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Both the free and open source software (FOSS) as well as the distributed digital manufac-
turing of free and open source hardware (FOSH) has shown particular promise among sci-
entists for developing custom scientific tools. Early research found substantial economic
savings for these technologies, but as the open source design paradigm has grown by
orders of magnitude it is possible that the savings observed in the early work was isolated
to special cases. Today there are examples of open source technology for science in the vast
majority of disciplines and several resources dedicated specifically to publishing them. Do
the tremendous economic savings observed earlier hold today? To answer that question,
this study evaluates free and open source technologies in the two repositories compared
to proprietary functionally-equivalent tools as a function of their use of Arduino-based
electronics, RepRap-class 3-D printing, as well as the combination of the two. The results
of the review find overwhelming evidence for a wide range of scientific tools, that open
source technologies provide economic savings of 87% compared to equivalent or lesser pro-
prietary tools. These economic savings increased slightly to 89% for those that used
Arduino technology and even more to 92% for those that used RepRap-class 3-D printing.
Combining both Arduino and 3-D printing the savings averaged 94% for free and open
source tools over commercial equivalents. The results provide strong evidence for financial
support of open source hardware and software development for the sciences. Given the
overwhelming economic advantages of free and open source technologies, it appears finan-
cially responsible to divert funding of proprietary scientific tools and their development in
favor of FOSH. Policies were outlined that provide nations with a template for strategically
harvesting the opportunities provided by the free and open source paradigm.
� 2020 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Distributed digital manufacturing of free and open source hardware (FOSH) has shown particular promise among scien-
tists for developing custom scientific tools [1,2]. FOSH provides the ‘‘code” for hardware including the bill of materials,
schematics, instructions, CAD designs, and other information needed to recreate a physical artifact. The growth of FOSH
within academia has been rapid in the last decade and appears to be tracking the rise of free and open source software (FOSS)
with about a 20-year lag [3]. Specifically, the growth of articles on FOSH indexed by Google Scholar are following an expo-
nential increase roughly 20 years behind the same growth observed in FOSS [3]. Four advantages of free and open source
technologies over traditional product design have been identified by Baden et al. [4]: 1) designs are not only free, but are
developed by users, which ensure suitability for a given scientific task; 2) building your own experimental equipment yields
a much deeper understanding of the principles underlying its design and a better awareness of its limits, which leads to bet-
ter science; 3) manufacturing is immediate and local, which empowers laboratories all over the world, and 4) the open
source movement is a global phenomenon, which recruits talented builders/makers and software coders from outside the
traditional scientific establishment to help design and fabricate superior devices. The disadvantages of FOSH is 1) there
are not FOSH equivalents for all proprietary scientific hardware, 2) not all scientific groups have the ability to manufacture
self-built devices, 3) quality assurance and reliability are substantial challenges for self-built FOSH. Although, the primary
limitations to FOSH are overcome by commercialization of FOSH (e.g. quality assurance, warranties), early studies indicated
there was a substantial cost savings for self-fabricating equipment for scientists that ranged from 90 to 99% [2,5] and applied
to both standard [6] as well as specialized custom equipment [7]. As the open source design paradigm [8] has been applied in
most areas of the sciences and engineering it is clear that the value of the distributed technology [9] provided a substantial
return on investment for a wide array of technologies in the last decade [10].

It is possible that the savings observed in the early scientific open source technologies was isolated to special cases where
the market had simply left opportunities or been isolated in the ‘low hanging fruit’. In addition, Xing found that the presence
of FOSS can lead to decreases in software prices and profits for proprietary software vendors, while consumer surpluses and
social welfare were increased [11]. If FOSH is reaching a similar level of maturity the same effect may be occurring, which
would decrease the average savings. Today there are examples of open hardware for science in the vast majority of disci-
plines and several resources dedicated specifically to publishing them. Do the tremendous economic savings hold currently?
To answer that question, this study will first evaluate the FOSH in two databases: HardwareX, a journal dedicated to FOSH
and PLOS Open Source Toolkit that houses curated FOSH articles from PLOS One as well as a wide range of specialty journals.
There are two enabling innovations, which provide scientists and engineers this new method of distributed digital manufac-
turing and were reported to provide the > 90% savings [1,2]: 1) open source electronics like the Arduino prototyping platform

(www.arduino.cc) [12] and the self-replicating rapid prototyper (RepRap) project that provides open source 3-D printing

(reprap.org) [13–15]. The Arduino and associated electronics are useful for automation of a wide range of scientific equip-
ment [2,12]. While the RepRap 3-D printer technology can make bespoke mechanical components for developing tool
libraries for optics [16] or syringe pumps [17] as well as becoming scientific tools themselves in the form of microfluidics
prototypers [18], chemical handling systems [19] and 3-D microscopes [20]. The journal articles in the two repositories will
be evaluated for savings over proprietary functionally-equivalent tools as a function of their use of Arduino-based electron-
ics, RepRap-class 3-D printing, as well as the combination of the two. The results will be discussed in the context of science
policy to best reduce the costs of science for the benefit of society.

2. Methods

Two selected databases of free and open source scientific hardware were evaluated in December 2019: HardwareX and
the PLOS Open Source Toolkit. HardwareX is a peer-reviewed open access scientific journal published by Elsevier dedicated

to the open source design and construction of scientific instrumentation. The PLOS Open Source Toolkit (channels.plos.org/o

pen-source-toolkit) is a global forum for open source hardware and software research and applications and contains a collec-
tion of FOSH curated by a team of open source leaders: Tom Baden, André Maia Chagas, Jenny Molloy, Nikoleta E. Glynatsi,
and Yo Yehudi. These two sources of FOSH were used because all of the articles were prescreened by the editors for open
source licenses. Scientific tool designs published in the technology-specific literature is often not fully open source or lacks
licensing information.

All replicants were eliminated (e.g. when HardwareX articles were listed in the Toolkit library) as well as entrants in the
Toolkit library that did not cover a specific hardware device or were not published in the peer reviewed literature.

In total 119 articles were processed (86 in HardwareX and 33 in the PLOS Open Source Toolkit) as shown in Table A1. The
devices discussed in the articles were characterized as those that used 3-D printing or an open source electronics Arduino.
The material costs of the devices were recorded along with the costs of proprietary equivalents if they were available.

Percent savings, S, was calculated by:
S ¼ P � Oð Þ
P

%ð Þ ð1Þ
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Table A1
Open source scientific tools evaluated by use of 3-D printing and Arduino, cost for open source and proprietary equivalents and percent savings as a function of
all, 3-D printing, Arduino and both. (n = not provided).

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

Lau SK, Ribeiro FA, Subbiah J, Calkins CR. Agenator: An open
source computer-controlled dry aging system for beef.
HardwareX. 2019;6.

0 1 $620 n

Fortune BC, Pretty CG, Chatfield LT, McKenzie LR, Hayes MP.
Low-cost active electromyography. HardwareX. 2019;6.

1 1 $112 n

Bravo-Martinez J. Open source automated western blot
processor. HardwareX. 2019;6.

1 1 $135 n

Utter B, Marbaker R, Eschen K, Abel J. Open-source
experimental setup for investigating the actuation behavior
of active textiles. HardwareX. 2019;6.

1 1 $1,940 n

Guver A, Fifita N, Milas P, Straker M, Guy M, Green K, et al. A
low-cost and high-precision scanning electrochemical
microscope built with open source tools. HardwareX.
2019;6.

1 1 $300 $10,000 97% 97% 97% 97%

Romero-Morales AI, O’Grady BJ, Balotin KM, Bellan LM,
Lippmann ES, Gama V. Spin1: an updated miniaturized
spinning bioreactor design for the generation of human
cerebral organoids from pluripotent stem cells. HardwareX.
2019;6.

1 0 $2,500 n

Klar V, Pearce JM, Kärki P, Kuosmanen P. Ystruder: Open source
multifunction extruder with sensing and monitoring
capabilities. HardwareX. 2019;6.

1 1 $150 $3,000 95% 95% 95% 95%

Matheny AM, Marchetto P, Powell J, Rechner A, Chuah J-Y,
McCormick E, et al. LEAF: Logger for ecological and
atmospheric factors. HardwareX. 2019;6.

