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Abstract

Natural killer (NK) cells are part of the innate immune system and are capable of killing diseased 

cells. As a result, NK cells are being used for adoptive cell therapies for cancer patients. The 

activation of NK cell stimulatory receptors leads to a cascade of intracellular phosphorylation 

reactions, which activates key signaling species that facilitate the secretion of cytolytic molecules 

required for cell killing. Strategies that maximize the activation of such intracellular species can 

increase the likelihood of NK cell killing upon contact with a cancer cell and thereby improve 

efficacy of NK cell-based therapies. However, due to the complexity of intracellular signaling, it is 

difficult to deduce a priori which strategies can enhance species activation. Therefore, we 

constructed a mechanistic model of the CD16, 2B4 and NKG2D signaling pathways in NK cells to 

simulate strategies that enhance signaling. The model predictions were fit to published data and 

validated with a separate dataset. Model simulations demonstrate strong network activation when 

the CD16 pathway is stimulated. The magnitude of species activation is most sensitive to the 

receptor’s initial concentration and the rate at which the receptor is activated. Co-stimulation of 

CD16 and NKG2D in silico required fewer ligands to achieve half-maximal activation than other 

combinations, suggesting co-stimulating these pathways is most effective in activating the species. 

We applied the model to predict the effects of perturbing the signaling network and found two 

strategies that can potently enhance network activation. When the availability of ligands is low, it 

is more influential to engineer NK cell receptors that are resistant to proteolytic cleavage. In 

contrast, for high ligand concentrations, inhibiting phosphatase activity leads to sustained species 

activation. The work presented here establishes a framework for understanding the complex, 

nonlinear aspects of NK cell signaling and provides detailed strategies for enhancing NK cell 

activation.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited.
*Corresponding author. sfinley@usc.edu. 

SUPPLEMENTARY DATA
Supplementary data is available at INTBIO Journal online.

HHS Public Access
Author manuscript
Integr Biol (Camb). Author manuscript; available in PMC 2021 May 21.

Published in final edited form as:
Integr Biol (Camb). 2020 May 21; 12(5): 109–121. doi:10.1093/intbio/zyaa008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Keywords

immune cell signaling; mathematical model; parameter estimation

INTRODUCTION

Natural killer (NK) cells are immune cells that can eliminate cancer cells upon cell contact 

[1–3]. NK cells express a repertoire of stimulatory receptors that mediate the release of 

cytotoxic chemicals when stimulated by antibodies or by cells that express stimulatory 

ligands. The activation of such receptors induces intracellular signaling through a cascade of 

phosphorylation reactions, which ultimately leads to NK cell activation, the secretion of 

cytolytic molecules and cancer cell death. This innate ability for cancer cell elimination has 

spurred an interest in research [3–5] to better understand NK cell activation. In vitro studies 

[6–9] suggest a strong correlation between the activation of key signaling species and NK 

cell activation via target cell killing assays such as 51Cr-release assays as well as cytokine 

production via ELISA. Thus, we hypothesize that enhancing the activation of key signaling 

species can proportionally enhance cancer cell killing and thereby improve patient outcomes 

in the clinic. Given that cancer cell killing is initiated via activation of NK cell stimulatory 

receptors, it is important to understand how the signal propagates and activates the 

downstream species that contribute to target cell killing. Therefore, researchers [1–4, 8, 10] 

have studied NK cell signaling and reported which species are activated downstream of the 

stimulatory receptors. Such findings are crucial in understanding how NK cell activation 

proceeds on the molecular level.

However, due to the natural complexity and nonlinearity underpinning intracellular 

signaling, it is difficult to deduce how NK cell signaling can be modulated to enhance 

species activation. Mathematical models are valuable in these contexts in that they enable us 

to untangle such complicated system behavior and predict the system’s response to a wide 

variety of perturbations [11–17]. For example, work by Das [12] demonstrated how 

receptor-ligand interactions impact NK cell activation and the various NK cell responses 

induced by strong and weak stimulatory ligands. Mesecke and colleagues [13] showed that 

the physical association of Src family kinases (SFK) with a stimulatory receptor is essential 

for NK cells to promote a cytotoxic response and that the activation of the signaling species 

Vav correlates with P815 tumor cell killing. Nevertheless, the question of which strategies 

enhance NK cell signaling (and why) remains open. Additionally, the previous models did 

not determine which molecular perturbations or which pathways should be co-stimulated to 

optimally activate the NK stimulatory network.

Here, we developed a molecularly detailed, experimentally validated mechanistic model of 

NK cell signaling to address the above questions. The CD16, 2B4 and NKG2D stimulatory 

pathways were modeled in this study as these pathways contribute to target cell lysis in 

different ways [4, 18, 19]. CD16 is an Fc receptor that binds to the constant region of 

antibodies. This implicates CD16’s activation in antibody-dependent cell-mediated 

cytotoxicity. Its cytoplasmic domain is associated with CD3ζ, which contains 

immunoreceptor tyrosine-based activation motifs (ITAM). 2B4 is part of the signaling 
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lymphocytic activation molecule (SLAM) family of receptors, and its cytoplasmic tail 

contains four immunoreceptor tyrosine-based switch motifs. The ligand for 2B4, CD48, is 

expressed by cells of hematopoietic origin. This suggests 2B4 may play a role in regulating 

hematopoietic processes. NKG2D belongs to the family of C-type lectin-like receptors. It 

associates with the adaptor protein DAP10, which has an activation motif that is similar to 

the CD28 T cell co-receptor. NKG2D binds to ligands typically expressed by cells that have 

undergone transformation, which implicates this receptor in the elimination of tumors. We 

focus on the CD16, 2B4 and NKG2D pathways as these receptor pathways are well studied 

with respect to NK cell signaling and involve different intracellular signaling components. 

