

COMMENTARY

Decreased in-hospital mortality in patients with COVID-19 pneumonia

Fabio Ciceri^{a,b}, Annalisa Ruggeri p^b, Rosalba Lembo^c, Riccardo Puglisi p^d, Giovanni Landoni^{a,c}, Alberto Zangrillo^{a,c} and on behalf of the COVID-BioB Study Group

^aVita-Salute San Raffaele University, Milano, Italy; ^bDepartment of Hematology and Bone marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy; ^cDepartment of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy; ^dDepartment of Social and Political Sciences, Università Degli Studi Di Pavia, Pavia, Italy

KEYWORDS COVID-19; mortality; age

Clinical manifestations of COVID-19 may range from asymptomatic to severe interstitial pneumonia with acute respiratory distress syndrome (ARDS) and death. COVID-19 mortality rates vary greatly [1] and the most reliable assessment of mortality comes from patients admitted due to severe cases of pneumonia [2].

At San Raffaele Hospital in Milano, Italy, we managed the COVID-19 outbreak with dynamic reorganization, and an increase in bed capacity. From 25 February until 13 May 2020, 950 consecutive adults were admitted, 68% were male and the mean age was 65 years (Table 1). Intensive Care Unit (ICU) beds raised progressively up to 56 beds with a proportion of 17% (range 10–20%) of the entire bed capacity.

Here, we report the mortality rates across time for COVID-19 patients admitted at our institution. Patients are divided into temporal quartiles of 20 days each. Date of last follow-up was 12 June 2020. Minimum follow-up of the last patients hospitalized was 30 days. A total of 129/950 (14%) patients required ICU. Of the 950 patients, 30-day mortality was 164/950 (17%), with a dramatic drop in the mortality rate after the first time quartile, decreasing from 24% to 2% (Figure 1). Age and time of admission were independent predictors of hospital mortality in the multivariate model (Table 1).

There are a number of possible reasons that may explain these findings. In our institution, the proportion of patients requiring ICU decreased over time from 17% to 7%, without significant changes in patients' age, suggesting a decreased severity of clinical presentation and progression. Understanding the pathophysiology of the disease [3], improving patients' management and treatments [4] targeted to specific pathways of hyper-inflammation and microvascular thrombosis associated with COVID-19 may have contributed to a reduction of mortality. The establishment of the national Italian lockdown from 9 March has been a cornerstone for limiting the SARS-CoV-2 spread, as well as the large use of respiratory protective devices and other measures of social distancing. Additionally, the co-infection of respiratory pathogens (i.e. seasonal influenza viruses) might have decreased, and this factor could have had an impact on disease severity.

Recent findings [5] highlight the possible correlation between the pollutant emissions and region-specific climatic features in the areas mostly impacted by the COVID-19 outbreaks. A concomitant reduction of air pollution could be associated with a further decrease in factors associated with morbidity. Finally, the tracking of virus population diversity in time through SARS-CoV-2 [6] mutations could potentially

Table 1. COVID-19 patients characteristic and logistic model for mortality.

COVID-19 patients characteristic	First quartile	Second quartile	Third quartile	Fourth quartile
Number of patients	284	445	167	54
Age, mean ± SD	66 ± 14	64 ± 14	65 ± 17	65 ± 18
Male, n (%)	213(75%)	300 (67%)	100 (60%)	35 (65%)
ICU, n (%)	48 (17%)	61 (14%)	16 (10%)	4 (7.4%)
Age for ICU patients, mean ± SD	60 ± 12	62 ± 9	60 ± 11	66 ± 19
Hospital stay over all, median (IQR)	14 (8-25)	14 (7–26)	13 (7–27)	17 (8-24)
Hospital stay for survivors, median (IQR)	15 (8-28)	15 (8–27)	14.5 (7-29)	17 (8-23)
Hospital stay for dead patients, median (IQR)	12 (7–22)	10 (5–20)	13 (5-22)	24 (24-24)
First data quartile	25/02/2020	16/03/2020	05/04/2020	24/04/2020
Last data quartile	15/03/2020	04/04/2020	23/04/2020	13/05/2020
Logistic model for mortality	Odds Ratio	P value	95% Confidence Interval	
Age	0.99	<0.0001	0.99	0.99
Based on first quartile (ref)				
Quartile 2	0.33	< 0.0001	0.24	0.46
Quartile 3	0.39	< 0.0001	0.25	0.61
Quartile 4	0.03	0.001	0.004	0.22

Figure 1. COVID-19 patients admitted in general wards and ICU per temporal quartiles and mortality rates.

establish a correlation of viral fitness and eventually viral attenuation with observed clinical outcomes. Our observation of a current reduction in the mortality of COVID-19 may contribute to the planning of social and economic measures during the post-pandemic phase.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Annalisa Ruggeri http://orcid.org/0000-0002-7261-2765 Riccardo Puglisi http://orcid.org/0000-0003-4658-4024

References

[1] Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with

- COVID-19 in the New York City Area. JAMA. 2020 Apr 22;323(20):2052-2059.
- [2] Ciceri F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol. 2020;217:108509.
- [3] Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020.
- [4] Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020 Apr 13. DOI:10.1001/jama.2020.6019.
- [5] Frontera A, Martin C, Vlachos K, et al. Regional air pollution persistence links to COVID-19 infection zoning. J Infect. 2020 Apr 10;30173-0(20):S0163-4453.
- [6] Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574.