0 0 $1,300 $0

Rotermund D, Ernst UA, Pawelzik KR. Open Hardware for
neuro-prosthesis research: A study about a closed-loop
multi-channel system for electrical surface stimulations and
measurements. HardwareX. 2019;6.

0 0 n n

Price A. An apparatus for personalized atmospheric and flight
data collection aboard high altitude weather balloons.
HardwareX. 2019;6.

0 1 $54 $272 80% 80%

Chan SHM, Loke LHL, Crickenberger S, Todd PA. Robonerite: A
low-cost biomimetic temperature logger to monitor
operative temperatures of a common gastropod (Nerita
spp.) in tropical urban seascapes. HardwareX. 2019;6.

0 0 $104 $257 60%

Jo W, Hoashi Y, Paredes Aguilar LL, Postigo-Malaga M, Garcia-
Bravo JM, Min B-C. A low-cost and small USV platform for
water quality monitoring. HardwareX. 2019;6.

1 1 $201 n

Alves-Oliveira P, Arriaga P, Paiva A, Hoffman G. Guide to build
YOLO, a creativity-stimulating robot for children.
HardwareX. 2019;6.

1 0 $200 $20,000 99% 99%

Hill AP, Prince P, Snaddon JL, Doncaster CP, Rogers A.
AudioMoth: A low-cost acoustic device for monitoring
biodiversity and the environment. HardwareX. 2019;6.

0 0 $50 $50

Yensen N, Allen PB. Open source all-iron battery for renewable
energy storage. HardwareX. 2019;6.

0 0 $300 n

Camprodon G, González Ó, Barberán V, Pérez M, Smári V, de
Heras MÁ, et al. Smart Citizen Kit and Station: An open
environmental monitoring system for citizen participation
and scientific experimentation. HardwareX. 2019;6.

1 1 $995 n

Vaut L, Scarano E, Tosello G, Boisen A. Fully replicable and
automated retention measurement setup for
characterization of bio-adhesion. HardwareX. 2019;6.

1 1 $500 n

Bessler N, Ogiermann D, Buchholz M�B, Santel A, Heidenreich
J, Ahmmed R, et al. Nydus One Syringe Extruder (NOSE): A
Prusa i3 3D printer conversion for bioprinting applications
utilizing the FRESH-method. HardwareX. 2019;6.

1 0 $100 n

Jo Heuschele D, Wiersma J, Reynolds L, Mangin A, Lawley Y,
Marchetto P. The Stalker: An open source force meter for
rapid stalk strength phenotyping. HardwareX. 2019;6.

0 1 $300 n

Alhaddad AY, Cabibihan J-J, Hayek A, Bonarini A. A low-cost
test rig for impact experiments on a dummy head.
HardwareX. 2019;6.

1 0 $3,795 n

(continued on next page)
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Table A1 (continued)

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

Spinelli GM, Gottesman ZL. A low-cost Arduino-based
datalogger with cellular modem and FTP communication for
irrigation water use monitoring to enable access to
CropManage. HardwareX. 2019;6.

0 1 $400 $2,000 80% 80%

Williams J, Mikhelson I. Triple frame buffer FPGA
implementation. HardwareX. 2019;5.

0 0 $735 n

Shaid A, Wang L, Padhye R, Gregory M. Low cost bench scale
apparatus for measuring the thermal resistance of
multilayered textile fabric against radiative and contact
heat transfer. HardwareX. 2019;5.

0 1 $818 n

Kurata K, Sumida K, Takamatsu H. Open-source cell extension
system assembled from laser-cut plates. HardwareX.
2019;5.

0 0 $629 $6,290 90%

Watson C, Senyo S. All-in-one automated microfluidics control
system. HardwareX. 2019;5.

1 1 $1,730 $10,000 83% 83% 83% 83%

Wang B, Sud R, Leung M, Yang M, Rodriguez JA, Lee R, et al.
OpenEM – Electromagnetic field mapping robot for
microwave and RF measurements. HardwareX. 2019;5.

1 1 $750 n

Frie JA, Khokhar JY. An open source automated two-bottle
choice test apparatus for rats. HardwareX. 2019;5.

1 1 $136 n

Montoya RÁ, Delgado S, Castilla J, Navarrete J, Contreras ND,
Marijuan JR, et al. Methods to simplify cooling of liquid
Helium cryostats. HardwareX. 2019;5.

0 0 $30 n

Ulrich B. Open-source wideband (DC to MHz range) isolated
current sensor. HardwareX. 2019;5.

0 0 $39 $3,823 99%

Carlson DF, Fürsterling A, Vesterled L, Skovby M, Pedersen SS,
Melvad C, et al. An affordable and portable autonomous
surface vehicle with obstacle avoidance for coastal ocean
monitoring. HardwareX. 2019;5.

1 0 $3,315 n

Mariola M, Bemont C, Petruccione F. A novel analogue
keyboard for embedded applications, based on integer
division truncation. HardwareX. 2019;5.

0 1 $5 n

Medina DAV, Rodriguez Cabal LF, Lanças FM, Santos-Neto ÁJ.
Sample treatment platform for automated integration of
microextraction techniques and liquid chromatography
analysis. HardwareX. 2019;5.

0 1 $715 n

Bhandare A, Patnaik A, Pommerenke D, Sharma S, Fischer D.
Low cost fast frequency switching driver for Acousto-Optic
Modulators used in laser cooling. HardwareX. 2019;5.

0 0 $900 $2,000 55%

Allwright M, Zhu W, Dorigo M. An open-source multi-robot
construction system. HardwareX. 2019;5.

1 1 $40,337 n

Kitchener BGB, Dixon SD, Howarth KO, Parsons AJ, Wainwright
J, Bateman MD, et al. A low-cost bench-top research device
for turbidity measurement by radially distributed
illumination intensity sensing at multiple wavelengths.
HardwareX. 2019;5.

1 1 $581 $25,815 98% 98% 98% 98%

Robke R, Hashemi P, Ramsson E. A simplified LED-driven
switch for fast-scan controlled-adsorption voltammetry
instrumentation. HardwareX. 2019;5.

0 0 $7 n

Netto GT, Arigony-Neto J. Open-source Automatic Weather
Station and Electronic Ablation Station for measuring the
impacts of climate change on glaciers. HardwareX. 2019;5.

1 1 $850 $15,000 94% 94% 94% 94%

Guillardi H Júnior, Liberado EV, Pomilio JA, Marafão FP.
General-compensation-purpose Static var Compensator
prototype. HardwareX. 2019;5.

0 0 $6,799 n

Agcayazi T, Foster M, Kausche H, Gordon M, Bozkurt A. Multi-
axis stress sensor characterization and testing platform.
HardwareX. 2019;5.

1 1 $5,800 n

Kumbol VW-A, Ampofo EK, Twumasi MA. Actifield, an
automated open source actimeter for rodents. HardwareX.
2018;4.

1 1 $123 $6,150 98% 98% 98% 98%

Bentancor M, Vidal S. Programmable and low-cost ultraviolet
room disinfection device. HardwareX. 2018;4.

0 1 $176 $1,000 82% 82%

Lei T, Mohamed AA, Claudel C. An IMU-based traffic and road
condition monitoring system. HardwareX. 2018;4.

0 0 $55 n

Kumar Jha R, Srivastav Y, Sumbli V, Trisha, Gandhi V, Jain S.
RFID based food rationing system. HardwareX. 2018;4.

0 1 $37 n
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Table A1 (continued)

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

Oberloier S, Pearce JM. Open source low-cost power monitoring
system. HardwareX. 2018;4.

0 1 $155 $400 61% 61%

Hietanen I, Heikkinen ITS, Savin H, Pearce JM. Approaches to
open source 3-D printable probe positioners and
micromanipulators for probe stations. HardwareX. 2018;4.

1 0 $145 n

Lund J, Paris A, Brock J. Mouthguard-based wireless high-
bandwidth helmet-mounted inertial measurement system.
HardwareX. 2018;4.

