-disease associations we observed were located at well-known highly 

pleiotropic loci, with signal in multiple biobanks. For instance, rs1260326 in GCKR was 

associated with diabetes, dyslipidemia, alcohol consumption, gout, and urolithiasis. Multiple 

variants in TERT were associated with pre-cancerous conditions such as seborrheic 

keratosis, uterine leiomyoma, and myeloproliferative disease. Unsurprisingly, the MHC 

region harbored multiple variants associated with a variety of immune-related diseases such 

as celiac disease, psoriasis, asthma, rheumatoid arthritis, Graves’ disease and type-1 

diabetes. Variants in and near ABO were associated with cardiovascular disease phenotypes, 

as well as gastric cancer, hemorrhoids, and diverticulosis. And variants in and near APOE 
were associated with cardiovascular diseases and neurological disorders including dementia.
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We found two regions with widespread pleiotropy that were specific to a particular ancestry 

(in addition to the β-globin locus in AFR). Variants in and near SH2B3 were associated with 

celiac disease, myocardial infarction, hypertension, and hypothyroidism in UKBB. None of 

these associations were replicated in BBJ, due to these variants having very low MAFs 

(~0.3%) in EAS. About 2-Mb away from SH2B3, rs11066008 in ACAD10 was associated 

with angina, myocardial infarction, arrythmia, and colorectal cancer in BBJ. None of these 

associations were replicated in UKBB, due to very low MAFs in EUR and AFR (0 and 

0.08%, respectively). A well-known selective sweep in this region approximately 1200–1700 

years ago in European populations may explain why these loci display such large, ancestry-

specific effects (Zhernakova et al., 2010).

Trans-ethnic predictions of hematological traits

Polygenic trait scores (PTS) developed in a single ethnically homogeneous population tend 

to underperform when tested in a different population (Grinde et al., 2019; Marquez-Luna et 

al., 2017; Martin et al., 2019). We explored whether we could combine the genome-wide 

significant trans-ethnic variants identified in our analyses into PTS that can predict blood-

cell traits in a multi-ethnic setting. First, we used trans-ethnic effect sizes as weights to 

compute PTStrans for each trait, and tested their performance in independent EUR, AFR and 

HA participants from the BioMe Biobank (Methods). As expected because our trans-ethnic 

meta-analyses are dominated by EUR individuals, PTStrans were more predictive in EUR, 

although their performance in HA was comparable for several traits (lymphocyte and 

monocyte count, mean PLT volume) (Figure 4a and Table S4B). For neutrophil and WBC 

counts, the variance explained by the PTStrans was up to three times higher in AFR and HA 

than in EUR samples due to the inclusion of the strong Duffy/DARC locus (Figure 4a and 

Table S4B). Because these Duffy/DARC variants would not have been included in PTS 

derived uniquely from EUR association results, this illustrates an interesting feature of using 

trans-ethnic variants for building polygenic predictors. Consistent with previous reports for 

other human diseases, PTStrans improved the precision to predict hematological disorders 

defined using blood-cell clinical thresholds (Figures 4b–c and Table S4C).

Next, we asked if we could increase the variance explained by calculating PTS using the 

same trans-ethnic variants but weighting these variants using ancestry-specific as opposed to 

trans-ethnic effect sizes. In contrast to our expectations that a PTS calculated using ancestry-

specific weights would be more accurate, we found for most traits that PTStrans 

outperformed ancestry-specific PTSAFR and PTSHA in BioMe AFR and HA participants, 

respectively (Figure S5 and Table S4B). This result likely indicates that the discovery 

sample size for these two populations is still too small to provide robust estimates of the true 

population-specific effect sizes and that additional ancestry-specific variants have yet to be 

identified.

Rare coding blood-cell-traits-associated variants

The identification of rare coding variants has successfully pinpointed candidate genes for 

many complex traits, including blood-cell phenotypes (Auer et al., 2014; Chami et al., 2016; 

Eicher et al., 2016; Justice et al., 2019; Marouli et al., 2017; Mousas et al., 2017; Tajuddin et 

al., 2016). Our trans-ethnic and non-EUR ancestry-specific meta-analyses yielded 16 coding 
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variants with MAF <1% (Table S5A–B). This list includes variants of clinical significance 

(variants in TUBB1, GFI1B, HBB, MPL, and SH2B3) and variants that nominate candidate 

genes within GWAS loci (ABCA7, GMPR). Our analyses also retrieved a known missense 

variant in EGLN1 (rs186996510) that is associated with high-altitude adaptation and 

hemoglobin levels in Tibetans (Lorenzo et al., 2014; Xiang et al., 2013).

We noted a missense variant in IL7 (rs201412253, Val18Ile) associated with increased 

lymphocyte count in South Asians (SAS)(P=4.4×10−10) (Figure 5a and Table S5C). This 

variant is low-frequency in SAS (MAF=2.6%) but rare in other populations (MAF <0.4%). 

This association was replicated in 4,554 British-Pakistani and 10,638 British-Bangladeshi 

participants from the Genes & Health Study (combined P=5.7×10−5)(Table S5C). IL7 
encodes interleukin-7, a cytokine essential for B- and T-cell lymphopoiesis (Lin et al., 2017). 

In large eQTL datasets such as eQTLgen and GTEx, rs201412253 is monomorphic. 

However, we found four heterozygote individuals among 75 Gujarati Indians that had 

genotypes and transcriptomic data from lymphoid cell lines (Stranger et al., 2012): in this 

limited dataset, rs201412253 was not associated with IL7 expression levels (Figure 5b). IL7 

is synthesized as a proprotein that is cleaved prior to secretion, and the IL7-Val18Ile variant 

localizes to the IL7 signal peptide comprising the first 25 amino acids. To determine if this 

variant alters IL7 secretion, we engineered HEK293 cells with either IL7 allele (Methods). 

Although there was no difference in IL7 RNA expression levels (t-test P=0.63), we found 

that the IL7–18Ile allele, which associates with higher lymphocyte counts in SAS 

individuals, significantly increased IL7 protein secretion in this heterologous cellular system 

(+83%, P=2.7×10−5) (Figure 5c).

Genetic architecture of blood-cell traits in EUR and EAS populations

The genetic architecture of a trait is defined by the number, the frequency and the effect size 

of all variants that contribute to phenotypic variation (Hansen, 2006). We used several 

different approaches to quantify similarities and differences in genetic architecture of 

hematologic traits across populations. Focusing on the two largest studied populations, EUR 

and EAS, we calculated heritability for all blood traits and found them to be concordant 

between ancestries (Pearson’s r=0.75, P=0.0033) (Figure S6 and Table S6A) (Bulik-Sullivan 

et al., 2015b). Likewise, within-ancestry genetic correlation coefficients (rg) between pairs 

of hematological traits were highly concordant across ancestries (Pearson’s r=0.97, 

P<2.2×10−16)(Figure S6)(Bulik-Sullivan et al., 2015a). We then used the Popcorn method to 

measure genetic correlations for blood-cell traits between EUR and EAS using summary 

statistics for common variants (Brown et al., 2016). For all 13 traits available in both EUR 

and EAS, genetic correlations were high (lowest for basophils (rg=0.30) and highest for 

MCH (rg=0.66)), but significantly different than 1 (P<3×10−6) (Figure S6 and Table S6B). 

