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ABSTRACT
Online activity-based data can be used to aid infectious disease forecasting. Our aim was to
exploit the converging nature of the tuberculosis (TB) and diabetes epidemics to forecast TB
case numbers. Thus, we extended TB prediction models based on traditional data with
diabetes-related Google searches. We obtained data on the weekly case numbers of TB in
Germany from June 8th, 2014, to May 5th, 2019. Internet search data were obtained from
a Google Trends (GTD) search for ‘diabetes’ to the corresponding interval. A seasonal auto-
regressive moving average (SARIMA) model (0,1,1) (1,0,0) [52] was selected to describe the
weekly TB case numbers with and without GTD as an external regressor. We cross-validated the
SARIMA models to obtain the root mean squared errors (RMSE). We repeated this procedure
with autoregressive feed-forward neural network (NNAR) models using 5-fold cross-validation.
To simulate a data-poor surveillance setting, we also tested traditional and GTD-extended
models against a hold-out dataset using a decreased 52-week-long period with missing values
for training. Cross-validation resulted in an RMSE of 20.83 for the traditional model and 18.56
for the GTD-extended model. Cross-validation of the NNAR models showed a mean RMSE of
19.49 for the traditional model and 18.99 for the GTD-extended model. When we tested the
models trained on a decreased dataset with missing values, the GTD-extended models
achieved significantly better prediction than the traditional models (p < 0.001). The GTD-
extended models outperformed the traditional models in all assessed model evaluation para-
meters. Using online activity-based data regarding diabetes can improve TB forecasting, but
further validation is warranted.
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Tuberculosis (TB) is one of the 10 leading causes of
death worldwide and the leading cause of death
from a single infectious agent. The World Health
Organization estimated 10 million cases of TB and
1.4 million TB-related deaths in 2018 [1]. Despite
several improvements in disease control, tuberculo-
sis diagnosis, treatment, and surveillance face many
challenges, especially in the developing world. HIV
coinfection [2] and diabetes [3,4] have a synergistic
effect with TB infection, resulting in synergistic pan-
demics [5,6].

The possible synergy between TB and diabetes was
observed several centuries ago [5,7]. Today, an exten-
sive body of evidence supports the convergent nature
of these two epidemics [4,5,8–11]. The convergence of
these two diseases indicates a need for updated treat-
ment, surveillance, and prevention strategies that
should be considered in TB control programmes
[10,12–14].

Much needed alternative TB surveillance methods
could exploit this synergism. One potential approach is
to use diabetes-related online activity data to forecast
TB incidence.

In low- and middle-income countries, traditional
epidemiological surveillance and data collection is
challenging. Thus, using alternative online data to
estimate disease activity would be an attractive
option for infectious disease monitoring and predic-
tion in these areas. However, exclusively using such
data may lead to overfitting [15]. Therefore, we exam-
ined forecasting models of weekly TB case numbers
based on traditional data (past TB incidence)
extended with Google Trends search volumes. The
applied methods, which we supplemented, were sto-
chastic time series modeling (autoregressive-inte-
grated moving average models) [16] and neural
network modeling, both of which are currently used
in tuberculosis forecasting [17, 18, 19].

Methods

Data

Data on the weekly case numbers of TB in Germany
from June 8th, 2014, to May 5th, 2019, were obtained
from the database of the Robert Koch Institute, which is
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the national institute of infectious diseases in Germany,
through the website SurvStat@rki 2.0 (https://survstat.
rki.de/Content/Query/Create.aspx). A query was created
on June 2nd, 2019, with ‘Tuberkulose’ as the disease (the
German term for TB disease) and ‘Jahr undMeldewoche’
(year andweek of notification) as the time units. Internet
search data were obtained from Google Trends on June
2nd, 2019 (https://trends.google.com/trends/) by
searching for ‘diabetes’ in Germany with the ‘last five
years’ as the timespan category. The values were inte-
gers of the relative weekly search ‘volume’, where 100
represented the highest search number. The raw data of
the training and validation sets are shown in Figure 1.

Analytical methods

We performed additive time series decomposition on
the weekly TB case numbers. An exploratory contem-
poraneous correlation between the Google Trends
data (GTD) and the weekly TB case numbers was
assessed with Kendall tau correlation.

First, we modeled the time series data using
a seasonal autoregressive moving average (SARIMA)
model with differentiation [20].

The selection of optimal components was per-
formed automatically based on the corrected Akaike
information criterion (AIC). This procedure was
repeated with GTD entered as an external regressor.
The models using only TB case numbers and the model
extended with GTD were characterized and compared
using the AIC values. Predictive performance was

described using root-mean-square error (RMSE) and
mean absolute percentage error (MAPE). Both models
were internally validated (‘evaluation on a rolling fore-
casting origin’) [21] using 12 weeks as the rolling win-
dow and 1 for the forecasting horizon.