Other natural cytotoxicity receptors (NCRs) (e.g. NKp30, NKp46, NKp44) could have been 

included in this study; however, many of these receptors share similar intracellular signaling 

domains as CD16. Specifically, NKp30 and NKp46 signal via ITAM-containing proteins 

such as CD3ζ, and NKp44 signals through DAP12, which also contains a single ITAM motif 

[20]. Thus, to avoid redundancy in modeling similar intracellular signaling pathways, we 

excluded the NCRs from this work. This allows us to study NK cell signaling via three 

pathways that are not only stimulated under different physiological scenarios but also signal 

via different intracellular proteins containing different activation motifs.

Ligand binding to the CD16, 2B4 and NKG2D receptors initiates intracellular signaling. The 

PI3K-Akt, SLP76-Vav-Erk and PLCγ networks are all activated upon stimulation of CD16, 

2B4 and NKG2D [20]. In NK cell biology, activation of the PI3K-Akt signaling axis is 

correlated with cell survival, while Erk activation is correlated with cell proliferation [7–9]. 

SLP76 and Vav activation are necessary for actin remodeling and the formation of the 

immunological synapse [21]. In addition, the knockdown of SLP76 and Vav via siRNA in 

NK cells has been correlated with a dampened release of intracellular calcium ions upon 

stimulation of NKG2D and 2B4 as well as significantly lower percent of specific lysis 

against P815 tumor cells [7, 8, 21]. The knockdown of these molecules is also correlated 

with lower production and secretion of the cytokines IFN-γ and MIP-1α. PLCγ activation 

induces the release of intracellular calcium ions, which subsequently contributes to cell 

activation, and correlates with cytokine production and target cell killing via 51Cr-release 

assay [5]. Indeed, activation of these signaling intermediates is necessary to activate and 

induce a cytotoxic response in NK cells. By studying the initial dynamics of the signaling 

species, we can predict NK cell responses to receptor stimulation. Although most of the 

downstream reactions are common between the pathways, there are some subtle differences. 

For example, 2B4 does not induce Akt phosphorylation [8, 10]. Additionally, 2B4 and 

NKG2D specifically lead to phosphorylation of the Y113 and Y128 sites on SLP76, 

respectively, while CD16 induces phosphorylation of both sites [8]. Also, CD16 induces 

ZAP70 and LAT activation, while 2B4 and NKG2D do not. Thus, these pathways are 

interconnected, and understanding the dynamics of the concentrations of the molecular 

species involved in the signaling pathways requires in-depth analyses.

In the present study, we use mathematical modeling to characterize and compare the 

signaling dynamics of the CD16, 2B4 and NKG2D pathways with respect to their magnitude 

of activation of the network. Furthermore, we identify which signaling species and 

parameters influence the magnitude of network activation and which combinations of 

receptor co-stimulation most potently activate the network. In silico perturbations of the 
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stimulatory network demonstrate the strategies that effectively increase network activation, 

including which signaling species to target and how to modify the species. In total, the 

model predictions can be used for engineering NK cells with enhanced signaling, which may 

improve target cell killing.

METHODS

Model construction

We constructed an ordinary differential equation (ODE) model to predict the concentrations 

of the molecular species in the CD16, 2B4 and NKG2D pathways in NK cells (Fig. 1). The 

model is provided in Supplementary File S1 and the list of model species, reactions and 

parameters are provided in Supplementary File S2. The rates of the biochemical signaling 

reactions were represented using Michaelis–Menten reactions. Arriving at the current model 

structure was an iterative process where we fitted several model types (e.g. Michaelis–

Menten kinetics versus mass action kinetics, including versus excluding the phosphatases, 

including versus excluding nonspecific decay rate) to the experimental data and selected the 

model structure that generated the lowest error between the model predictions and 

experimental data. We constructed the model using BioNetGen [22] and simulated it in 

MATLAB (MathWorks).

The final model contains 83 parameters and 36 species, including the three NK cell 

receptors. Each receptor binds to its ligand and forms a receptor-ligand complex that allows 

the receptor to become phosphorylated by basally active SFK. Then, the ligand-bound 

phosphorylated receptor serves as the catalyst for converting SFK from a basally active state 

to a fully active state (pSFK). Fully active SFK mediates the phosphorylation (activation) of 

a number of downstream signaling species, including LAT, ZAP70, PLCγ, Vav, SLP76, Akt, 

and the phosphatases SHP and SHIP. Moreover, the stimulation of 2B4 can lead to activation 

of the phosphatases independent of pSFK [20]. Phosphorylated ZAP70 promotes activation 

of LAT. The inhibitory species, phosphatases SHP and SHIP, provide negative feedback to 

prevent overactivation [23]. The catalysts for Erk phosphorylation are the phosphorylated 

forms of SLP76 and Vav. These species are upstream inputs to the MAPK pathway [12, 13].