This suggests that although the effect sizes of common variants are correlated between EUR 

and EAS, there are significant differences between these two populations.

To further contrast the genetic architecture of blood-cell traits between these two 

populations, we compared effect sizes for 1423 genome-wide significant variants with PIP 

>0.5 in either EUR or EAS (Figure 6 and Table S6C). Effect sizes were correlated 

(Pearson’s r=0.46 for variants with PIP >0.5 in EUR and r=0.70 for variants with PIP >0.5 
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in EAS, P<2.2×10−16 for both) (Figure 6), which indicated largely concordant effect sizes 

across populations, a result consistent with the Popcorn analyses. But we also noted many 

interesting differences. We found 70 variants with PIP >0.5 that are common (MAF >5%) 

and have similar MAF (±5%) in EUR and EAS, but have at least a two-fold difference in 

effect sizes (Table S6C). For instance, rs34651 is strongly associated with PLT in EUR 

(P=1.1×10−30, PIP>0.99, effect size=- 0.0428) but the association signal is weaker in EAS 

(P=2.5×10−7, effect size= −0.0336) despite the fact that the variant is more common in EAS 

(MAFEUR=8.1%, MAFEAS=12.9%) (Table S23). This variant maps to a region of accessible 

chromatin in most progenitor and mature hematopoietic cells and is a strong eQTL for 

FCHO2 (Figure S4)(Võsa et al., 2018). Some variants were also significant in both EUR and 

EAS even if they had different effect sizes and MAF. This category includes rs77046277, 

which is strongly associated with LYM in EUR and EAS despite being rare in EUR 

(MAFEUR=0.1%, MAFEAS=1.2%)(Figure 6). This variant is located near S1PR1 and maps 

to regions of accessible chromatin found in T lymphocytes (Figure S4). rs78744187 is 

another example: it is common in EUR and less frequent in EAS (MAFEUR=8.2%, 

MAFEAS=1.8%), but strongly associated with basophil count in both populations (Figure 

6); this variant is an eQTL for CEBPA (Võsa et al., 2018) and is located within an accessible 

chromatin region in CMPs and prior studies using genome editing of this regulatory element 

in primary hematopoietic progenitors have validated its role in regulating CEBPA expression 

to enable basophil production (Figure S4) (Guo et al., 2017). Finally, there were also 

variants that were ancestry-specific because they were very rare in the other population: this 

included the known missense variants in SH2B3 (rs78894077) associated with LYM in EAS 

and in HFE (rs1800562) associated with RBC traits in EUR (Figure 6).

Natural selection at blood-cell trait loci

Natural selection can account for differences in association results between populations, as 

highlighted by our analyses of rare coding variants which includes several loci known to be 

under selection (CD36, b-globin, EGLN1) ( Table S5A). To further explore this possibility, 

we assessed whether variants that tag selective sweeps (tagSweeps, variants with the highest 

integrated haplotype score (iHS)) within continental populations from the 1000 Genomes 

Project (1000G) are associated with blood-cell phenotypes (Johnson and Voight, 2018). We 

found a genome-wide enrichment of association results between tagSweeps and 

hematological traits, particularly within EUR, EAS and AFR populations (Figure S7 and 

Table S7A). To rule out simple overlaps due to the large number of sweeps and blood-cell 

trait loci, we compared the number of genome-wide significant tagSweeps in EUR, EAS and 

AFR with the number of significant variants among 100 sets of matched variants (Methods). 

We found significant enrichment of selective sweeps for WBC (EUR, EAS, AFR), 

monocytes (EUR, AFR), eosinophils (EUR), neutrophils (AFR), lymphocytes (EAS), and 

PLT (EUR, EAS)(Table S7B).

In AFR and HA, the enrichments for WBC, neutrophils and monocytes were entirely driven 

by selective sweeps on chromosome 1 near Duffy/DARC (Reich et al., 2009). Only three 

additional loci shared evidence of associations with blood-cell traits and positive selection 

across populations: HLA, SH2B3 (Zhernakova et al., 2010) and CYP3A5 (Chen et al., 

2009). We found eight and 100 non-overlapping selective sweeps with variants associated 
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with hematological traits in EAS and EUR, respectively (Table S7C). Six of the eight EAS-

specific tagSweeps are also associated with blood-cell traits in EUR participants, indicating 

that these regions do not account for population differences in hematological trait regulation 

(Table S7C). One of the remaining two variants is located at the HBS1L-MYB locus and, 

although it is not associated with blood-cell traits in EUR, there are many other variants near 

MYB associated with blood phenotypes in EUR (Table S3B). The remaining selective sweep 

highlighted by this analysis is located upstream of IL6 (Figure 7). The tagSweep at this 

locus, rs2188580, is strongly associated with PLT count in EAS (PEAS=2.8×10−9, 

PEUR=0.0022), is differentiated between EAS and EUR as indicated by the population 

branch statistic (PBS)(Yi et al., 2010)(C-allele frequency in EAS=44%, 4% in EUR; 

standardized PBSEAS=7.353), and overlaps selective sweeps identified in several EAS 

populations from the 1000G(e.g. iHSCHS=3.935) (Figure 7). The IL6 locus has previously 

been associated with WBC traits in EUR (Astle et al., 2016), but our finding is the first 

report of its association with PLT. IL6 encodes interleukin-6, a cytokine that is a maturation 

factor for megakaryocytes (Kimura et al., 1990). Further supporting the role of IL6 signaling 

in PLT biology, a well-characterized missense variant in the IL6 receptor gene (IL6R-

rs2228145) (van Dongen et al., 2014) is also nominally associated with PLT count in 

EAS(P=4.3×10−6).

DISCUSSION

Our meta-analyses of 15 hematological traits in up to 746,667 individuals represents one of 

the largest genetic studies of clinically relevant complex human traits across diverse 

ancestral groups. We have continued to expand the repertoire of loci and genes that 

contribute to interindividual variation in blood-cell traits, with potential implications for 

hematological diseases, as well as other conditions such as cancer, immune and 

cardiovascular diseases.