1 1 $661 n

Carvalho MC, Sanders CJ, Holloway C. Auto-HPGe, an
autosampler for gamma-ray spectroscopy using high-purity
germanium (HPGe) detectors and heavy shields.
HardwareX. 2018;4.

1 1 $750 n

LeSuer RJ, Osgood KL, Stelnicki KE, Mendez JL. OMIS: The Open
Millifluidic Inquiry System for small scale chemical
synthesis and analysis. HardwareX. 2018;4.

1 1 $103 n

Schlatter S, Illenberger P, Rosset S. Peta-pico-Voltron: An open-
source high voltage power supply. HardwareX. 2018;4.

0 1 $420 $7,700 95% 95%

Slocum RK, Adams RK, Buker K, Hurwitz DS, Mason HB, Parrish
CE, et al. Response spectrum devices for active learning in
earthquake engineering education. HardwareX. 2018;4.

0 1 $265 n

Kassis T, Perez PM, Yang CJW, Soenksen LR, Trumper DL,
Griffith LG. PiFlow: A biocompatible low-cost
programmable dynamic flow pumping system utilizing a
Raspberry Pi Zero and commercial piezoelectric pumps.
HardwareX. 2018;4.

1 0 $350 n

Bellon JA, Pino MJ, Wilke N. Low-cost equipment for
electroformation of Giant Unilamellar Vesicles. HardwareX.
2018;4.

1 0 $75 n

Carrillo-Bucio JL, Tena-Garcia JR, Armenta-Garcia EP,
Hernandez-Silva O, Cabañas-Moreno JG, Suárez-Alcántara K.
Low-cost Sieverts-type apparatus for the study of hydriding/
dehydriding reactions. HardwareX. 2018;4.

0 0 $10,000 n

Raymond MA, Mast TG, Breza JM. An open-source lickometer
and microstructure analysis program. HardwareX. 2018;4.

1 0 $216 n

Gaudenzi Asinelli M, Serra Serra M, Molera Marimòn J, Serra
Espaulella J. The smARTS_Museum_V1: An open hardware
device for remote monitoring of Cultural Heritage indoor
environments. HardwareX. 2018;4.

1 1 $24 n

Ibarra D, Ledesma R, Lopez E. Design and construction of an
omnidirectional sound source with inverse filtering
approach for optimization. HardwareX. 2018;4.

1 0 $190 n

Garcia VE, Liu J, DeRisi JL. Low-cost touchscreen driven
programmable dual syringe pump for life science
applications. HardwareX. 2018;4.

1 0 $603 $1,500 60% 60%

Drackley B, Holtz M, Yang J. An inexpensive modified weight-
bearing device assembled in-house for high throughput
unbiased behavioral pain assessment in mice. HardwareX.
2018;4.

0 1 $725 n

Woern AL, McCaslin JR, Pringle AM, Pearce JM. RepRapable
Recyclebot: Open source 3-D printable extruder for
converting plastic to 3-D printing filament. HardwareX.
2018;4.

1 1 $671 $6,000 89% 89% 89% 89%

Reinecke T, Clowers BH. Implementation of a flexible, open-
source platform for ion mobility spectrometry. HardwareX.
2018;4.

0 0 $210 n

Susko AQ, Gilbertson F, Heuschele DJ, Smith K, Marchetto P. An
automatable, field camera track system for phenotyping
crop lodging and crop movement. HardwareX. 2018;4.

0 0 $5,550 n

Thompson AL, Conrad A, Conley MM, Shrock H, Taft B, Miksch
C, et al. Professor: A motorized field-based phenotyping
cart. HardwareX. 2018;4.

0 0 $4,000 n

Fleming J, Amietszajew T, McTurk E, Greenwood D, Bhagat R.
Development and evaluation of in-situ instrumentation for
cylindrical Li-ion cells using fibre optic sensors. HardwareX.
2018;3:100–9.

0 0 $148 n

(continued on next page)
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Table A1 (continued)

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

White JA, Streets AM. Controller for microfluidic large-scale
integration. HardwareX. 2018;3:135–45.

0 1 $200 n

Carvalho MC, Murray RH. Osmar, the open-source microsyringe
autosampler. HardwareX. 2018;3:10–38.

1 1 $477 $30,000 98% 98% 98% 98%

Pusch K, Hinton TJ, Feinberg AW. Large volume syringe pump
extruder for desktop 3D printers. HardwareX. 2018;3:49–
61.

1 0 $49 $200,000 100% 100%

Winters BJ, Shepler D. 3D printable optomechanical cage
system with enclosure. HardwareX. 2018;3:62–81.

1 0 $379 n

Dellal D, Yee E, Lathwal S, Sikes H, Gomez-Marquez J. Low-cost
plug and play photochemistry reactor. HardwareX.
2018;3:1–9.

1 1 $68 $6,800 99% 99% 99% 99%

Cain PW, Cross MD. An open-source hardware GPS data logger
for wildlife radio-telemetry studies: A case study using
Eastern box turtles. HardwareX. 2018;3:82–90.

0 1 $40 n

Potticary J, Avery MP, Mills D, Hall SR. DONALD: A 2.5 T wide
sample space permanent magnet. HardwareX. 2018;3:39–
48.

0 0 $829 n

Bravo-Martinez J. Open source 3D-printed 1000 lL
micropump. HardwareX. 2018;3:110–6.

1 0 $43 n

Liardon J-L, Hostettler L, Zulliger L, Kangur K, Gujja Shaik NS,
Barry DA. Lake imaging and monitoring aerial drone.
HardwareX. 2018;3:146–59.

1 1 $2,203 n

Brower K, Puccinelli RR, Markin CJ, Shimko TC, Longwell SA,
Cruz B, et al. An open-source, programmable pneumatic
setup for operation and automated control of single- and
multi-layer microfluidic devices. HardwareX. 2018;3:117–
34.

1 0 $2,101 $21,010 90% 90%

Kodera T. Adaptive antenna system by ESP32-PICO-D4 and its
application to web radio system. HardwareX. 2018;3:91–9.

0 0 $29 n

Dobbelaere T, Vereecken PM, Detavernier C. A USB-controlled
potentiostat/galvanostat for thin-film battery
characterization. HardwareX. 2017;2:34–49.

0 0 $100 $20,000 100%

Chen X, Leon-Salas WD, Zigon T, Ready DF, Weake VM. A
programmable optical stimulator for the Drosophila eye.
HardwareX. 2017;2:13–33.

1 0 $757 n

Liardon J-L, Barry DA. Adaptable imaging package for remote
vehicles. HardwareX. 2017;2:1–12.

1 0 $441 n

Ferretti J, Di Pietro L, De Maria C. Open-source automated
external defibrillator. HardwareX. 2017;2:61–70.

0 0 $441 n

Lupetti ML. Shybo. An open-source low-anthropomorphic
robot for children. HardwareX. 2017;2:50–60.

1 1 $80 n

Irgens P, Bader C, Lé T, Saxena D, Ababei C. An efficient and cost
effective FPGA based implementation of the Viola-Jones face
detection algorithm. HardwareX. 2017;1:68–75.

0 0 $310 n

Chamorro-Posada P, Vázquez-Cabo J, Rodríguez JL, López-
Santos JM. A plug’n’play WiFi surface-mount dual-loop
antenna. HardwareX. 2017;1:46–53.

0 0 $13 n

Dhankani KC, Pearce JM. Open source laboratory sample
rotator mixer and shaker. HardwareX. 2017;1:1–12.

1 0 $30 $420 93% 93%

Jiang J, Claudel C. A high performance, low power
computational platform for complex sensing operations in
smart cities. HardwareX. 2017;1:22–37.

0 0 $235 n

Pocero L, Amaxilatis D, Mylonas G, Chatzigiannakis I. Open
source IoT meter devices for smart and energy-efficient
school buildings. HardwareX. 2017;1:54–67.

0 1 $248 n

Oh J, Hofer R, Fitch WT. An open source automatic feeder for
animal experiments. HardwareX. 2017;1:13–21.

1 1 $220 n

McMunn MS. A time-sorting pitfall trap and temperature
datalogger for the sampling of surface-active arthropods.
HardwareX. 2017;1:38–45.