The initial concentrations of the species in the system were extracted from the literature [24–

27], where their values were measured in resting primary NK cells using quantitative mass 

spectroscopy. These values are assumed to be at steady state since the NK cells were 

preincubated in cell culture media containing no stimulatory ligands for CD16, 2B4 or 

NKG2D. Given the timescale of our analysis (60 min following receptor stimulation), we 

consider the synthesis of the signaling molecules to be negligible [12, 13]. In fact, the 

expression of CD16 and NKG2D on the surface of primary NK cells, as measured by flow 

cytometry, decreases after receptor stimulation and remains unchanged in the absence of 

stimulatory ligands [28]. Also, there is no data to suggest the signaling molecules 

significantly change in concentration within a 60 min time interval in the absence of a 

stimulus. In total, we consider the phosphorylation and dephosphorylation reactions of the 

signaling species as well as a nonspecific decay term for the phosphorylated species in the 

system to account for degradation, dilution and other mechanisms of disappearance [5–8, 

29].
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Data collection and processing

We trained the mathematical model using experimental data extracted from the literature. 

The raw data and our data processing procedure are provided in Supplementary File S3. To 

control for variations in the experimental conditions, we only used data from published 

studies where (1) the antibodies used for CD16, 2B4 and NKG2D stimulation were of the 

same concentration (10 μg/ml) and from the same vendor, and (2) the cell types used in these 

studies were primary NK cells. Immunoblot images from these published studies were 

analyzed and processed using ImageJ [30]. Specifically, ImageJ provides a measure of the 

optical density for any predefined rectangular space of an image in grayscale, where the 

estimated optical densities range from 0 to 225 (black to white, respectively). Protein bands 

in western blots were analyzed to estimate their optical density. To control for immunoblot 

variations across the experiments, we subtracted the optical density measurement of the 

western blot gel background from the optical density measurements of all protein bands in 

the same gel. Furthermore, for a single protein, the optical density measurement of the 

zeroth time point was also subtracted from the optical density measurements of the 

remaining time points, making the initial time point a true zero. This procedure, which 

follows the documented ImageJ usage protocol, standardizes the experiments for 

comparison and controls for the background and zeroth time point measurements. In total, 

the model was trained to 64 data points. Additionally, the model was validated against 32 

data points. The signal intensity (QpXj) of a given phosphorylated species (pX) at the jth 

time point is calculated as:

QpXj =
ODpXj

ODControlj

where ODpXj and ODControlj are the optical density values of the phosphorylated species and 

a loading control, respectively, at the jth time point. Furthermore, the signal intensity (Qpx) 

was normalized to a single (reference) time point (QpXref) by calculating the percent change 

(%ΔpX):

%ΔpXj =
QpXj − QpXref

QpXref
× 100% .

With normalization, the signal intensity is initially zero, so the percent change at t = 0 is 

−100%. For each time-course dataset, we refrained from normalizing the experimental data 

to the time point where the maximum optical density was observed. This would introduce 

bias in our data processing procedure as we would be assuming the true maximum of species 

phosphorylation occurred at the same time point the data were collected. Similarly, we did 

not normalize the data using the initial time point measurement because the signal intensity 

measurement there is zero, and we cannot divide by zero. Instead, we normalized each time-

course dataset to the time point where the median optical density was observed (see 

Supplementary File S3 for details) to allow the model to predict when the true maximum of 

species phosphorylation may occur. Thus, the reference (normalization) time point almost 
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always corresponded to the 10-min time point. To clarify, we normalize both the 

experimental data and the model simulations at the same time points to effectively compare 

their values during parameter estimation. Also, since we are analyzing a single immunoblot 

image for the phosphorylation of an individual species, the data contain a single replicate for 

each time point. However, the authors of those experimental studies stated the immunoblot 

images were representative of three independent experiments and we treat the single 

replicate as the expected outcome.

Parameter estimation

We assume the parameters are random variables and consequently we estimate their 

distribution using a Bayesian perspective [31], where we maximized the posterior density 

(f(θ |y)) of the parameters (θ) given the data (y) via the Metropolis-Hastings algorithm [31, 

32]. In particular, we are estimating 83 parameters using 64 data points (training dataset). 

While it is possible to estimate all 83 parameters using exactly 83 data points (or even more, 

up to the total number of data points available), we could possibly overfit the data. That is, 

we may produce a model that has low bias (small training error) but high variance (large 

validation error). The resulting model would have low predictive power due to its high 

variance. We balance the bias/variance tradeoff by using a slightly larger validation dataset 

at the expense of a slightly smaller training dataset.

Briefly, Bayes’ theorem describes the relationship between the posterior and prior 

probabilities via the formula:

f(θ |y) = f(y |θ)f(θ)
f(y) ∝ f(y |θ)f(θ)

where f(y|θ) represents the data likelihood function, f(θ) is our prior knowledge on θ and 

f(y) is the probability of the data (which is constant since the data is given in our case). The 

parameters in the present model are kcat and KM, constants that represent the catalytic rate 

and the half-saturating constant in enzymatic reactions, respectively. The probability 

distribution of these two types of parameters has been observed to follow a lognormal 

distribution and are extensively overlapping for a wide range of eukaryotic enzymes [27]. 

The KM parameter can be decomposed into 
koff + kcat

kon
; however, this representation would 

increase the parameter search-space and over-parameterize the model. Moreover, without 

complete information of the distribution of each kon and koff rate constant for each reaction 

in the model, it is unclear where their values would lie on the positive real line. To avoid 

complexity, we assumed the prior probability of the model parameters are independent and 

drawn from an identical lognormal distribution (IID) with μ0 = 1 and σ0 = 2. That is:

f(θ) = f θ1, …, θ83 = ∏
i = 1

83
f θi .

The data likelihood function f(y|θ) captures the error, ∊, between the model predictions and 

the experimental data, where:
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ϵ = y − ℳ(θ) .

We assume the error follows a normal distribution centered at zero with some noise (σ2). 