Differences in clinical definitions, phenotype measurements, gene-gene and gene-

environment interactions could account for some of the differences in genetic effects 

observed between populations. In our analyses of hematological traits in EUR and EAS, we 

have identified extensive genetic overlaps, but also significant differences in effect sizes 

between these two populations. Our estimates of trans-ancestry genetic correlations for 

blood-cell traits are similar to estimates for other complex human phenotypes such as type-2 

diabetes, rheumatoid arthritis, Crohn’s disease, and ulcerative colitis (Brown et al., 2016; 

Liu et al., 2015), although higher genetic correlations have also been reported (Lam et al., 

2019; Martin et al., 2019). Despite the shared genetic architecture, we found evidence of 

heterogeneity at hematological trait-associated variants with high PIP (Figure 6). Similarly, 

although the genetic correlation for Crohn’s disease between EUR and EAS is high 

(rg=0.76), heterogeneity was noted at causal variants in NOD2, IL23R, and TNFSF15 due to 

differences in allele frequency, effect size, or both (Liu et al., 2015). This is in sharp contrast 

with the recent report that the genetic correlation between EUR and EAS for schizophrenia 

is near unity (rg=0.98) and that there is no evidence of locus-level heterogeneity (Lam et al., 

2019). These observations, largely limited to EUR-EAS comparisons for a handful of 

phenotypes, already suggest that different complex human diseases and traits have different 

genetic architecture. These results also highlight a need for large genetic analyses in other 
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populations, and for the development of methodologies amenable to admixture for genetic 

correlation analyses.

Our results have implications for future human genetic studies. First, we showed that adding 

even a “modest” number of non-EUR participants to GWAS can yield important biology, 

such as the identification of a LYM count-associated IL7 missense variants in 8,189 South 

Asians (Figure 5). Second, loci that underlie variation in blood-cell traits represent a broad 

mixture of shared associations (i.e. similar allele frequencies and effect sizes across 

populations) and heterogeneous associations (i.e. dissimilar allele frequencies and effect 

sizes across populations). This result contributes to mounting evidence that a full accounting 

of the genetic basis of complex human traits will require a thorough catalog of global 

genetic and phenotypic variation. Third, because of heterogeneity across populations in both 

allele frequencies and patterns of LD, fine-mapping of association signals can be 

substantially aided by including multiple ancestries. This will have a dramatic impact on the 

success of large-scale efforts aimed at functionally characterizing GWAS findings, but also 

to develop polygenic predictors that transfer to multiple ancestries. As more studies seek to 

unravel the causal variants that underlie complex traits associations, we anticipate that 

genetic evidence from diverse ancestries will play an important role.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Guillaume Lettre 

(guillaume.lettre@umontreal.ca).

Material Availability—The reagents generated in this study are available without 

restriction.

Data and Code Availability—The genetic association results (summary statistics), 

functional annotations, and fine-mapping results are available at: http://www.mhi-

humangenetics.org/en/resources.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and participants

Cell lines—All participants provided written informed consent and the project was 

approved by each institution’s ethical committee. Table S1B lists all participating cohorts. 

The SNPs we identified are available from the NCBI dbSNP database of short genetic 

variations (https://www.ncbi.nlm.nih.gov/projects/SNP/). No statistical methods were used 

to predetermine sample size. The experiments were not randomized and the investigators 

were not blinded to allocation during experiments and outcome assessment.

Flip-In™-293 cells (ThermoFisher Scientific) were grown at 80% confluency in DMEM 

medium supplemented with 10% Foetal Bovine Serum, 4 mM L-glutamine, 100 IU 
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penicillin, 100 μg/ml streptomycin and 100 μg/ml hygromycin. 293 cells were likely 

originally derived from a female donor.

METHODS DETAILS

Phenotypes—Complete blood count (CBC) and related blood indices were analyzed as 

quantitative traits. The descriptive statistics for each phenotype in each cohort analyzed are 

in Table S1C. Exclusion criteria and phenotype modeling in UKBB (European-ancestry 

individuals), INTERVAL, and BBJ have been described previously (Astle et al., 2016; Kanai 

et al., 2018). For all other studies, we followed the protocol developed by the Blood-Cell 

Consortium (Chami et al., 2016; Eicher et al., 2016; Tajuddin et al., 2016). Briefly, we 

excluded when possible participants with blood cancer, acute medical/surgical illness, 

myelodysplastic syndrome, bone marrow transplant, congenital/hereditary anemia, HIV, 

end-stage kidney disease, splenectomy, and cirrhosis, as well as pregnant women and those 

undergoing chemotherapy or erythropoietin treatment. We also excluded extreme blood-cell 

measures: WBC>200×109 cells/L, HGB>20 g/dL, HCT>60%, and PLT>1000×109 cells/L. 

For WBC subtypes, we analyzed log10-transformed absolute counts obtained by multiplying 

relative counts with total WBC count. For all phenotypes in all studies, we corrected the 

blood-cell phenotypes for sex, age, age-squared, the 10 first genetic principal components, 

and other cohort-specific covariates (e.g. recruitment center) using linear regression analysis. 

We applied rank-based inverse normal transformation to the residuals form the regression 

analysis and used the normalized residuals to test for association with genetic variants.

Genotype quality-control and imputation—The genotyping array and quality-control 

steps used by each cohort as well as their quality-control steps are listed in Table S1D. 

Unless otherwise specified, all studies applied the following criteria: samples were removed 

if the genotyping call rate was <95%, if they showed excess heterozygosity, if we identified 

gender mismatches or sample duplicates, or if they appeared as population outliers in 

principal component analyses nested with continental populations from the 1000 Genomes 

Project (Genomes Project et al., 2012). We removed monomorphic variants, as well as 

variants with Hardy-Weinberg P<1×10−6 and call rate <98%.

Genotype imputation for the UKBB, INTERVAL, and BBJ have been described in details 

elsewhere (Astle et al., 2016; Bycroft et al., 2018; Kanai et al., 2018). For all other studies, 

unless specified in Table S1D, we applied the following steps for genotype imputation of 

autosomal variants. We aligned all alleles on the forward strand of build 37/hg19 of the 

human reference genome (http://www.well.ox.ac.uk/~wrayner/strand) and converted files 

into the VCF format. We then applied check VCF (http://genome.sph.umich.edu/wiki/

CheckVCF.py) to confirm strand and allele orientation. We carried out genotype imputation 

using the University of Michigan (https://imputationserver.sph.umich.edu) orthe Sanger 

Institute (https://imputation.sanger.ac.uk/) imputation servers. We phased genotype data 

using SHAPEIT (Delaneau et al., 2013), EAGLE (Loh et al., 2016), or HAPI-UR (Williams 

et al., 2012). For populations of European ancestry, we used reference haplotypes from the 

Haplotype Reference Consortium (HRC r1.1 2016) for imputation (McCarthy et al., 2016) 

unless otherwise noted, whereas reference haplotypes from the 1000 Genomes Project 
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(Phase 3, Version 5) (Genomes Project et al., 2012) were used for non-European ancestry 

participants.

Study-level statistical analyses—We tested an additive genetic model of association 

between genotype imputation doses and inverse normal transformed blood-cell phenotypes. 