1 1 $215 n

García-Pinillos F, Latorre-Román PÁ, Soto-Hermoso VM,
Párraga-Montilla JA, Pantoja-Vallejo A, Ramírez-Campillo R,
et al. Agreement between the spatiotemporal gait
parameters from two different wearable devices and high-
speed video analysis. PLOS ONE. 2019 Sep 24;14(9):
e0222872.

0 0 n n
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Table A1 (continued)

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

SignalBuddy [Internet]. OpenBehavior. 2019 [cited 2020 Jan
15]. Available from: https://edspace.american.edu/
openbehavior/2019/09/19/signalbuddy/

1 1 $15.00 n

Yallapragada VVB, Gowda U, Wong D, O’Faolain L, Tangney M,
Devarapu GCR. ODX: A Fitness Tracker-Based Device for
Continuous Bacterial Growth Monitoring. Anal Chem. 2019
Oct 1;91(19):12329–35.

1 1 $25.00 n

Kang HJ, Yang J, Chun BJ, Jang H, Kim BS, Kim Y-J, et al. Free-
space transfer of comb-rooted optical frequencies over an
18 km open-air link. Nature Communications. 2019 Sep
30;10(1):1–8.

0 0 n n

Törnbom K, Lundälv J, Palstam A, Sunnerhagen KS. ‘‘My life
after stroke through a camera lens”- A photovoice study on
participation in Sweden. PLOS ONE. 2019 Sep 11;14(9):
e0222099.

0 0 n n

Kalwa U, Legner C, Wlezien E, Tylka G, Pandey S. New methods
of removing debris and high-throughput counting of cyst
nematode eggs extracted from field soil. PLOS ONE. 2019
Oct 15;14(10):e0223386.

1 0 $100.00 n

Bernard C. Open Source Tools and Methods: A New Category of
Short Papers to Share Knowledge, Accelerate Research, and
Acknowledge Those Who Develop Such Tools and Methods.
eNeuro [Internet]. 2019 Sep 1 [cited 2020 Jan 15];6(5).
Available from: https://www.eneuro.org/content/6/5/
ENEURO.0342–19.2019

0 0 n n

Scholz A, Eggenhofer F, Gelhausen R, Grüning B, Zarnack K,
Brüne B, et al. uORF-Tools—Workflow for the determination
of translation-regulatory upstream open reading frames.
PLOS ONE. 2019 Sep 12;14(9):e0222459.

0 0 n n

Blin G, Sadurska D, Migueles RP, Chen N, Watson JA, Lowell S.
Nessys: A new set of tools for the automated detection of
nuclei within intact tissues and dense 3D cultures. PLOS
Biology. 2019;17(8):e3000388.

0 0 n n

Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M,
Sadeh S, et al. Open Source Brain: A Collaborative Resource
for Visualizing, Analyzing, Simulating, and Developing
Standardized Models of Neurons and Circuits. Neuron. 2019
Aug 7;103(3):395–411.e5.

0 0 n n

Morrison TJ, Sefton E, Marquez-Chin M, Popovic MR, Morshead
CM, Naguib HE. A 3D Printed Device for Low Cost Neural
Stimulation in Mice. Front Neurosci [Internet]. 2019 [cited
2020 Jan 15];13. Available: https://www.frontiersin.org/
articles/10.3389/fnins.2019.00784/full

1 0 $1.00 n

Singh S, Bermudez-Contreras E, Nazari M, Sutherland RJ,
Mohajerani MH. Low-cost solution for rodent home-cage
behaviour monitoring. PLOS ONE. 2019 août;14(8):
e0220751.

0 0 $35.00 n

Byagathvalli G, Pomerantz A, Sinha S, Standeven J, Bhamla MS.
A 3D-printed hand-powered centrifuge for molecular
biology. PLOS Biology. 2019 mai;17(5):e3000251.

1 0 $1.00 n

Aidukas T, Eckert R, Harvey AR, Waller L, Konda PC. Low-cost,
sub-micron resolution, wide-field computational
microscopy using opensource hardware. Scientific Reports.
2019 May 15;9(1):1–12.

1 0 $150.00 n

Colville MJ, Park S, Zipfel WR, Paszek MJ. High-speed device
synchronization in optical microscopy with an open-source
hardware control platform. Scientific Reports. 2019 Aug
21;9(1):1–13.

0 0 $525.00 $745.00 30%

Kallmyer NE, Shin HJ, Brem EA, Israelsen WJ, Reuel NF. Nesting
box imager: Contact-free, real-time measurement of
activity, surface body temperature, and respiratory rate
applied to hibernating mouse models. PLOS Biology. 2019
juil;17(7):e3000406.

0 1 $400.00 $5,000.00 92% 92%
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Table A1 (continued)

Uses Cost (USD) Percent Savings (%)

Title 3DP Arduino OS Proprietary Total Only
3DP

Only
Ard.

3DP + Ard.

Chiapello M, Das D, Gutjahr C. Ramf: An Open-Source R
Package for Statistical Analysis and Display of Quantitative
Root Colonization by Arbuscular Mycorrhiza Fungi. Front
Plant Sci [Internet]. 2019 [cited 2020 Jan 15];10. Available
from: https://www.frontiersin.org/articles/10.3389/fpls.
2019.01184/full

0 0 n $600.00

UV Transilluminators and Open source DIY kit — UV
Transilluminator Manual [Internet]. [cited 2020 Jan 15].
Available from: http://public.iorodeo.com/docs/
uv_transilluminator/on the Cheap

0 0 $225.00 $1,100.00 80%

Pereira VR, Hosker BS. Low-cost (<€5), open-source, potential
alternative to commercial spectrophotometers. PLOS
Biology. 2019 juin;17(6):e3000321.

1 0 $6.00 $1,113.00 99% 100%

Amann S, Witzleben M von, Breuer S. 3D-printable portable
open-source platform for low-cost lens-less holographic
cellular imaging. Scientific Reports. 2019 Aug 2;9(1):1–10.

1 0 $190.00 $900.00 79% 79%

Godwin LW-, Brown D, Livingston R, Webb T, Karriem L,
Graugnard E, et al. Open-source automated chemical vapor
deposition system for the production of two- dimensional
nanomaterials. PLOS ONE. 2019 Jan 16;14(1):e0210817.

0 1 $30,000.00 $95,000.00 68% 68%

Portnova AA, Mukherjee G, Peters KM, Yamane A, Steele KM.
Design of a 3D-printed, open-source wrist-driven orthosis
for individuals with spinal cord injury. PLOS ONE. 2018
févr;13(2):e0193106.

1 0 $15.00 $140.00 89% 89%

Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T,
et al. Low cost and open source multi-fluorescence imaging
system for teaching and research in biology and
bioengineering. PLOS ONE. 2017 Nov 15;12(11):e0187163.

1 0 $250.00 $10,000.00 98% 98%

Forman CJ, Tomes H, Mbobo B, Burman RJ, Jacobs M, Baden T,
et al. Openspritzer: an open hardware pressure ejection
system for reliably delivering picolitre volumes. Scientific
Reports. 2017 May 19;7(1):1–11.

1 1 $484.00 $2,691.00 82% 82% 82% 82%

Vera RH, Schwan E, Fatsis-Kavalopoulos N, Kreuger J. A
Modular and Affordable Time-Lapse Imaging and Incubation
System Based on 3D-Printed Parts, a Smartphone, and Off-
The-Shelf Electronics. PLOS ONE. 2016 déc;11(12):
e0167583.

1 1 $277.00 $5,000.00 94% 94% 94% 94%

Kinstlinger IS, Bastian A, Paulsen SJ, Hwang DH, Ta AH, Yalacki
DR, et al. Open-Source Selective Laser Sintering (OpenSLS) of
Nylon and Biocompatible Polycaprolactone. PLOS ONE. 2016
févr;11(2):e0147399.

1 1 $10,000.00 $400,000.00 98% 98% 98% 98%

Wittbrodt BT, Squires DA, Walbeck J, Campbell E, Campbell
WH, Pearce JM. Open-Source Photometric System for
Enzymatic Nitrate Quantification. PLOS ONE. 2015 août;10
(8):e0134989.