That is:

f y |θ, σ2 =def f(ϵ) = f(y − ℳ(θ)) ∼ N 0, σ2

where ℳ(θ) is the model prediction. In addition, we marginalized out the noise from 

f y |θ, σ2  by assuming an inverse gamma distribution over σ2 (with hyperparameters α = 2 

and β = 1) and integrating f y |θ, σ2  with respect to σ2 to attain:

f(y |θ) = ∫
0

∞
f y|θ, σ2 f σ2 dσ2 .

We note that the density of the data likelihood f (y|θ) is at its maximum when y = ℳ(θ) since 

f(y |θ) is centered at zero. Therefore, maximizing the posterior density is equivalent to 

minimizing the error between the model prediction and the experimental data. The prior f(θ) 

serves as a penalty term that penalizes parameter values that are at the tail ends of the 

distribution and rewards values closer to the mode of the distribution.

We cannot solve for f (y|θ) analytically since ℳ(θ) in the data likelihood is a nonlinear 

operator. Instead, we employ the MH algorithm to sample from the posterior distribution, 

which is the target distribution. First, we initialize θ* by randomly sampling from f(θ). 

Then, we sample another vector θ(i) from a proposal distribution 

f θ(i) | θ*, v2 ∼ Lognormal θ*, v2 , where i is the number of iterations of the MH algorithm and 

we fixed ν2 = 0.1. We chose the lognormal distribution for the proposal since it has proper 

support over θ. Then, we compute the acceptance ratio (AR) for each iteration, where:

AR =
f y |θ(i)

f y |θ*
f θ(i)

f θ*
f θ* |θ(i), v2

f θ(i) |θ*, v2 .

Also, we randomly sample a number λ ~ Unif(0, 1) and compare the acceptance ratio to λ 
for each iteration i. If the error between the model prediction and the experimental data is 

smaller for θ(i) than θ*, then f(y |θ(i))
f y |θ* > 1 and AR > λ almost surely. Thus, we accept the 

parameter vector θ(i) by setting θ* = θ(i) and continue this process for a fixed amount of 

iterations. The prior distribution remains fixed over all iterations while the proposal 

distribution re-centers around parameters θ* that minimize the error between the model and 

the data.

Based on our simulations, the algorithm almost always converges to a minimum after 

~5000th iteration. Thus, we simulated the algorithm for 10 000 iterations to ensure the 
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algorithm converges before termination. The first several thousand iterations of the MH 

algorithm serve to maximize the posterior density, thereby converging our initial estimate of 

the posterior distribution closer to the true posterior distribution. This is known as the 

burning-in phase. Once the algorithm converges, then each θ(i) (for i sufficiently large) will 

be a sample from the posterior distribution. To that end, we discarded the first 9000 

iterations and only kept the remaining 1000 iterations to simulate the model. Given that this 

approach to parameter estimation is probabilistic, we simulated the MH algorithm 200 

independent times (for 10 000 iterations each) with a random initial guess θ*.

Construction of magnitude of network activation metric

We defined network activation to allow us to compare the magnitude of signaling across the 

three pathways (CD16, 2B4 and NKG2D). While the individual phospho-species are known 

to contribute to specific cellular functions involved in NK cell signaling [8, 20, 21, 29, 33–

35], the scope of the our work is to compare the effectiveness of stimulating one pathway 

versus another. Thus, we first determine which species are important to consider in terms of 

activation of the network.

Based on literature evidence, we determined the following five species are crucial for 

activating the NK cell based on experimental studies: (1) pErk, (2) pAkt, (3) pPLCγ, (4) 

pVav and (5) pSLP76. The magnitude of network activation must relate to the magnitude of 

activation of the above species. Hence, we concatenate the above species’ concentrations 

over time into a vector:

g(t) = pErk(t), pAkt(t), pPLCγ(t), pVav(t), pSLP76(t) .

Since the individual phospho-species’ concentrations are continuous with respect to time t, 
g(t) is also continuous with respect to t and thus measurable [36]. By construction, the arc g 

is a function that maps the time interval (in minutes) [0,60] into ℝ5; that is, g : 0, 60 ℝ5. 

We used the Bochner-norm to define the magnitude of g(t) (i.e. g(t) ). The Bochner-norm 

of g(t) is defined by:

‖g(t)‖Lp(0, 60) =def ∫
0

60
‖g(t)‖ℝ5

p
dt

1 p
.

Since the image of g is an element of ℝ5, and since all norms define on ℝn form equivalence 

classes [37], we set p = 1 and use the L1 norm on ℝ5 for simplicity. In addition, each 

component gi(t) is non-negative, has finite measure and the sum of the components of g(t), 
for all t ϵ [0,60], is finite. Thus, the Bochner-norm (in L1) of g(t) defined here is:
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‖g(t)‖ = ‖g(t)‖L1(0, 60) = ∫
0

60
‖g(t)‖ℝ5dt = ∫

0

60
∑

i = 1

5
gi(t)dt = ∑

i = 1

5 ∫
0

60
gi(t)dt

= ∑
i = 1

5
‖gi(t)‖ .

Thus, we arrive at the above metric for the magnitude of network activation, which is simply 

the sum of the magnitude of activation of the individual phospho-species, as given by the 

area under the curve for the species’ concentration profile. We used the MATLAB function 

trapz (which uses trapezoidal numerical integration) to estimate the area under the curve for 

each component of g(t). We acknowledge that how much each phospho-species contributes 

to NK cell activation is unknown. For simplicity, we assume equal contribution from the 

individual species. This assumption can be adjusted as data for the contributions of each 

species become available.