We analyzed the major ancestry groups (European (EUR), East Asian (EAS), African 

(AFR), Hispanic-Latino (HA), South Asian (SAS)) separately and used linear mixed-effect 

models implemented in BOLT-LMM (Loh et al., 2018), EPACTS (https://

genome.sph.umich.edu/wiki/EPACTS), or EMMAX (Kang et al., 2010) to account for 

cryptic and known relatedness. Autosomal single nucleotide variants were analyzed in all 

contributing studies. For simplicity, we only analyzed insertion-deletion (indel) variants 

from UKBB and INTERVAL, since a similar reference panel was used for genotype 

imputation.

Centralized quality-control and meta-analyses—We performed a centralized 

quality-control check on the association results of each single study using EasyQC (v9.0)

(Winkler et al., 2014). By mapping variants of each study to the appropriate ethnicity 

reference panel (HRC for EUR and 1000 Genomes Project Phase3 for non-EUR 

participants), we were able to harmonize alleles and markers across all studies. We were also 

able to assess the presence of flipped alleles per study and check for excessive allele 

frequency discrepancies using allele frequency reference data. We also inspected quantile-

quantile (QQ) plots generated by EasyQC and the corresponding genomic inflation factors 

as well as SE-N plots (inverse of the median standard error vs. the square root of the sample 

size) to evaluate potential issues with, for example, trait transformation or unaccounted 

relatedness. We removed variants with imputation quality metric (INFO score) ≤0.4. Except 

for three studies, we also removed variants with minor allele count (MAC) ≤5. For UKBB 

EUR, Women Health Initiative (WHI), and GERA (EUR), we instead applied a MAC ≤20 

filter because empirical observations suggested that unusual inflation of the test statistics 

(i.e. extreme effect sizes and standard errors) was due to rarer variants. To simplify handling 

of tri-allelic and indel variants, which have the same genomic coordinates but different 

alleles, we created a unique variant ID for each tested variant. Specifically, we assigned a 

chromosome:position(hg19)_allele1_allele2 unique ID to each variant, in which the order of 

the allele in the ID was based on the lexicographical order or the indel length. We performed 

inverse variance-weighted fixed-effect meta-analyses with GWAMA (v2.2.2)(Magi and 

Morris, 2010) and trans-ethnic meta-analyses with MR-MEGA (v0.1.5)(Magi et al., 2017). 

For MR-MEGA, we calculated four axes of genetic variation, the default recommendation, 

to separate global population groups.

Million Veteran Program (MVP) blood-cell trait analyses for replication—
Phenotyping. Phenotyping methods published by the EMERGE Consortium and available 

on PheKB (https://phekb.org/) were used for retrieving lab data and exclusion criteria for all 

blood cell indices. This information was pulled from the VA electronic medical records for 

all MVP participants. Lab data was subject to the Boston Lab Adjudication Protocol. This 

entails five steps: (i) compile an initial spreadsheet of possible relevant lab tests, (ii) Subject 

Matter Expert (SME) does an initial review of possible tests, (iii) analyst adds relevant 
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LOINC codes for SME review, (iv) second Subject Matter Expert (SME) review, (v) creation 

of a Lab Phenotype Table/Data Set. After restricting to only outpatient labs and applying the 

EMERGE exclusion criteria, for each trait and each person, the minimum, maximum, mean, 

median, SD, and number of labs was recorded. Values were compared to those from UKBB 

(Astle et al., 2016).

Genotyping: DNA extracted from whole blood was genotyped using a customized 

Affymetrix Axiom biobank array, the MVP 1.0 Genotyping Array. With 723,305 total DNA 

sequence variants, the array is enriched for both common and rare variants of clinical 

importance in different ethnic backgrounds (Klarin et al., 2018).

Analysis: The median lab value was the trait used for analysis. Linear regression models 

were run under an additive model in plink2 on 1000G (v3p5) imputed dosages. Analyses 

were run using models described above within each race/ethnicity stratum (AFR, ASN, 

EUR, HA) classified based on their genotype data using HARE (Fang et al., 2019). Meta-

analyses for the trans-ethnic analyses were completed in METAL (Willer et al., 2010).

Heritabilities and genetic correlations—We calculated heritabilities and genetic 

correlations between blood-cell traits within the EUR and EAS populations using default 

parameters implemented in the LD score regression method (Figure S6 and Table S6A) 

(Bulik-Sullivan et al., 2015a; Bulik-Sullivan et al., 2015b). For genetic correlation of the 

same phenotype between ancestral populations, we used Popcorn (Brown et al., 2016). 

Briefly, Popcorn uses a Bayesian framework to estimate, using genome-wide summary 

statistics, the genetic correlation of the same phenotype but in two different populations (in 

our case, between EUR and EAS). It reports the trans-ethnic genetic-effect correlation (ρge), 

i.e. the correlation coefficient of per-allele SNP effect sizes, but also the trans-ethnic genetic 

impact correlation (ρgi), which includes a normalization of the effect based on allele 

frequency (Table S6B). To address whether a difference in the sample size for the EUR and 

EAS meta-analyses could impact the Popcorn results, we repeated our analyses using the 

current EAS results (Nmax=151,807) and EUR results from preliminary analyses of the 

UKBB dataset (Nmax=87,265) (Astle et al., 2016). These analyses confirmed that for 

common variants, cross-ancestry EUR-EAS genetic correlations are significantly different 

(but non-null). Both LD score regression and Popcorn are not amenable to admixed 

populations, and cannot handle rare variants. For these reasons, we limited these analyses to 

the large EUR and EAS populations and focused on common variants (MAF ≥5%) from the 

1000 Genomes Project.

Functional annotation—To derive basic functional annotation information, we annotated 

all variants included in 95% credible sets from ancestry-specific and trans-ethnic meta-

analyses with the Variant Effect Predictor (VEP)(https://useast.ensembl.org/info/docs/

tools/vep/index.html), compiling both all consequences and the most severe consequence for 

Ensembl/GENCODE transcripts. We also specifically annotated rare coding variants using 

VEP (defined as any variant with MAF <1% in a given analysis, with a GC-corrected P-

value <5×10−9, and annotated as a missense_variant, stop_gained, stop_lost, splice_donor, 

or a splice_acceptor, regardless of fine-mapping results). We removed all variants with a 
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GC-corrected P-value <5×10−9 in EUR, in the MHC region, and, in analyses including 

individuals with at least some African ancestry, on chromosome 1 for neutrophils and total 

WBC count and for RBC traits near the chromosome 11 β-globin and the chromosome 16 

α-globin loci.

Bias-corrected enrichment of blood trait variants for chromatin accessibility of 18 

hematopoietic populations was performed using g-chromVAR, which has been previously 

described in detail (Ulirsch et al., 2019). In brief, this method weights chromatin features by 

fine-mapped variant posterior probabilities and computes the enrichment for each cell type 

versus an empirical background matched for GC content and feature intensity. For chromatin 

feature input, we used a consensus peak set for all hematopoietic cell types with a uniform 

width of 500 bp centered at the summit. For variant input, we included all fine-mapped 

variants within 95% credible sets of the trans-ethnic GWAS. We also ran g-chromVAR for 

each ancestry-specific meta-analysis, keeping all other parameters the same, but using fine-

mapped variants with the 95% credible sets of each ancestry-specific study. Finally, to 

control for the number of loci tested within each ancestry-specific study, we first ranked the 

loci of the largest cohort (i.e. EUR) by sentinel variant p-value, and then subset only the top 

n loci, where n equals the number of loci in the smaller cohort (e.g. EAS) for the same trait. 