1 0 $65.00 $433.00 85% 85%

Rosenegger DG, Tran CHT, LeDue J, Zhou N, Gordon GR. A High
Performance, Cost-Effective, Open-Source Microscope for
Scanning Two-Photon Microscopy that Is Modular and
Readily Adaptable. PLOS ONE. 2014 Oct 21;9(10):e110475.

1 0 n n

Shlyonsky V, Dupuis F, Gall D. The OpenPicoAmp: An Open-
Source Planar Lipid Bilayer Amplifier for Hands-On Learning
of Neuroscience. PLOS ONE. 2014 Sep 24;9(9):e108097.

0 0 $223.00 $8,900.00 97%

Patel SR, Ghose K, Eskandar EN. An Open Source 3-D Printed
Modular Micro-Drive System for Acute Neurophysiology.
PLOS ONE. 2014 avr;9(4):e94262.

1 1 $739.00 $30,000.00 98% 98% 98% 98%

Campbell RAA, Eifert RW, Turner GC. Openstage: A Low-Cost
Motorized Microscope Stage with Sub-Micron Positioning
Accuracy. PLOS ONE. 2014 févr;9(2):e88977.

0 1 $1,000.00 $10,000.00 90% 90%

Rowe AA, Bonham AJ, White RJ, Zimmer MP, Yadgar RJ, Hobza
TM, et al. CheapStat: An Open-Source, ‘‘Do-It-Yourself”
Potentiostat for Analytical and Educational Applications.
PLOS ONE. 2011 Sep 13;6(9):e23783.

0 0 $80.00 $1,000.00 92%

Miller AR, Davis GL, Oden ZM, Razavi MR, Fateh A, Ghazanfari
M, et al. Portable, Battery-Operated, Low-Cost, Bright Field
and Fluorescence Microscope. PLOS ONE. 2010;5(8):e11890.

0 0 $240.00 $1,875.00 87%
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where P is the proprietary cost of a commercial system and O is the open source device cost in U.S. dollars, which is limited to
the material costs. The proprietary scientific hardware may also include a warranty and is generally fully assembled,
whereas the FOSH is assumed to be self-built. The limitations to this approach and how to integrate labor costs are discussed
in detail in Section 4.2. In general, the values used for P and O were conservatively limited to a direct cost comparison. These
values were provided by the authors of the manuscript. In some cases, there were multiple values of O or P and in these cases
representative (as close to direct) comparisons were made.

In addition, the average S was also calculated for those open source hardware devices that used 3-D printing, that used
Arduinos and that used both.
3. Results

The percent savings as a function of year of publication is shown in Fig. 1 for the FOSH that had percentage savings for 3-D
printing only, Arduino only, the combination of both and those devices with only a total savings. As can be seen in Fig. 1 the
spread in savings is becoming larger with time, although the vast majority of the published FOSH with savings that can be
calculated are clustered over 90%. This clustering is more pronounced progressively with those that use Arduinos, 3-D
printed devices, and the combination of the two technologies. The trend lines for the total and that use Arduinos are both
negative with a slope of �0.014, which indicates that savings are becoming less over time. The same negative trend although
less pronounced is seen for those FOSH that have both 3-D printing and Arduino technology (-0.0028). For the technologies
that only use 3-D printing the slope is slightly positive (0.0007), which can be in part due to the reduction in 3-D printing
filament costs over the same time period, however, these slopes must be used with caution. First, the number of technologies
evaluated mean that the slightly positive slope seen for 3-D printing should be viewed statistically as roughly flat. Second,
these values are in percents, which indicate a 1.4% drop in savings as compared to proprietary tools for the totals per year.
Thus, linear forecasting into the future with a 95% confidence interval provides values of 80% cost savings in 2023 with the
lower confidence bound of 68% and an upper confidence bound of 91%. This is, however, also misleading as can be seen by
the data plotted in Fig. 1. For the three years when there are substantial open hardware that met the criteria for this study to
evaluate for the amount of variation in percent savings (2017, 2018 and 2019) there is an increasing standard deviation of
7%, 13% and 19%, respectively. A single technology, providing a relatively meager 30% cost saving (high-speed device syn-
chronization in optical microscopy) reduces the savings by 3% and increases the standard deviation by 5%. Evaluation of
the results provides the conclusions that there is a clear expansion in the range of devices considered for open hardware
development, which is broadening the potential savings to both 99% savings and higher as well as to lower percent savings.
Fig. 1. FOSH percent savings compared to proprietary tools as a function of year of publication.
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As can be seen in both Table A1 and Fig. 1 the historical economic savings observed in the early open hardware literature
are still present for newly developed technologies. The two supporting technologies that originally enabled widespread dis-
tributed manufacturing of open source scientific tools continue to play a significant role in open source scientific hardware
with 3-D printing being used for 46% of the devices and Arduino microcontrollers being used for 39%. Thus, more than half of
the devices (54%) did not use 3-D printing and an even greater number (61%) did not use Arduino technology. No other tech-
nologies, however, were found that were as widely used in the FOSH evaluated. Most of the open source technologies had
economic costs calculated by the authors of the manuscripts (92.4%) although there were only proprietary cost equivalents
for 37.8% of the devices. This difference is due to a combination of factors including both real novelty in some of the open
hardware (e.g. there was no functionally equivalent commercial product) as well as many authors focusing on function over
cost). For the scientific tools where the data was available, the average material costs from the aggregate of the bill of mate-
rials for the open hardware devices analyzed was under $1,500 and the average replacement cost for a proprietary device
with equivalent functionality was well over $20,000. Overall the average open hardware scientific tool saved 87% compared
to the proprietary tool. These savings ranged from on the high end over 99% for robots [21], sensors [22], reactors [23], ana-
lytical equipment [24] and digital manufacturing equipment [25]. The latter type of equipment that is used for the automa-
tion of experiments or further custom scientific experiments generally saved a large percentage over commercial products
(e.g. laser sintering AM system [26] or an autosampler [27]). The open source hardware that saved the least (in terms of per-
centage) was from device synchronization [28] or on technologies that had wider application than science (e.g. it is mass
produced for other applications like power monitoring [29]). These savings were still high with only one device under
50% savings and the standard deviation of only 15%. The representative example of the average open source hardware project
was a portable, battery-operated, bright field and fluorescence microscope, which could be built for $240 and replaced a pro-
prietary tool costing $1,875, thereby saving 87% [30].

These open source hardware economic values increased slightly to 89% for those that used Arduino technology and even
more to 92% for those that used 3-D printing. It is well established that fabricating products with a distributed desktop 3-D
printer result in lower costs for scientific equipment [1,2,4,29,31–37]. Similarly, automation with an Arduino is also known
to reduce costs for a wide variety of experimental disciplines [1,2,4,38–43]. It should be noted that the use of the Arduino is
not the lowest possible cost, as the microcontroller chips can be built into a custom PCB for less money than buying even the
lower costs Arduinos (e.g. the nano or uno). However, the number of labs with ready access to the skills necessary to design
and fabricate a board are limited (although there are several open source PCB mills available for low costs [44,45]). The stan-
dard deviation also tightened for these classes of open hardware devices to 9% and 10% for 3-D printed and Arduino-using
projects, respectively. These trends remained, but became even more substantial when the additive manufacturing and open
source electronics technologies were combined. For open hardware devices that used both Arduino and 3-D printing the per-
cent savings averaged 94% over commercial equivalents. The standard deviation shrunk to 6% although only about 10% of all
open source hardware devices evaluated in Table A1 combined both of these techniques. Thus, the vast majority (90%) did
not use both technologies.
4. Discussion

4.1. Limitations

This study had several limitations. First, the databases selected are far from a complete survey of all open source scientific
hardware as it has grown to be quite substantial as evidence from Google Scholar results [3] as well as the list maintained on

Appropedia (https://www.appropedia.org/Open-source_Lab). Last year (2019) alone, for example, records over 1,500 articles
with the term ‘‘open source hardware” indexed by Google Scholar. However, both of the sources for articles were relatively
recent (e.g. HardwareX started publishing in 2017) and both draw on hardware that would be of interest to a wide range of
scientists unlike the specialty literature alone, which still makes up the majority of open hardware literature. These two
sources also ensured that the hardware evaluated was indeed fully free and open source licensed. There could, however,
be a selection bias present (e.g. the devices evaluated may haven been particularly amenable to open source approaches
while this may not be the case for all scientific hardware).