Clustering and principal component analysis

We used the built-in MATLAB functions kmeans and pca to perform k-means clustering and 

principal component analysis, respectively. Briefly, k-means clustering [38] allows us to 

partition a given dataset into k clusters using the (default) Euclidean distance metric. 

Principal component analysis [39] enables us to project a given dataset on to a new 

coordinate system where each coordinate is a linear combination of the original variables in 

the dataset. Moreover, the principal components (i.e. new coordinates) are selected such that 

they maximize the total variance in the data. These approaches are used to determine which 

estimated parameter sets are similar to one another.

RESULTS

Model of NK cell signaling matches experimental data

We generated a mathematical model of NK cell signaling that includes three main pathways: 

CD16, 2B4 and NKG2D. When these receptors are stimulated, they activate the cell via 

cascades of phosphorylation reactions (Fig. 1): activation of the SFK, facilitated by the 

ligand-bound phosphorylated receptors, catalyzes the activation of the Akt, SLP76-Vav-Erk 

and PLCγ pathways. We simulated these reactions in the form of nonlinear ODEs using 

established Michaelis–Menten kinetics. The model is provided in Supplementary File S1. 

The model was calibrated to immunoblot data [5–8], where we quantified the temporal 

change in the optical density of protein bands from images of immunoblot experiments 

using ImageJ [30]. Specifically, we used the normalized levels of the following 

phosphorylated species: pSFK, pZAP70, pLAT, ppSLP76, pPLCγ, pVav, pErk, pAkt and 

SLP76 phosphorylated at Y113 and Y128. We calibrated the model predictions by 

estimating the parameter values using a Bayesian perspective [31], and by implementing the 

Metropolis–Hastings algorithm (see Methods section). In brief, the model parameters (83 in 

total) were estimated 200 times using randomized initial guesses by fitting to experimental 

data. Moreover, the model predictions were validated using a separate dataset. The 

combined error for each run can be found in Supplementary Figure S1. We proceeded with 
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the 14 best parameter sets that provided the lowest total error and simulated the model using 

these sets.

Interestingly, in initial simulations, we found that the 14 parameter sets led to different 

responses with respect to network activation. To determine the dominant behavior generated 

by the model, we clustered the network activation predicted by the 14 sets using the 

‘kmeans’ and ‘pca’ functions in MATLAB (see Methods section). Our results are shown in 

Supplementary Figure S2, where we identified three unique clusters that correspond to the 

degree of species activation (i.e. response) predicted by the model. To ensure that the model 

predictions agree with experimental observations, we discarded the parameter sets that 

yielded predictions inconsistent with NK cell signaling and cytotoxicity studies [5–9, 29, 34, 

40]. Specifically, we removed parameter sets that induced a low amount of species activation 

(i.e. <1% of the species’ initial concentration was activated) and that did not show a dose-

dependent response when the ligand concentrations were changed.

This refined the 14 parameter sets down to five, which are found in the medium response 

cluster in Supplementary Figure S2. Specifically, the parameter sets in this cluster are 

parameter sets 3, 5, 6, 12 and 13 in Supplementary Figure S1. The parameter distributions 

for the best set (i.e. lowest total error) of the five (parameter set 3 in Supplementary Figure 

S1) are shown in Supplementary Figure S3 using the final 1000 iterations, illustrating that 

the parameters are well behaved: the distributions are unimodal, and the values lie within a 

tight range. We used the last 1000 iterations from parameter estimation to simulate the 

model. In addition, the posterior distribution of the parameters can be found plotted with the 

prior distribution in Supplementary Figure S4–Supplementary Figure S7. Since the 

Metropolis–Hastings algorithm is a Monte Carlo Markov Chain (MCMC) algorithm, we 

provide diagnostic information in the form of trace plots to demonstrate that the parameters 

are identifiable. Supplementary Figures S8 and Supplementary Figure S9 show the traces for 

the best parameter set, and the traces for the remaining four sets in the cluster are shown in 

Supplementary Figure S10 and Supplementary Figure S11. Collectively, the parameters in 

each set (i.e. independent MCMCs) do converge, but at different iterations. There are 

parameters that converge as early as the 2000th iteration, while most converge closer to the 

5000th iteration, and only very few require >5000 iterations to converge. The dashed lines in 

Supplementary Figures S8 and Supplementary Figure S9 indicate the cutoff (9000th 

iteration). The left side is considered the burning-in phase, and those values were discarded, 

while the values on the right side were kept for model simulation.

The simulated concentration profiles are consistent with the training data (Fig. 2A–H). 

These results demonstrate the model predictions are in accord with the experimental data for 

mono-stimulation of CD16 (blue lines), 2B4 (purple lines) and NKG2D (orange lines). This 

is expected, since those data were used in model training to determine the parameter values.

To validate the model, we compared the model predictions to separate experimental data not 

used during training. In particular, we quantified the optical density of intracellular species 

from immunoblot images when 2B4 and NKG2D were simultaneously stimulated at equal 

ligand concentrations [7, 9, 29, 34, 40]. The results from model validation are shown in Fig. 
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2I–L. The model captures the signaling dynamics of several species upon co-stimulation of 

2B4 and NKG2D.

We note that to perform parameter estimation, we separated the time-course datasets into 

two groups based on which datasets involved mono-stimulation of the receptors and which 

involved co-stimulation. Currently, we have 21 datasets: 15 involving mono-stimulation and 

the remaining six sets involving co-stimulation. We designated the mono-stimulation 

datasets to be used for model calibration, keeping the co-stimulation datasets for model 

validation. Although the results from parameter estimation can be sensitive to which datasets 

are used for model training versus model testing, the total number of combinations of 

selecting 15 datasets for training from full set of 21 datasets is quite large 21!
15!6! = 54 264 . 