We then ran g-chromVAR on the subset of variants falling within these top n loci.

Phenome-wide association study (pheWAS) analysis

UK Biobank (UKBB): We extracted pheWAS results for a list of 5552 variants in UKBB 

ICD PheWeb hosted at the University of Michigan (Accessed 21 August 2019). To account 

for severe imbalance in case-control ratios, we selected the output from the SAIGE analyses 

(http://pheweb.sph.umich.edu/SAIGE-UKB/) based on 408,961 samples from White British 

participants (Zhou et al., 2018). In total, 1403 phecodes were tested for association. All 

results were downloaded using R, and were parsed and organized into data table format 

using the data.table, rvest, stringr, dplyr and tidyr packages.

BioBank Japan (BBJ): We performed a pheWAS for the lead variants identified by the 

trans-ethnic meta-analyses. From the list of all the significantly associated variants with 

blood cell-related traits, we extracted those genotyped or imputed in the BBJ project (nSNP = 

4,255). Next, we curated the phenotype record of the disease status and clinical values for 

the same individuals analyzed in the discovery phase (nindiv = 143,988). Then, we performed 

the logistic regression analyses for 22 binary traits (20 diseases and 2 behavioral habits) 

which had a sufficient number of case samples (ncase = 2,500). Regression models were 

adjusted for age, sex and 20 principal components as covariates. Trait-specific covariates are 

described elsewhere (Kanai et al., 2018).

BioVU: BioVU is the biobank of Vanderbilt University Medical Center (VUMC) that 

houses de-identified DNA samples linked to phenotypic data derived from electronic health 

records (EHRs) system of VUMC. The clinical information is updated every 1–3 months for 

the de-identified EHRs. Detailed description of program operations, ethical considerations, 

and continuing oversight and patient engagement have been published (Roden et al., 2008). 

DNA samples were genotyped with genome-wide arrays including the Multi-Ethnic Global 
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(MEGA) array, and the genotype data were imputed into the HRC reference panel 

(McCarthy et al., 2016) using the Michigan imputation server (Das et al., 2016). Imputed 

data and the 1000 Genome Project data were combined to carry out principal component 

analysis (PCA) and African-American samples were extracted for analysis based on the 

PCA plot. PheWAS were carried out for each SNP with the specified allele (Denny et al., 

2010). Phenotypes were derived from billing codes of EHRs as described previously (Carroll 

et al., 2014). Each phenotype (‘phecode’) has defined case, control and exclusion criteria. 

We required two codes on different visit days to instantiate a case for each phecode. In total, 

1815 phecodes were tested for association. Association between each binary phecode and a 

SNP was assessed using logistic regression, while adjusting for covariates of age, sex, 

genotyping array type/batch and 10 principal components of ancestry.

Merging across biobanks: We defined statistical significance within each biobank to be a 

Bonferroni corrected level of 0.05/pq, where p is the number of phecodes tested and q is the 

number of variants tested. We considered an association to be replicated if the p-value for 

the association was < 0.05/s with a consistent direction of effect, where s represents the 

number of associations being replicated. To match phenotypes across biobanks, we merged 

the UKBB and BioVU by phecode, as these two biobanks used the same phecode system for 

classifying outcomes. To match with BBJ, we cross-referenced the 22 outcomes in BBJ with 

the phecode library used by BioVU/UKBB. Matches were determined based on phenotype 

similarity between the BioVU/UKBB phenotype description and the outcomes described in 

Nagai et al. (Nagai et al., 2017).

Power analysis: For all variant-disease associations that failed to replicate, we performed 

power analyses in the replication biobank to determine if the lack of replication was likely 

due to lack of signal or lack of statistical power. We assumed that the replication biobank 

would have the same prevalence and odds-ratio as the biobank in which the association was 

discovered, and we used allele frequencies from the matching population in the 1000 

Genomes project. To guard against winner’s curse in our power analyses, we assumed a 

maximum odds-ratio of 3. Power was assessed at a P-value threshold of 0.05/s, where s 
represents the number of associations being tested for replication.

Polygenic trait score (PTS) analyses—We restricted these analyses to variant-trait 

associations that reached genome-wide significance (P<5×10−9) in the trans-ethnic MR-

MEGA meta-analyses (Table S3A). For each of these variant-trait pairs, we calculated an 

effect size – hereafter referred to as trans weights – using the fixed-effect meta-analysis 

method implemented in GWAMA and all cohorts available (Magi and Morris, 2010). For the 

same variants, we also retrieved the ancestry-specific effect sizes (or weights). We calculated 

the PTS using plink2 by summing up the number of trait-increasing alleles (or imputation 

doses) that were weighted by their corresponding trans (PTStrans) or ancestry-specific 

(PTSEUR, PTSAFR, PTSHA) weights. The variance explained by the PTS on corrected and 

normalized blood-cell traits was calculated in R using linear regression. For these analyses, 

we had access to 2,651 AFR, 5,048 EUR and 4,281 HA BioMe participants that were not 

used in the discovery effort. For the analyses of hematological diseases, we used the same 

independent BioMe participants and implemented logistic regression models in R. We used 
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age, sex, and the first four principal components as covariates in all models. We used the 

PredictABEL package in R to calculate precision metrics. We used the following thresholds 

to define disease state: anemia (women <12 g/dL, men <13 g/dL), neutropenia (<1500 NEU/

μL), thrombocytosis (>450×109 PLT/L), and thrombocytopenia (<150×109 PLT/L).

Analysis of natural selection—To quantify the contribution of positive selection on 

blood-cell trait variation, we used the recent map of selective sweeps identified in the 

different populations of the 1000 Genomes Project (Johnson and Voight, 2018). We grouped 

the sweeps identified in the 26 1000 Genomes Project populations into five larger 

populations that correspond to our ancestry-specific meta-analyses: Europe-ancestry (CEU, 

TSI, GBR, FIN, IBS); East-Asian-ancestry (CHB, JPT, CHS, CDX, KHV); African-ancestry 

(YRI, LWK, GWD, MSL, ESN, ASW, ACB); South-Asian-ancestry (GIH, PJL, BEB, STU, 

ITU); and Hispanic/Latino-ancestry (MXL, PUR, CLM, PEL). Following the nomenclature 

by Johnson and Voight(Johnson and Voight, 2018), each selective sweep is summarized by 

the variant located within the sweep that has the highest iHS value. iHS (Integrated 

Haplotype Score) is a statistic to quantify evidence of recent positive selection. A high 

positive iHS score (iHS > 2) means that haplotypes on the ancestral allele background are 

longer compared to derived allele background. A high negative iHS score (iHS < −2) means 

that the haplotypes on the derived allele background are longer compared to the haplotypes 

associated with the ancestral allele.