Second, although the HardwareX articles almost all had a cost of the open hardware calculated as this is a requirement for
the journal, many of the other articles did not. This means cost savings that do exist or were different from the average
shown here were missed. In addition, many of the devices were for equipment that is not commercially available so direct
apples-to-apples savings was not available. This is because one of the primary advantages of open source hardware is that it
enables scientists to make new tools that enable new experiments and new science to be discovered. In addition, if a given
study provided a range a wide range of values or had multiple comparisons, it was not used in the review calculations. So, for
example, in the Hietanen et al.’s study [46] on three approaches to open source 3-D printable probe positioners and micro-
manipulators the different open source technologies were evaluated with a range of performances, costs (<$5 to $145 to
make), and proprietary commercial equivalents. Analysis is complicated by the fact that the open source <$5 version is com-
mercially available for $100. In addition, the simple open source probe holders that went on the positioners cost only $55 but
replaced those that cost $450-$580 with a connector or $280-$305 with wire, or $490-$860 with a tri-axial connectors [46].
In addition, the shipping costs vary widely based on the country and the company for which the parts are being purchased. In
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many cases in the U.S. shipping is free, but in other countries VAT and other costs come into play. The resulting complexities
from comparing all possible permutations and combinations for all the studies that had such complexities was beyond the
scope of this article, although it is clear that in general distributed fabrication would save considerable sums of money
depending on the labor costs.

Considerable future work is needed to evaluate FOSH in general and the specific FOSH evaluated here for is reliability and
quality assurance of self-built scientific hardware. Much of the FOSH tools described had been validated for function, but not
over the lifetime of the device. For a full direct comparison with proprietary scientific hardware future studies need to ascer-
tain if self-built machines are prone to failure and errors at a different rate than their proprietary equivalents as well as the
potential need for safeguards from fabrication errors to prevent known failure modes particularly if user or builder error
could be the cause.

Lastly, the relevance of FOSH could be tracked in future work to evaluate the number of times a FOSH devices has been
downloaded, replicated, forked, etc. using the analytics of osf.io and other repositories. This could provide the necessary data
to calculate the total value to society and the return on investment for science funders following studies [9] and [10],
respectively.
4.2. Labor costs

The savings calculations used here assumed no labor cost, however, for the cases where labor that costs money is needed
to fabricate the device, the time it takes to make it is simply multiplied by the labor cost including all overhead and benefits
costs. These costs vary widely across the globe, type of institution and type of worker. Often the savings for the open hard-
ware is so substantial that it is easy to justify in-house fabrication when the cost of the hardware is moderate to high. How-
ever, in some cases, it may be less costly to simply purchase a proprietary tool than to build it (e.g. when the worker is a
highly-paid post doc at an elite Western university and the tool is complex and thus time consuming to make, but still
has low commercial value because it is mass produced). To better help scientists make these decisions, ideally open hard-
ware designers would always fabricate a second prototype using people external to the project to gain a better estimation
of fabrication time for non-designers. It is likely that as open hardware becomes more common and scientists build off of
past work, that knowing and reporting these times will become more common. Considerable future work is needed, how-
ever, in this area.

The cost savings determined assume that there is no labor cost for the purchasing of components, 3-D printing, and
assembly of the free and open source scientific hardware. Most proprietary equipment comes fully assembled and often
‘‘plug and play” so it is important to analyze this assumption carefully to be able to compare the costs of the BOM of open
hardware to that of commercial products. Zero labor costs are relevant in a number of academic situations that may repre-
sent a significant fraction of researchers. Thus, these cases will be analyzed in detail.

The fabrication of an open source hardware device, which has been previously designed, prototyped, tested and vetted (as
the devices in Table A1 have been) are substantially easier to replicate than building one from scratch without plans. This is
particularly true of the devices that rely on digital manufacturing techniques predominantly with the use of only a few ‘‘vi-
tamins” (readily available commercial off-the-shelf components). Thus, the fabrication of equipment is often within reach of
students at most levels. Let us consider the two foundational technologies as examples of this ease of replication: 3-D print-
ing and Arduino.

3-D printing with a desktop 3-D printer, which makes up about half (46%) of the open source devices shown in Table A1
can be accomplished by low-skilled labor (e.g. anyone with basic computer literacy) [47]. In general, assuming a modern cal-
ibrated auto-bed leveling RepRap-class 3-D printer that used fused filament fabrication, the time investment for the printing
process is a tiny fraction of the total print time. Depending on the printer, however, the maintenance and calibration of a 3-D
printer can vary widely. For scientists that use their own systems the time investment to do this is necessary to include, but
for others that use externally maintained systems (e.g. in libraries, machine shops, makerspaces, fab labs, etc.) the specific
print time setup is representative of the time investment. The 3-D printer may need to run for hours to fabricate a part layer
by layer from common plastics, but this can be accomplished untended by a human operator. The human 3-D printer oper-
ator’s time is truly limited as operation requires a ‘‘time investment” equivalent to approximately the cost of time for online
shopping thanks to pre-made designs housed in free repositories. A relevant example would be the NIH 3D Print Exchange

(3dprint.nih.gov), which provides models in formats that are readily compatible with RepRap 3-D printers and offers a cus-
tom labware category. It should be noted that the other major open design 3-D printing repositories (e.g. MyMiniFactory,
YouMagine, Thingiverse, etc.) that offer a wide range (millions) of other products also contain substantial scientific hard-
ware. Thus, instead of the lab worker inputting a purchase card or credit card information, the scientist would download
the stl format file, slice following the predetermined settings and click print. For many open source 3-D printers there are
also built-in presets for slicing (e.g. the quick print settings on a Lulzbot 3-D printer). As soon as the stl is loaded, the user
clicks print and can then walk away and has no active participation in the manufacturing. For simple scientific equipment
(e.g. a test tube rack) the material costs are extremely close to the total cost as the operating of a 3-D printer is barely influ-
enced by the cost of electricity [48] as they are relatively efficient devices [49,50]. There are also more complex fully 3-D
printable devices that can print in place like a labjack or need only a modest amount of Lego-block like assembly (e.g. a cen-
trifuge [51]). In general, it takes less than 1 min to load an stl, have it sliced in an open source slicing software like Cura of
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Slic3r, and click print (it should be noted, that large complex designs take longer to slice and may need many components
printed separately).

Similar minimal time investments can also be seen for basic Arduino-based open source scientific hardware projects. The
user follows what is often a simple wiring diagram for plugging components into the Arduino board. There are many
‘‘shields”, which are electric circuit boards that can be plugged on top of the Arduino PCB to extend its capabilities. The dif-

ferent shields, which can be found on the Arduino website and www.shieldlist.org follow the same philosophy as the original
Arduino as they are easy to mount and can be produced for low-costs. There are shields for scientific applications ranging
from pH monitoring [2] to medical devices [52] and measuring air quality using wireless self-powered devices [53]. Many
of the studies reviewed in Table A1 either developed or used Arduino shields including references [23,54–59]. Fabrication
of an Arduino device using a shield is often literally ‘‘plug and play” so again the time investment calculation is unnecessary.
Although, it should be pointed out that this assumes a base level of technical sophistication as inexperienced people may not
be able to follow wiring diagrams. This, experience could be for example gained either in makerspace-based Arduino work-
shops or by an undergraduate student finishing a controls class.

Many of the open hardware tools summarized in Table A1 do entail significant time for fabrication, assembly and calibra-
tion. Even for these devices at an educational institution the labor cost can still be zero. This can be the case when the fab-
rication of the equipment is used as part of training students as part of their educational experience. Students can, for
example, fabricate their own lab equipment [60–65]. In addition, the use of 3-D printing used in the classroom has been
shown to not only save money but have several benefits related to empowering students [66–68]. As the tools they are fab-
ricating are ‘‘research grade” they can bring students closer to doing actual science rather than simply copying recipes of
former experiments.