Also, this does not include the other possible combinations that can result from a different 

partitioning method. For instance, using 10 datasets for training and 11 for validation would 

yield 352 716 different combinations. To investigate the effects of using a different 

combination of the datasets for parameter estimation, we randomly selected 10 different 

combinations of the 54 264 possible combinations arising from our original partitioning of 

the datasets (15 for training and 6 for validation) and estimated the parameters for each 

combination using the MH algorithm for 20 independent runs (for 10 000 iterations each). 

Our results (Supplementary Figure S12) indicate that our original selection of training 

versus testing datasets yielded a better fit as both the training and validation errors were 

much lower in value. Thus, we proceeded to analyze the model dynamics using the 

parameter estimates from our initial model calibration approach. Altogether, this validated 

model allows us to perform simulations and make meaningful comparisons amongst the 

pathways.

Baseline network activation is greatest when the CD16 pathway is stimulated

In addition to the amount of activation of the phosphorylated species, we were interested in 

quantifying the magnitude of activation of the network induced by each pathway. Here, we 

use the norm of the vector-valued function g(t), where each component of this vector is the 

time evolution of the concentration of the five species considered to be necessary for NK cell 

activation (pErk, pAkt, pPLCγ, pVav and pSLP76 (see Methods for derivation)). The model 

was simulated for 60 min using 6.67 × 10−2 μM of ligand, the same concentration used in 

the experimental studies to train and validate the model [5–9, 29, 34, 40]. We used the last 

1,000 iterations from the best set obtained from parameter estimation.

The magnitude of network activation is greatest for the CD16 pathway compared to 

stimulation of 2B4 and NKG2D at equal ligand concentrations (Fig. 3). Interestingly, each 

pathway activates the network differently (Supplementary Figure S13). For example, CD16 

induces more activation of pSLP76 (Supplementary Figure S13A), whereas stimulation of 

the NKG2D pathway activates pVav (Supplementary Figure S13B) and pPLCγ 
(Supplementary Figure S13C) to a greater extent. In contrast, the pathways show no 

significant difference with respect to pErk (Supplementary Figure S13D) and pAkt 

(Supplementary Figure S13E) activation. These results support our systems-level evaluation 

of the network, as focusing on a single species does not fully represent the effects of 

stimulating an NK receptor. The baseline model is useful in allowing us to quantitatively 
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interpret the results from the experimental studies used to train the model, where the 

signaling species concentrations were not measured directly. Overall, the baseline model 

predicts CD16 stimulation leads to a greater activation of the stimulatory network and that 

the magnitude of activation of the phosphorylated species varies depending on the pathway 

being stimulated.

Receptor characteristics significantly influence the network activation

The stimulation of NK cell receptors with ligands (model input) leads to activation of the 

signaling species (model output). Ultimately, we wish to understand the output of the system 

as a function of its input. To achieve this, we varied the ligand concentration in silico from 

6.67 × 10−5 μM up to 66.7 μM and simulated the model for 60 min to observe how the 

magnitude of network activation changes. Such a wide range is typically implemented in 

experimental studies as it allows researchers to understand how a system behaves as its input 

changes in magnitude [15]. As such, our results in Figure 4 show how the predicted 

magnitude of network activation changes as ligand concentrations change. We present the 

mean model prediction (solid line) using the final 1000 iterations from the best parameter 

set, along with its standard deviation (shaded area).

The model predicts that, in general, the magnitude of network activation increases as more 

ligands are introduced into the system (Fig. 4). For all ligand concentrations we simulated, 

the model predicts that the magnitude of network activation is always greater when either the 

CD16 or NKG2D pathways are stimulated, compared to the stimulation of 2B4. Our results 

suggest that mono-stimulation of 2B4 induces weak activation of the stimulatory network. 

Interestingly, for all three pathways, the magnitude in network activation ceases to increase 

at high ligand concentrations. To better understand this observation, we calculated the 

estimated KD (equilibrium constant) between the ligand and the receptor from the parameter 

estimates. For CD16 and NKG2D, the estimated KD values are 4.2 μM and 2.02 μM, 

respectively. In contrast, the estimated KD value for 2B4 and its ligand is 0.46 μM. Note that 

as the ligand concentration becomes larger than the KD of the interaction in Fig. 4, the 

magnitude of network activation becomes insensitive to further stimulation. This suggests 

that using high ligand concentrations to induce NK cell activation is not advantageous as the 

model predicts the response begins to plateau once the concentration of the ligand becomes 

larger than the KD.

We observed an unexpected sharp peak in network activation (Fig. 4; purple star) at ~0.3μM 

of ligand during stimulation of 2B4. Given the detailed nature of the model, we could apply 

it to investigate the cause of the peak. The ligand concentration at which the peak occurs is 

numerically close in value to the concentration of 2B4 receptor in the model (0.353 μM). 

Thus, we simulated the model using different concentrations of 2B4 to determine if the peak 

in network activation is due the receptor’s concentration (Supplementary Figure S14A). 

Indeed, the concentration of 2B4 sets the upper bound for network activation since we 

observe more network activation when we increase the receptor’s concentration accordingly. 

In addition, network activation induced by 2B4 is maximal when the ligand concentration 

reaches the same level as the receptor.
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Similar to 2B4-mediated network activation, the model predicts a peak in NKG2D-mediated 

network activation (Fig. 4; orange star). Again, the peak occurs when the ligand 

concentration is approximately the same as the concentration of NKG2D in the model 

(0.303 μM). We simulated the model using different concentrations of NKG2D as we did 

above (Supplementary Figure S14B). We observed that the concentration of NKG2D sets the 

upper bound on network activation, where the peaks occur when the concentration of ligand 

is near the concentration of the receptor.