Machine learning methods are considered as an
alternative to traditional methods in time series fore-
casting [22]. Thus, to evaluate our findings, in a second
step, we established an autoregressive feed-forward
neural network (NNAR) model using a single hidden
layer with 4 hidden nodes and lagged inputs [23]. This
procedure was repeated with the GTD data as an
external regressor. We used 5-fold cross-validation to
compare the predictive accuracy.

To test whether GTD could improve predictive perfor-
mance with scarce data, we used a decreased time inter-
val involving the case numbers of the first 52 weeks to
train the SARIMA and NNAR models as described above
(however, the SARIMA model with the lowest AIC was
selected manually). Moreover, we randomly deleted 10
out of 52 observations to simulate a data-poor surveil-
lance setting. Missing values were imputed using
a Kalman smoother [24]. Predictions for the following
52 weeks were made, and the accuracy was compared
with the result of the two-sided Diebold-Mariano test.

We performed all statistical analyses with R version
3.4.4 [25] using the forecast package version 8.4 [23].
The script and the dataset are available online
(https ://github.com/msulyok/Google-Trends-
Tuberculosis), and detailed results are provided in the
online Supplementary File.

Figure 1. Weekly TB case numbers and diabetes-related Google search values. Weekly TB case numbers are shown as blue
triangles; relative Google Trends search volumes are shown as red dots (RKI: Robert Koch Institute, GTD: Google Trends). Trends are
illustrated with loess smoothers with 95% confidence bands (Weekly TB case numbers: dashed line, GTD: solid line)
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Results

A clear trend or any relevant seasonality could not be
identified in the weekly TB case numbers using additive
decomposition. The Google search volume showed
a weak contemporaneous correlation (τ = 0.1129;
p = 0.009) with TB case numbers (Figure 1).

SARIMA models

The optimal model without GTD used single-fold differ-
entiation with zero autoregression and 1 as the moving
average order non-seasonally. The seasonal component
consisted of zero differentiation, single autoregression
and a zero-order moving average. The selected GTD-
extended model had the same components.

The AIC favored the GTD-extended model. Measures
of accuracy (RMSE and MAPE) also indicated a better
performance by the GTD-extended model than by the
traditional model.

The results of the applied internal validation
method were in line with these findings; the vali-
dated RMSE of the traditional model was higher

than that of the GTD-extended one. Especially in
2016, the traditional model showed a high positive
error – this was more accurate with the GTD-
extended version (Figure 2). The model characteris-
tics are summarized in Table 1.

Autoregressive neural networks

The neural network based on traditional data had an
RMSE of 11.58 and an MAPE of 8.43. These numbers
were slightly lower for the GTD-extended model (RMSE
10.94, MAPE 8.02), indicating a better performance as
was the case for the SARIMA models.

Five-fold cross-validation revealed similar findings;
the mean RMSE was 19.49 with the traditional data and
18.99 when extended with GTD (Table 2).

Simulating a data poor surveillance setting

When we simulated suboptimal surveillance data, both
the AIC values and fitting parameters favored the GTD-
extended SARIMA (1,1,1) over the traditional one

Figure 2. Cross-validation (evaluation on a rolling forecasting origin) errors. Errors of the Google Trends-extended SARIMA model
(panel A) and of the traditional data-based SARIMA model (panel B). Loess smoothers with 95% CIs for both time series are shown
in the same color. The closeness of the smoother (panel A) to the 0 error line indicates a better performance and validity of the
GTD-extended SARIMA model

Table 1. Comparison of the traditional and GTD-extended SARIMA models
Without GTD Data With GTD Data

Optimal SARIMA SARIMA (0,1,1) (1,0,0) [52] SARIMA (0,1,1) (1,0,0) [52]
Corrected Akaike Information Criterion 2142.4 2124.4
Bayesian Information Criterion 2152.94 2138.47
RMSE 15.55 14.99
MAPE 12.19 11.95
RMSE (evaluated on a rolling forecast origin) 20.83 18.56
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(corrected AIC 412.53 vs. 419.1; RMSE 21.03 vs 23.09).
The GTD-extended model also significantly outper-
formed the traditional one in predictive accuracy for
the subsequent 52 weeks (DM-value: 3.38, p-value
<0.009). The NNAR models showed very similar results;
the GTD-extended model performed significantly bet-
ter than the traditional model (DM-value: 5.9, p-value
<0.001).

Estimates of all the models and residual diagnostics
are shown in the Supplementary File.

Discussion

We found that using diabetes-related online data
improved the forecasting accuracy of a model predict-
ing TB case numbers with traditional data. Our models
based on traditional data already provided a relatively
accurate prediction. However, adding Google Trends
volumes improved this accuracy. Overall, our findings
showed that the well-described syndemic relationship
between TB and DM can be exploited for TB prediction.

However, we should emphasize that these results do
not imply a causal relation between diabetes and tuber-
culosis. The weak correlation is not surprising; online
attention related to diabetes is probably attributable
to some ‘general’ population-level diabetes awareness –
a parameter that may exhibit relatively slow changes in
the trend compared to relative sudden changes in the
TB incidence. As shown in Figure 2, the traditional
SARIMA model resulted in more errors in certain time
periods with high-amplitude changes in incidence but
the addition of GTD decreased these errors.