Zero labor cost also holds true where the labor is provided by unpaid interns or volunteers. This can often be seen in uni-
versities, where for example undergraduates volunteer for research to gain experience and improve their resumes. Compa-
nies similarly sometimes have interns that are not being paid to gain experience. It should be pointed out here, that these
zero labor cost situations describe the actual budget of a working scientist, which means that to obtain a given FOSH if sci-
entists use these mechanisms their out of budget costs are only the materials costs.

Another relatively common zero labor cost situation is when there is no opportunity cost to using existing salaried
employee (e.g., the use of a lab manager or RA, TA, or other position that is paid a fixed cost, and for which there is no oppor-
tunity cost for them working on the fabrication of the device). Many university employees have positions that do not involve
continuous focused work during the times for which they are paid because their service is for example being accessible to
answer student questions. These zero opportunity cost employees are already used for other tasks (e.g. photocopying exams)
interspersed between their fixed time tasks (e.g. answering the phone). For example, a department secretary may be asked to
use a 3-D printer to manufacturer dozens of parts for a complex scientific device as time allows between other duties the
same as if this time were used to print out exam copies. Similarly, a PI with low discretionary funds may simply choose
to use his own time to make a critical tool to gain enough preliminary data to be competitive on an external grant. Although
the secretary or the PI is paid, there is no budget cost to their time from the perspective of an individual scientist’s budget.
4.3. Beyond savings to value

4.3.1. Access to equipment
Although the results of this study showed that there were savings present calculating the benefits of FOSH for scientists

when only considering savings are incomplete. First, the availability of low-cost FOSH makes some capabilities possible for
researchers that would otherwise be prohibitively expensive or impossible. If a device would never have been purchased
because for example it required winning an NSF Major Research Instrumentation (MRI) Program grant it is not appropriate
to talk about savings. Only approximately a fifth of scientists that can meet the cost sharing and matching requirements
under the Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards (Uniform
Guidance) (2 CFR, Part 200) win an MRI in a given year. If a FOSH device costs only 30% of the proprietary device, all of
the scientists that could obtain the match from their university could afford the equipment as cost sharing requirements
for an MRI must be exactly 30% of the total project cost. With the availability of FOSH the entire scientific community
becomes effectively wealthier even with no increase in budgets.
4.3.2. Project management benefits of FOSH
The FOSH approach also provides substantial benefits from a project management standpoint for working scientists. With

the rise of bureaucracies not aligned with discovery, administrative techniques can actively hamper science [69]. For exam-
ple, it is not uncommon in academia to have the ‘‘types of money” not coincide with experimental reality. Mandatory com-
plex budgets where every expenditure must be line-itemized and justified before purchase is now demanded by an
increasing array of funders. It is time consuming and sometimes impossible to legally spend grant or contract funds for
equipment if it has been budgeted to fund the salary of a student or staff member. This type of micro-managed budgeting
restricts the freedom of the scientist to spend the money in the best way possible as often real science demands unpre-
dictable expenditures several years out from a grant proposal budgeting exercise and ‘‘negotiation”. Open source hardware
fabrication provides a relief valve for scientists trapped in these positions. For example, consider a scientist that won a grant
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to find a cure for a specific type of cancer. Most of her budget was slated for students to do lab work on existing equipment
with a few thousand dollars for supplies and chemicals. Half way through the multi-year grant her team makes a promising
new discovery, but needs high-throughput compartmentalization of many biological reactions to see it through. The perfect
tool for this allows for automated control of multi-layer microfluidics and costs over $20,000. This is far more than her sup-
plies budget and trading out research personnel time would not only ham-string her efforts by ruining group morale as she
would need to fire a student researcher, but also may not be acceptable to her program manager. Fortunately, a pro-
grammable pneumatic setup for operation and automated control of single- and multi-layer microfluidic devices has been
developed and open sourced [70]. She can use about $2,000 of her supplies budget to fabricate the equipment with her exist-
ing staff and move forward with the project that could benefit all of humanity.
4.3.3. Non-Direct financial benefits to OSH for science
The results of this study clearly show there is a substantial economic benefit to using open source technologies as a sci-

entist. There are other benefits that are secondary, which will be discussed here. These benefits could be converted into cost
savings, but will be left for future work.

First, open source technology allows for many people to work on its development under some form of share-a-like license
(e.g. GNU GPL v3), which is known to foster and accelerate innovation [71–74]. This is because using open source provides a
global community united around improving these technologies introduce new concepts and capabilities faster, better, and
more effectively than internal teams working on proprietary solutions no matter how gifted the company or institution
[71–74]. In addition, development costs of future iterations of the technologies are lower as has been demonstrated by
the free and open source software community [75–77]. This means that if a scientist adopts a particular tool today, they
know that it is likely to be upgraded in the future in a way that they can benefit from (e.g. software or hardware on their
machine with minimal additional charges because the license demands that those that make improvements re-share them
with the community on the same license).

Second, proprietary instruments generally operate as ‘‘black boxes,” where scientists using them have access to only
restricted information about the hardware and software’s internal workings [78]. In addition, these black boxes have spotty
information for interfacing other instruments or software depending on the provider. An open source approach eliminates
the black box as the technology, equations, and assumptions are all completely transparent. Scientists know exactly how a
device works, which can provide more reliable research and insights into the phenomenon being studied.

Third, open source prevents vendor lock in and there is generally no push to upgrade. This has several benefits. Scientists
are free to use other materials that do not come from the vendor of a particular instrument for example. This can reduce
operating costs, but can also improve scientific flexibility and creativity. If scientists have the legal and technical ability
to alter the code for hardware and software in their labs, they will never be left with stranded assets such as non-
functioning equipment when commercial vendors go out of business, drop a product line, or looses key technical staff
[79]. In addition, in cases when proprietary scientific tools no longer generates enough profit to justify their investment,
companies can cripple their customers’ ability to do research if they stop producing or supporting a product. When a vendor
for any reason stops supporting a product, that tool, which can be quite expensive, loses enormous value. This value is pro-
tected with open source technologies. In this way the open source nature of a product can be viewed as a form of insurance.
With open source products the scientific community can always work to support or build upon it rather than discarding the
technology or sunk assets.

Fourth, following closely on this benefit is the property of open source scientific technology to enable users to make
extensive changes and complete customization of scientific equipment and software. This allows a much more complete
control by the scientists of their research tools, which has benefits that drive high-quality science faster. The features of a
given tool are based solely on merit instead of profit-based, which may appeal to the most users, but not a given specific
user. As a given scientist has complete control over the equipment, he does not need to use or pay for features that he does
not want or need. This can lead to higher quality for the specific researcher for a given tool.

Fifth, often open hardware can be fabricated faster than ordering it and waiting for shipping. This is particularly true for
complex non-mass-produced tools with long lead times [1,2].

Sixth, an open source approach still allows for commercialization using open source business models [79]. For example,
consider a company that sells open source tools that are less expensive than proprietary offerings, while making their
designs freely available. Their tools cost more than fabricating them yourself, but the small cost differential means that sci-
entists would generally find it beneficial to purchase rather than make them. In this case, the scientist gets the best of both
worlds – the freedom and control that comes from open source along with the ‘works out of the box’ method found in com-
mercial offerings for only a relatively small fee.

Seventh, open source provides a culture of collaboration [80] that feeds well into learning communities of academia. With
open source sharing of all research details it is easy for other scientists to follow one another’s work and thus build on it and
cite it. Thus, open source technology is beneficial for tenure-track professors, as open source hardware can assist building
professors’ tenure packages in all three areas of research, teaching, and service and can continue to bolster one’s academic
careers after tenure. The strategic professor will open source valuable (from a research perspective) technologies to garner
citations as others use it and cite it for years to come. The higher citations rates increase an academic’s h-index and thus
opportunities for promotion, which has a direct economic impact on the individual faculty member in increased salary. In
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addition, universities, companies, or research groups that use open source methods can attract better talent. Open source
culture also enable enterprises to access, recruit and retain top talent [81].