In the case of NKG2D, unlike 2B4, there is a notable decrease in network activation once the 

ligand concentration is greater than the concentration of the receptor (Fig. 4; orange star). To 

better understand this observation, we varied the parameters regulating NKG2D 

phosphorylation and dephosphorylation. The model predicts that the catalytic rate constant 

for phospho-NKG2D dephosphorylation (kcat_pNKG2D_pSHP in the model) is responsible 

for this behavior. Namely, once we increased the value of this parameter by 10-fold 

(Supplementary Figure S14C) or 100-fold (Supplementary Figure S14D) from its baseline 

value (~14.75 min−1), the decrease in network activation gradually disappears (compare 

Supplementary Figure S14C and D to Supplementary Figure S14B). Note that although the 

maximum in network activation does not change, its shifts to the right, requiring more 

ligands to reach maximal network activation (compare dashed line in Supplementary Figures 

S14B and D).

Given the mechanistic detail of the model, we can explain the decrease in network activation 

observed upon mono-stimulation of NKG2D (Fig. 4; orange star). As the ligand 

concentration increases, the velocity of phospho-NKG2D activation increases proportionally 

due to Michaelis-Menten kinetics. Based on the numerical value of kcat_pNKG2D_pSHP, 

the rate of dephosphorylation of phospho-NKG2D will be slow (or fast) if the parameter is 

small (or large). Furthermore, if the rate of dephosphorylation is slow, then the concentration 

of phospho-NKG2D will increase rapidly as the ligand concentration increases, and since 

there is a first-order decay reaction for the phospho-species in our model, phospho-NKG2D 

will degrade proportionally to its concentration. Thus, when phospho-NKG2D activation is 

too fast, it will also decay rapidly, which will impede downstream signaling. This is why 

when the ligand concentration becomes too large, it has a suboptimal effect on network 

activation. Contrastingly, if the rate of dephosphorylation is fast relative to NKG2D 

phosphorylation, then the concentration of phospho-NKG2D will increase very slowly as the 

ligand concentration increases. This, in turn, produces a smooth, monotonic increase in 

network activation (Supplementary Figure S14D).

Overall, these results suggest the maximal response of network activation is positively 

correlated with the initial concentrations of the receptors. That is, the greater the initial 

concentration of the receptor, the greater the maximal response. Moreover, the ligand 

concentration required to attain the maximal response is sensitive to the rate of receptor 

activation, where faster receptor activation means fewer ligands are needed to reach maximal 

activation and the receptor pathway is more potent. In addition, the KD of the interaction 

between the ligand and the receptor influences the ligand concentration at which network 

activation becomes insensitive to further increases in the ligand concentration. Specifically, a 

smaller value of KD means that fewer ligands are required to reach an equilibrium in the 
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response. Taken together, the results presented here underscore the model’s utility in 

explaining and characterizing the system’s response to variations in input intensity. The 

model predicts that the NK receptor that: (1) has a high initial concentration, (2) has a lower 

KD with its ligand and (3) has a faster rate of activation will more potently activate the 

intracellular signaling network that mediates NK cell activation, as compared to other 

receptors. These criteria can be used to guide experiments for engineering NK cells with 

enhanced signaling.

Co-stimulation of CD16 and NKG2D potently activates the network

The impact on network activation induced by the co-stimulation of NK cell receptors has not 

been completely characterized. This knowledge gap obscures our understanding of how 

signals from multiple pathways are integrated and influence the downstream species. Thus, 

we simulated the model to better understand how co-stimulation affects network activation 

in a dose-dependent manner. Similar to the previous section, we varied the ligand 

concentration from 6.67 × 10−5 up to 66.7 μM and simulated the model for 60 min to 

observe how the magnitude of network activation changes.

Interestingly, the co-stimulation of CD16 and NKG2D (Fig. 5A, red line) achieves greater 

network activation when compared to other combinations at equal ligand concentrations. 

With the exception of 2B4 and NKG2D co-stimulation (Fig. 5A, magenta line), all 

combinations attain maximal network activation (116 μM × min). In addition, we wanted to 

determine how much ligand is required to reach half-maximal network activation (Fig. 5A, 

dashed line), akin to half-maximal effective concentration (EC50). We applied the model to 

predict the ligand concentration needed to reach this level of network activation for each 

combination (Fig. 5B). The co-stimulation of CD16 and NKG2D (Fig. 5B, red bar) required 

26, 27 and 51% fewer ligands on average compared to the ligand concentration needed for 

half-maximal activation with co-stimulation of all pathways (Fig. 5B, black bar), 2B4 and 

NKG2D (Fig. 5B, magenta bar) and CD16 and 2B4 (Fig. 5B, green bar), respectively. At 

first glance, one may think that stimulating all pathways together would require the lowest 

ligand concentration to reach half-maximal network activation. However, since phospho-2B4 

can activate phosphatases in addition to the kinase pSFK (Fig. 1), co-stimulation of all three 

pathways is less effective than the co-stimulation of CD16 and NKG2D due to more 

phosphatase activation. In summary, we found that the co-stimulation CD16 and NKG2D in 
silico is more potent in activating the stimulatory network than all other combinations.