To the best of our knowledge, the only other pre-
viously published similar work used a syndromic
approach to build a nonstationary dynamic system to
predict TB cases. In that study, diabetes was one of the
included search terms [26]. However, the model by
Zhou et al. may raise similar concerns regarding over-
fitting, as was surfaced by GFT [15]. We intended to
approach the problem differently. Instead of adding
multiple regressors, our strategy was to add search
volumes regarding only the keyword ‘Diabetes’ to
avoid overfitting. Nevertheless, our approach may
decrease sensitivity [27]. In contrast to previous studies
employing similar modeling strategies to forecast other
infectious diseases [27–30], we used cross-validation

techniques instead of dataset splitting given the low
number of observations.

When we simulated suboptimal surveillance data
(with a decreased time interval and 19% missing
values), we validated the results using a hold-out
dataset. We showed that the predictions of both the
GTD-extended SARIMA and the NNAR models were
significantly better than those of the traditional
models. This further supports the potential usage
of such a modeling strategy in a developing, data-
poor setting.

As mentioned previously, the convergence of the
diabetes and TB epidemics has been well described in
the literature [3,10,12,13,31-34]. Diabetes, estimated to
affect 463 million individuals worldwide [35], may jeo-
pardize sustainable TB development goals [14]; thus,
solving related questions on prediction and prevention
is urgent. Moreover, diabetes can adversely affect TB
disease control, as it triples the risk of active and latent
TB infection and is correlated with a poor treatment
outcome in affected patients [36, 8, 9, 37, 38, 11].
Increasing industrialization and urbanization evoke
metabolic diseases, and overcrowded housing and pro-
blematic sanitary conditions facilitate the TB bur-
den [39].

As three out of four patients with diabetes live in
low- or middle-income countries [35], alternative
online data can be especially useful to supplement
traditional methods in these settings. Interestingly,
recent data also suggest that combining different key-
word-related Google searches may improve the sur-
veillance of type 2 diabetes [40] [39

As the number of diabetes patients is expected to
rise in the future, the possible impact on TB will prob-
ably be even more pertinent than it is today.
Incorporating these relatively slow changes in diabetes
trends in prediction models may allow the optimization
of even long-term strategies to fight TB. Improving TB
forecasting would allow a better allocation of resources
[18]. This includes medical services, such as medication
allocation, diagnostic tools and education campaigns,
or other forms of epidemiologic interventions.

Online activity-based data have been used to moni-
tor and predict several infectious diseases.

The first attempt – Google Flu Trends (GFT) – used
exclusively online data related to several highly

Table 2. Measures of predictive accuracy of the autoregressive neural network models using cross-validation

Model Based on Traditional Data (Mean, Standard Deviation)
GTD-Extended Model (Mean, Standard

Deviation)

Model NNAR(5,1,4) [52] NNAR(5,1,4)[52] with GTD
Measures of accuracy
Root-mean-square error 19.49, 4.33 19, 3.27
Mean error −0.76, 2.9 −0.82, 4.36
Mean absolute error 14.96, 2.44 14.95, 1.91
Mean percentage error 7.62, 21.7 3.41, 8.43
Mean absolute percentage error 23.12, 20.31 19.44, 13.76
First-order autocorrelation coefficient 0.07, 0.24 0.02, 0.18
Theil´s U 1.57, 0.75 1.49, 0.66
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correlated search terms. Despite the initial high expec-
tations, GFT’s failure to accurately predict the 2013 epi-
demic led to the cancellation of that project [15] and
a similar project, Google Dengue Trends. A possible
reason for the failure was the belief that ‘Big Data’ can
fully replace traditional surveillance. Using several highly
correlated terms likely substantially overfitted the
model [15].

Despite the failure of GFT, the number of studies
utilizing Google searches has increased [41, 42, 43, 27,
28, 29, 44, 45, 30]. Several of these studies, rectifying
mistakes made in GFT, used only online data to extend
traditional methods.

The most important limitations of this study are
the relatively low number of observations and the
lack of external validation. The standard deviations
of the cross-validated measures of accuracy of the
NNAR models were relatively high, which suggests
similarity in the performance of the neural network
models. However, when we simulated data-poor sur-
veillance settings, the difference was more pro-
nounced in favor of the GTD-extended models. The
causality between the outcome (TB case numbers)
and the external regressor (GTD) is probably very
indirect. However, the focus of this paper was on
forecasting performance as opposed to modeling
and understanding the complex relationship
between diabetes and TB.

As future perspectives, external validation, spatial
analyses, the use of other keywords or keyword combi-
nations, the addition of regressors and the use of other
modeling strategies should be pursued. Incorporating
other environmental and socio-economic factors, such
as population aging, would probably also advance TB
forecasting [46].

To conclude, the GTD-extended models outper-
formed the traditional models in terms of predictive
accuracy. Thus, using diabetes-relevant online activity-
based data can improve TB forecasting, but further
validation is warranted.
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