Finally, eighth as scientists are building their own equipment or using code they can scrutinize (or have other scrutinize),
they benefit from increased security [82].
4.4. Policy implications

The economic costs of scientific equipment can not be ignored when trying to optimize the benefit of science for human-
ity or a specific nation. Even the wealthiest American scientists, who have dominated research expenditures for decades and
have the most well-equipped research labs in the world [83], have limited access to best tools to do their work because of
inflated prices of proprietary scientific equipment [2]. This lack of access slows the rate of scientific development in every
field. In addition, the exorbitant costs of scientific instruments limit access to exciting and engaging labs in both K-12
and university education [84], which weakens recruitment into STEM (Science, Technology, Engineering and Math) fields
and results in a drain on scientific talent for the future.

Free and open source methods not only offer the potential to radically reduce the cost of doing science, but also for train-
ing future scientists [85]. An entire university classroom of optics setups for a physics course can be printed in house for $500
using a selection of pre-designed components from the open-source optics library on a $250 open-source 3-D printer, replac-
ing $15,000 of commercial equipment [16]. This would save over $66 million if scaled only to the basic physics labs in
degree-granting institutions in the U.S. or over $500 million if scaled to all of the public and private secondary schools across
America [86]. Obviously, the savings would mount to over $1b if scaled globally. The question appears no longer to be
‘‘Should we invest in open source hardware for science and education?” but rather ‘‘Is it economically responsible not to
invest in open source technologies for science and education?”

It is clear there is an enormous return on investment (ROI) possible for those that fund both scientific research, but also
STEM education by investing in free and open source technological development for the sciences.

To fully take advantage of this opportunity, nations must implement policies that allow knowledge to scale horizontally,
leveraging open source methods. This horizontal scaling will be accomplished by national and state-level funding being
spent only once for development of scientific equipment and then an immediate ROI is realized by the digital replication
of the devices throughout the country for the costs of materials. For example, Moritz et al. quantified cost savings and as
a result the value of an open source magnetic resonance imaging device (MRI) currently under development by the Open
Source Imaging Initiative and found that depending on the scenario and the valuation method, savings for healthcare sys-
tems from US$1.8 million up to US$222 million per year are possible in the near future making the case for public funding
and private investment in open source technology development [87]. There is a clear high ROI for medical open source tech-
nologies as well as for the sciences [88]. Similarly, Heikkinen, et al., found that by evaluating the research expenditures for a
representative university, Finland alone could expect to save 2.84–27.7 m€ per year by strategic investment in open hard-
ware development for technologies they spend the most funds purchasing [89]. Li et al. identified five economic motivations
for FOSH companies, which can be applied to nations wanting to capitalize on the opportunity that open source affords: 1)
reduce research and development costs as discussed above, 2) reduce recruiting costs using open source records of
researcher skills, 3) eliminate patent intellectual property costs, 4) build a platform (e.g. Arduino) or 5) provide a related ser-
vice (e.g. RedHat now owned by IBM) [90].

Open source technology is such a powerful tool within science because one researcher can create and publish a design,
and all of us can benefit from it. This leads to an immediate opportunity to catch up to the best practices, so that it is possible
for everyone in the field to continue to push science forward. By harnessing a scalable open-source methodology, funding is
spent only once for development of scientific equipment and then a return on the investment is realized by direct digital
replication of scientific devices for only the costs of materials. The return on investment is even more clear for FOSS where
the cost of replication approaches zero dollars. Using this methodology will ensure that research-grade scientific instru-
ments will be much more accessible at every level of the educational system and a greater percentage of the world’s scien-
tists will be able to participate in experimental science. The ROI thus goes far beyond simply funding laboratories themselves
as is well established, improvements in science lead to improvements in technology, which will enhance every aspect of the
economy [91]. Historically these were on the order of 20–70% [91], but we know from the results of this study that the ROI
for a single device goes beyond that if only copied by a single researcher. These open source scientific devices are being cop-
ied hundreds and thousands of times resulting in ROI for science funders ranging from 100 s to 1,000 s of percent after only a
few months [10]. Future work is needed to track the ROI further than the first generation impacts of open source technolo-
gies (e.g. the wider effects on the economy). In addition, simply because high-quality FOSH designs are available does not
mean that they will be adopted. Careful future analysis is needed to optimize the FOSH marketing to drive the highest pos-
sible ROI.

Given the results of this study it is clearly fiscally responsible to prioritize open source technologies for science research
as in general the cost savings for FOSH are so substantial they enable tremendous effective labor values to be obtained. It is
instructive to determine what the labor cost of a device would need to be to break even with a proprietary scientific tool. As
an example, consider the 3-D printable open source desktop nutating mixer [6]. The overall cost in labor to source, print, and
assemble it is about 1 h, which indicates that it is profitable for an organization to use the open source version if their labor
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costs are under $250/hour, even for the least expensive commercial equivalent (or under $330/hour for the average commer-
cial system) [6].

To maximize the immediate potential of open source technology development in the sciences, nations can implement five
policies:

1) Fund a study or develop a task force (e.g. like the National Academy of Sciences) to identify the top opportunities to
realize strategic national goals and a high ROI for the creation of open-source scientific technologies (both software
and hardware). The country’s largest current expenditures on scientific hardware should be determined along with
the most likely future expenditures. All science-based equipment purchases from internationally-sourced suppliers
can be ranked by value so equivalent (or superior) open-source technologies can be identified as either existing or
needing to be developed as was done recently in Finland [89]. This enables prioritization of FOSH development for
the scientific foci of a specific country or region (e.g. the European Union).

2) Fund the development of open source technology identified in 1). Where the potential FOSH savings are the most sub-
stantial, current funding for scientific hardware should be directed to FOSH projects and because of the high ROI of
such projects further funding should be considered. The former will enable more scientists to utilize scientific hard-
ware for the same costs and the latter may provide a much higher ROI than other expenditures.

3) Collect technology designs to create a national free on-line catalog of tested, vetted and validated free and open-source
scientific tools, which would house the bill of materials, digital designs, instructions for assembly and operation and
the source code for all software and firmware. Over time this vetted database can also include maintenance and reli-
ability data to help scientists make the most informed decisions on their research equipment. Although, many scien-
tific FOSH exist and are widely dispersed (e.g. having been downloaded thousands of times and presumably used) not
all scientists are aware of them and one of the primary disadvantages is concerns over quality and validation. Such a
database would provide this service as was seen with the NIH 3-D Print Exchange providing validated designs for both
clinical and community use during the COVID-19 pandemic [92–94].

4) Institute, preferential purchasing guidelines for open source technologies particularly for validated tool sets from 3)
for all government labs and all government funded projects similar to other federal programs meant to boost a specific
technology (e.g. energy efficiency guidelines).

5) Finally, all policies should be revoked that are counter to open science, like those that discourage the use of open
source technologies based on poor accounting practices [95]. Similarly, the institutional use of ‘preferred suppliers’,
which are commercial in nature limits competition and directly limits purchasing FOSH or FOSH components. Lastly,
government funding currently used to fund the development of proprietary scientific tools by any mechanism should
be transferred to open source development of the functionally equivalent tool as it is highly likely to result in substan-
tial cost savings as well as the other non-monetary benefits detailed here for the entire scientific enterprise.

5. Conclusions

The results of the review find overwhelming evidence for a wide range of scientific tools, that open source technologies
provide substantial economic savings compared to equivalent or less functional proprietary tools. Overall and economic sav-
ings for the technologies reviewed was found to be 87% for using free and open source technologies. These economic savings
increased slightly to 89% for those that used open source Arduino technology and even more to 92% for those that used
RepRap-class 3-D printing. Combining both Arduino and 3-D printing, the savings averaged 94% over commercial equiva-
lents. The results provide strong evidence for financial support of open source hardware and software development for
the sciences. Given the overwhelming economic advantages of free and open source technologies, it appears financially
responsible to divert funding proprietary scientific tools and most especially their development (e.g. SBIR/STTRs for propri-
etary devices in the U.S.) to the purchase and development of FOSH. Policies were outlined that provide nations with a tem-
plate for strategically harvesting the opportunities provided by free and open source technological development.
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