We retrieved the blood-cell trait association results for these sweep-tagging SNPs from the 

ancestry-specific meta-analyses (Table S7A). To determine if the inflation observed in the 

QQ plots was significant, we generated 100 sets of SNPs that match the selective sweep-

tagging SNPs based on allele frequency, gene proximity, and the number of LD proxies in 

European-ancestry, East-Asian-ancestry and African-ancestry individuals using SNPsnap 

(Pers et al., 2015). For these analyses, we excluded the HLA region and variants in LD 

(r2>0.5). We computed empirical significance by tallying the number of sets with the same 

or more genome-wide significant variants than the canonical sets of selective sweep-tagging 

SNPs (Table S7B).

We also computed the population branch statistic (PBS) using whole-genome sequencing 

information from the 1000 Genomes Project (Yi et al., 2010). PBS measures the amount of 

allele frequency change in the population since its divergence from the other two 

populations. For a target population, PBS is calculated as:

PBS = Ttarget, sister + Ttarget, outgroup − Tsister, outgroup
2

where T = −log=1 - FST) is an estimate of the divergence time between two populations. 

Here, FST between each pair of populations was estimated using Weir and Cockerham’s 

estimate (Weir and Cockerham, 1984). We then divided all variants with calculated PBS into 

50 bins of equal size by derived allele count in the target population, and then standardized 

the raw PBS values within each bin. To calculate PBS for Europe-ancestry (CEU, TSI, GBR, 

and IBS, without FIN), we used YRI as an outgroup and East-Asian-ancestry (CHB, JPT, 

CHS, CDX, KHV) as a sister population; for East-Asian-ancestry, we used YRI as an 
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outgroup and Europe-ancestry as a sister population; for YRI, we used East-Asian-ancestry 

as an outgroup and Europe-ancestry as a sister population.

Replication of the association between IL7-rs201412253 and lymphocyte 
count in Genes & Health—Genes & Health is a population cohort study of British-

Bangladeshi and British-Pakistani adult volunteers recruited from London and Bradford UK 

(www.genesandhealth.org)(Finer et al., 2020). Participant saliva DNA samples (Oragene, 

DNA Genotek) were genotyped on the Illumina GSAMD-24v3–0-EA genotyping chip. 

Several rounds of data filtering and quality control were undertaken in Genome Studio using 

cluster separation scores (<0.57), Gentrain score (≤0.7) and with increasingly stringent per-

variant call rate threshold across remaining samples, and per-sample call rate threshold 

across remaining variants. Final dataset had call rate of >0.992 per female-, and >0.995 per 

male-sample across all 637,829 variants (which included Y chromosome). PLINK gender 

calls were compared to self-stated questionnaire gender information and where discordant, 

samples were removed from analyses. For individuals that had taken part on multiple 

occasions the sample with highest call rate was retained, whilst all samples were removed 

for an individual if duplicate samples were not concordant. Where exome data was available, 

sample genotypes were compared across platforms and highly discordant samples removed 

for further work.

Genome-wide imputation using the genotype chip data was carried out on the Michigan 

Imputation Server using reference panel Genome Asia Pilot (GAsP). This panel performed 

better than other available reference panels in the south Asian samples. Variants with 

minimac4 imputation Rsq <0.3 were removed, as were variants with MAF <0.1%.

Genotyped volunteer samples with Barts Health NHS Trust hospital clinical pathology 

laboratory full blood count data - to obtain lymphocyte count data – were selected. This 

included tests ordered on hospital patients, and also from primary care GP surgeries using 

the hospital laboratory. We split the data into Pakistani and Bangladeshi populations based 

on those samples with complete DNA genotype principal component and questionnaire 

ethnicity agreement (N=5,912 Pakistani Individuals, N=13,611 Bangladeshi Individuals). 

Intersex individuals, and related individuals (one from each pair of samples with 

piHat>0.1875) were removed to leave 4,554 Pakistani and 10,638 Bangladeshi samples.

Absolute lymphocyte counts (×109 cells/L) were extracted from Barts Health NHS Trust 

pathology data warehouse. The median count, and age at test for that measurement, were 

taken when multiple measurements were available on an individual. Log10 transformation of 

cell counts was undertaken in RStudio(v1.1.453), before correcting for median age at test, 

median age at test squared and gender using linear regression analysis on each population 

separately. Residuals from the regression analyses were extracted and rank-based inverse 

normalisation was performed. These normalised residuals were used as the phenotype in 

association analysis which was undertaken in PLINK2.0 (--glm) using bgen files from 

Imputation and only default settings. Pakistani and Bangladeshi populations were analysed 

separately.
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IL7 functional analyses—We PCR amplified and cloned the IL7 wildtype (rs201412253-

Val18) and mutant (rs201412253–18Ile) open reading frame (ORF) in the pcDNA5/FRT 

vector (ThermoFisher Scientific) using HindIII and BamHI restriction sites (see Table S5D 

for ORF and primer sequences). We validated the sequences of the two plasmids by Sanger 

Sequencing. FlipIn™-293 cells (ThermoFisher Scientific) at 80% confluency were 

transfected with 1:10 mixes of empty pcDNA5 or pcDNA5 derivatives coding for IL7-Val8 

or IL7–18Ile and pOG44 FLP recombinase coding vector (ThermoFisher Scientific) using 

polyethylenimine. Transfectant clones were expanded and selected in DMEM medium 

supplemented with 10% Foetal Bovine Serum, 4 mM L-glutamine, 100 IU penicillin, 100 

μg/ml streptomycin and 100 μg/ml hygromycin. We measured the secretion of IL7 in eight 

independent clones for each IL7 allele (rs201412253-Val18 and rs201412253–18Ile) as well 

as in four clones generated with the empty vector by ELISA assay. We used the High 

Sensitivity Quantikine HS ELISA kit from R & D Systems (Cat # HS750). We seeded 

100,000 cells per 12-wells plates and grew them for 6 days in DMEM glutamax plus 10% 

FBS before doing the ELISA. We measured each supernatant in duplicate and seeded each 

of the clones in triplicate. The whole experiment was done on three different weeks (three 

complete biological replicates). We extracted total proteins from cells with RIPA buffer and 

we quantified the lysates by BCA. We used this quantification to normalize the ELISA 

assays. We extracted total RNA from ~500,000 cells using the Qiagen RNEasy kit (cat # 

74136). We checked the quality of the RNA by Bioanalyzer and quantified its concentration 

by Nanodrop. We reverse transcribed 1 ug of total RNA into cDNA using the ABI kit (Life 

Technologies Cat # 4368814). We used two pairs of primers for IL7 and assays for three 

normalizing genes (HPRT, GAPDH,TBP, Table S5D). We followed the MIQE 

recommendations and performed the qPCR reactions with the Sybergreen Platinum (Life 

Technologies Cat # 11733–046) on a Biorad CFX384 thermocycler.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical significance, genomic inflation and locus definition—For each meta-

analysis, we calculated the genomic inflation factor (λGC) for all variants, which were 

modest when considering the large sample sizes (λGC range: 0.9–1.2) (Table S2). We used α 
≤5×10−9 after GC-correction to declare statistical significance, accounting for the inflation 

of the test statistics and the number of blood-cell traits analyzed. To count the number of loci 

that we discovered, we first identified the most significant variants (with P≤5×10−9) and 

extended the physical region around that variant 250-kb on each side. Overlapping loci were 

merged, and we used the most significant variant within the interval as the sentinel variant. 

In this manuscript, we defined as novel a locus if no variants were previously reported in the 

literature to be associated with the specific blood-cell trait and if the locus is not reported in 

the companion manuscript that focuses on EUR-specific genetic discoveries.

Conditional analyses in the UK Biobank European-ancestry population to 
identify independent variants associated with blood-cell traits—This method is 

described in details in the companion manuscript (Vuckovic et al., 2020). Briefly, we applied 

the following four steps: (1) Initialisation step: From the list of all variants in the block, add 

the variant with the lowest P-value that is also below the significance threshold (8.31×10−9). 

(2) Dropping: Study the P-values for all variants in the model, if any of these are above the 
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significance threshold we iteratively prune and rebuild model starting with the variant with 

the highest P-value. Once a variant is pruned it is returned to the list of variants not currently 

in the parsimonious model and may rejoin at a later iteration. (3) Addition: Test each variant 

not currently in the block sequentially in the model, add the variant with the lowest P-value 

which is below the threshold. Any tested variants which have a P-value of higher than 0.01 

are not tested again in future iterations. Variants are not permitted to be tested in the model if 

they have a LD r2 >0.9 with any variant currently in the model. (4) Completion: If the 

algorithm could neither add a variant into the model nor remove a variant from the model 

then we abort the iteration with the model at this stage representing the parsimonious model 

for this block. Following identification of conditionally significant variants in each block, all 

conditionally significant variants within each chromosome are put into a single linear model 

and tested with the same multiple stepwise linear regression algorithm as that defined above. 

The resultant set is the ‘conditionally significant’ list of variants for the blood cell index. 

Full results from these conditional analyses are described in the companion European 

focused manuscript. We will note that this conditional analysis model for selecting loci for 

fine-mapping would not allow for the detection of non-European ancestry specific secondary 

signals, with these direct conditional analyses only feasible at most loci in a very large single 

cohort like the UK Biobank.

Statistical fine-mapping—No fine-mapping methods currently exist to handle admixed 

populations. Furthermore, for some of the ethnic groups analyzed here, we did not have 

access to a sufficiently large reference panel to properly account for LD, complicating 

conditional analyses and fine-mapping efforts. For these reasons, we fine-mapped the 

ancestry-specific fixed-effect meta-analyses by adapting the method proposed by Maller et 

al. (Wellcome Trust Case Control et al., 2012) in order to assign posterior probability of 

inclusion (PIP) to each variant and construct 95% credible sets.

This method makes the strong assumption that there is a single independent causal variant at 

the tested locus. For this reason, we limited our Bayesian fine-mapping to loci where we 

identified a single independent association signal by conditional analysis in EUR individuals 

from the UKBB (Vuckovic et al., 2020). Because EUR represented the largest group, we 

then inferred that there was also a single association signal in the other populations at these 

loci, an inference that may not always be right. Briefly, we added 250-kb on either side of 

genome-wide significant variants (P<5×10−9) and merged loci when they overlapped. For 

the loci identified in the ancestry-specific meta-analyses, we converted P-values into 

approximate Bayes factors (aBF) using (Wakefield, 2009; Wellcome Trust Case Control et 

al., 2012):

aBF = SE2

SE2 + ω
exp ωβ2

2SE2(SE2 + ω)

where β and SE are the variant’s effect size and standard error, respectively, and ω denotes 

the prior variance in allelic effects, taken here to be 0.04 (Wakefield, 2007). For the trans-

ethnic results, we directly used Bayes factors calculated by MR-MEGA (Magi et al., 2017). 

We calculated PIP of each variant by dividing the variant’s aBF by the sum of the aBF for all 
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the variants within the locus. We generated the 95% credible sets by ordering all variants in 

a given locus from the largest to the smallest PIP and by including variants until the 

cumulative sum of the PIP ≥95% (Mahajan et al., 2018). All variants that map to 95% 

credible sets are available online (http://www.mhi-humangenetics.org/en/resources).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Blood-cell traits differ by ancestry and are subject to selective pressures.

We assessed 15 blood-cell traits in 746,667 participants from 5 global populations.

We identified >5,500 associations, including ~100 variants not found in Europeans.

These analyses improved risk prediction and identified potential causal variants.
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Figure 1. 
Trans-ethnic and ancestry-specific meta-analyses of blood-cell traits. (a) List of blood-cell 

phenotypes and analyses that were carried out in this project. Note that RDW and MPV were 

not available in EAS. (b) Study design of the project. We used a fixed-effect meta-analysis 

strategy to analyze genetic associations within each of the five populations available, and a 

mega-regression approach that considers allele frequency heterogeneity for the trans-ethnic 

association tests. Nmax, maximum sample size in each meta-analysis; Nassoc, number of trait-

variant associations. A locus is defined as novel when the 500-kb region surrounding its 

sentinel variant does not physically overlap with previously identified blood-cell trait-
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associated variants (for any trait) in the corresponding population. (c) Most blood-cell trait-

associated loci physically overlap between populations. For this analysis, a locus associated 

with several blood-cell traits was counted only once. Despite different sample sizes between 

populations, we note that few loci are found in a single population, suggesting shared 

genetic architecture. EUR, European-ancestry; EAS, East Asian; AFR, African-ancestry; 

HA, Hispanic American; SAS, South Asian. See also Figure S1 and Tables S1A–D, S2 and 

S3A–F.
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Figure 2. 
Fine-mapping of genome-wide significant loci associated with hematological traits. (a) We 

restricted fine-mapping to loci with evidence for a single association signal in European-

ancestry (EUR) populations. There are no such loci in Hispanic Americans. The 95% 

credible sets in the trans-ethnic meta-analyses are smaller than in the EUR or East-Asian-

ancestry (EAS) meta-analyses. (b) Trans-ethnic fine-mapping of a platelet locus. In EUR 

individuals, the 95% credible set include seven variants with posterior inclusion probability 

(PIP) >0.04 and strong pairwise linkage disequilibrium (LD) with the sentinel variant 

rs10758481 (r2>0.93 in British in England and Scotland (GBR) individuals from 1000 

Genomes Project, middle panel). LD is similarly strong in African-, Hispanic/South 

American-, and South-Asian-ancestry populations from the 1000 Genomes Project. 

However, LD is weaker in East Asians (r2=0.68 in Japanese individuals (JPT) from the 1000 

Genomes Project, bottom panel). In the trans-ethnic meta-analysis, rs10758481 has a 
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PIP>0.99 (top panel). In EUR and EAS, LD is color-coded based on pairwise r2 with 

rs10758481. The dotted line indicates the genome-wide significance threshold (P<5×10−9). 

( c) Proportion of 95% credible sets in each population with a defined number of variants. 

For instance, in the EUR and trans meta-analysis results, we identified 403 and 433 95% 

credible sets that contain a single variant, respectively. (d) Prioritization of causal variants 

using fine-mapping PIP. In each population, we provide the proportion of variants with a PIP 

within a specified range. For instance, in EUR and trans, we found 314 and 327 variants 

with a PIP ≥99%, respectively. See also Figure S2.
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Figure 3. 
Functional annotation of possible causal variants associated with blood-cell traits. (a) 

Annotation of variants in trans, EUR and EAS shows a similar pattern, with a larger 

proportion of likely functional variants (e.g. missense, intergenic and intronic variants within 

ATAC-seq peaks) among variants with higher posterior inclusion probability (PIP). (b) g-

chromVAR results for trans variants within 95% credible sets for 15 traits. The Bonferroni-

adjusted significance level (corrected for 15 traits and 18 cell types) is indicated by the 

dotted line. Mono, monocyte; HSC, hematopoietic stem cell; Ery, erythroid; Mega, 
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megakaryocyte; CD4, CD4+ T lymphocyte; CD8, CD8+ T lymphocyte; B, B lymphocyte; 

NK, natural killer cell; mDC, Myeloid dendritic cell; pDC, Plasmacytoid dendritic cell; 

MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, 

common myeloid progenitor; CLP, common lymphoid progenitor; GMP, granulocyte–

macrophage progenitor; MEP, megakaryocyte–erythroid progenitor. (c) rs115906455 is a 

novel variant associated with mean corpuscular volume in the trans-ethnic meta-analysis 

(P=4.2×10−12, PIP=0.57). It maps to an intron of ELL2 and overlaps with ATAC-seq peaks 

found in CMP, MEP, erythroblasts but not megakaryocytes. (d) rs941616 is a novel variant 

associated with eosinophil counts in the trans-ethnic meta-analysis (P=2.4×10−9, PIP=0.2). 

It is a strong eQTL for PTGDR located 112-kb downstream and overlaps with ATAC-seq 

peaks found in CMP, CD8+ lymphocytes and NK cells. See also Figures S3–4 and Table 

S3H–I.
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Figure 4. 
Phenotypic variance and hematological disease prediction using polygenic trait scores (PTS) 

in independent participants from the BioMe Biobank. (a) For each blood-cell trait, PTStrans 

were calculated using genome-wide significant variants identified in the trans-ethnic meta-

analyses. Trait-increasing alleles were weighted using effect sizes derived from fixed-effect 

trans-ethnic meta-analyses. (b) Receiver operating characteristic (ROC) curve and area 

under the curve (AUC and 95% confidence interval) for neutropenia (defined as <1500 

NEU/mL) in BioMe participants of African-ancestry without (black) or with (red) the 

PTStrans for neutrophil count in the predictive model. Age, sex, and the first 10 principal 

components were used in the basic prediction model. (c) As for b, but for thrombocytopenia 

(defined as <150×109 PLT/L) and the PTStrans for platelet count in Hispanic participants 

from BioMe. See also Figure S5 and Table S4B–C.
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Figure 5. 
A South-Asian-ancestry IL7 missense variant associates with increased lymphocyte count in 

humans and IL7 secretion in vitro. ( a) Lymphocyte count association results at the IL7 
locus in South Asians (SAS), European-ancestry participants (EUR) and East Asians (EAS). 

In SAS, there are seven genome-wide significant variants near IL7, but only rs201412253 is 

coding. Linkage disequilibrium (LD) r2 is from 1000 Genomes Project SAS populations. In 

EUR, the sentinel variant is located downstream of IL7; rs201412253 is rare (minor allele 

frequency=4×10−4) and not significant (P=0.073). In EAS, the locus is not associated with 
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lymphocyte count. rs201412253 is monomorphic in 1000 Genomes Project EUR and EAS 

so we could not calculate pairwise LD. (b) Association between genotypes at rs201412253 

and normalized IL7 expression levels in lymphoid cell lines from 75 Gujarati Indians from 

HapMap3. The T-allele frequency is 2.7% and the association is not significant (P=0.62). (c) 

The 18Ile allele at IL7-rs201412253 increases IL7 secretion in a heterologous cellular 

system. Our ELISA assay did not detect secreted IL7 in clones generated with an empty 

vector. We tested eight independent clones for each IL7 alleles. Each experiment was done 

in duplicate, and we performed the experiments three times. The black dots and vertical lines 

indicate means and standard deviations. We assess statistical significance by linear 

regression correcting for experimental batch effects. See also Table S5A–C.
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Figure 6. 
Comparisons of effect sizes for variants with posterior inclusion probabilities (PIP) >0.5. We 

retained only variants with an analyzed sample size ≥70,000 in East Asians (EAS) and 

≥100,000 in European-ancestry participants (EUR). (a) We retrieved minor allele 

frequencies (MAF), effect sizes (Beta), P-values (P) and PIP for all variants with PIP >0.5 in 

EUR. By definition, all these variants are significant in EUR (P<5×10−9). For these variants, 

we then retrieved the corresponding results in EAS. Effect sizes (standard errors (SE)) in 

EUR and EAS are plotted on the x- and y-axis, respectively. (b) as in a, but for variants with 

PIP >0.5 in EAS. In a and b, when we provide detailed information on a specific variant, the 

first number always corresponds to EUR and the second to EAS (e.g. for rs77046277, 

BetaEUR=0.712 and BetaEAS=0.348). See also Figure S4 and Table S6C.
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Figure 7. 
Selective sweep and association with platelet count at the IL6 locus in East Asians. The grey 

rectangle highlights a genomic region upstream of IL6 that is strongly associated with 

platelet (PLT) count. This association signal is driven by results from East Asians (EAS), 

and is absent from other populations, including European- (EUR) and African-ancestry 

(AFR) individuals (green). The region overlaps several selective sweeps detected in EAS 

from the 1000 Genomes Project (Chinese Dai in Xishuangbanna (CDX), Southern Han 

Chinese (CHS), Japanese in Tokyo (JPT)). In orange, we provide standardized population 

branch site (stdPBS) metrics in EUR and EAS, indicative of allele frequency differentiation 

at this locus between these two populations. Coordinates are chr7:22–23.5Mb (hg19). See 

also Figure S7 and Table S7A–C.
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