In silico perturbations highlight the role of phospho-receptors and phosphatases in 
enhancing network activation

Mathematical models are instrumental in studying the trajectory of dynamical systems, 

especially when perturbations are considered. For example, model parameters can be varied 

to understand the system’s response to specific alterations. Therefore, we simulated the 

following perturbations to understand which changes augment network activation: (1) 

decreasing the rate of pSFK deactivation, (2) inhibiting pSHP activity, (3) increasing 

receptor-ligand affinity and (4) decreasing the decay rate of the phospho-receptors.
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The first perturbation is inspired by experimental results [41, 42] where a mutation of the 

activation-loop tyrosine (Y394) of lymphocyte-specific protein kinase (LCK), a member of 

the SFK, disables the kinase from being inactivated in the context of T cell receptor 

signaling. This mutation evidently enhances T cell activation. Likewise, inhibiting the rate at 

which pSFK is deactivated (i.e. decreasing kcat_pSFK_pSHP) in the model may increase NK 

cell network activation by the same reasoning. It is known that phosphatases play an integral 

role in inhibiting NK cell activation [33, 43–45] by dephosphorylating the downstream 

species. Therefore, inhibiting phosphatase activity (i.e. decreasing kcat_pX_pSHP, where pX 

is a substrate for pSHP) is another mechanism that can increase network activation. 

Moreover, increasing the binding affinity between the ligand and the receptor should 

increase the velocity at which the receptor-ligand complex is formed, and thereby allow 

signaling to proceed more rapidly and possibly increase the magnitude of network 

activation. We simulated this effect by decreasing the koff constant between the receptor and 

the ligand in the model. Finally, we decreased the decay rate of the phospho-receptors (i.e. 

kdeg), as another means of modulating the network activation. This is inspired by Spran et al. 
[28], where they inhibited the shedding of CD16 receptors by introducing a point-wise 

amino acid mutation (S197P) that renders the receptor insusceptible to ADAM17-mediated 

cleavage. This engineered receptor induced more perforin degranulation upon stimulation, 

which is a downstream response of network activation. Although each of the perturbations 

should increase network activation in their own right, it is not obvious which perturbation 

(and to which extent) is the best approach. Thus, we simulated each case to determine which 

method is optimal for augmenting the magnitude of network activation.

We varied the parameters regulating the four perturbations from their baseline values up to 

10-fold. The model was simulated for 60 min using various ligand concentrations. As 

before, we used the last 1000 iterations from the best parameter set to simulate the model. 

Moreover, we simulated each perturbation separately for each pathway in order to observe 

any differences (or similarities) in the effects each perturbation imposes on each pathway. 

The simulated results can be found in Fig. 6, where the percent change in network activation 

from baseline via mono-stimulation of NKG2D (Fig. 6A–C), CD16 (Fig. 6D–F) and 2B4 

(Fig. 6G–I) is plotted as a function of the change in the strength of the perturbation. The 

circles, triangles, squares and diamonds in Fig. 6 correspond to decreasing pSFK 

deactivation, inhibiting pSHP activity, increasing ligand affinity and inhibiting phospho-

receptor decay, respectively.

The model provides detailed insight into the effects of perturbing the signaling network. 

Firstly, when the ligand concentration is low (Fig. 6A, D and G), the percent change in 

network activation is more sensitive to phospho-receptor decay (diamonds). In contrast, 

when the ligand concentration is moderate (Fig. 6B, E and H) to high (Fig. 6C, F and I), the 

percent change in network activation is influenced more by phosphatase activity (triangles). 

These results hold true for all pathways, suggesting the perturbations qualitatively impact the 

pathways in a similar manner. Interestingly, when considering the NKG2D and CD16 

pathways, the relative effect of the perturbations decreases as the concentration of the input 

increases (compare Fig. 6C to Fig. 6B and compare Fig. 6F to Fig. 6E). Surprisingly, the 

relative impact of decreasing pSFK deactivation (circles) and increasing ligand affinity 
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(squares) on network activation is almost negligible. In some cases, increasing ligand 

affinity can even decrease network activation.

These data suggest network activation is tightly controlled by the phospho-receptors and the 

phosphatases. Based on the model predictions, when input levels are low, it is more 

important to engineer receptors that are resistant to proteolytic cleavage, as this enables the 

activated receptor to induce continued intracellular signaling. Alternatively, when the input 

to the system is plentiful, inhibiting phospho-receptor decay is not influential since the large 

concentration of input can enable continued intracellular signaling. In this scenario, it is 

more influential to inhibit phosphatase activity, which allows the phospho-species to remain 

activated, thereby increasing the magnitude of species activation. In summary, the model 

predicts that the phospho-receptors and phosphatases strongly regulate the magnitude of 

network activation, and that the optimal strategy for enhancing network activation is 

dependent on the level of stimulation. Thus, our simulations provide quantitative insight into 

mechanisms that can augment the activation of the stimulatory network in NK cells.

DISCUSSION

In the present study, we constructed a mathematical model of a subset of the signaling 

pathways that mediate NK cell stimulation. We interrogated the model to understand (1) 

how the stimulatory network is influenced by the different pathways, (2) which signaling 

species and parameters directly influence the magnitude of network activation, (3) which 

combination of receptors are more potent in activating the stimulatory network and (4) how 

the network can be perturbed to enhance activation.

Our baseline model predictions demonstrate network activation is sensitive to both the 

receptor concentrations as well as the rate of receptor activation relative to deactivation. 

Specifically, the receptor concentrations influence the maximal value for network activation, 

whereas the rate of receptor activation influences the ligand concentration needed to attain 

this maximal response. From our perturbation studies, we observed that the phospho-

receptors and the phosphatases control the system’s response to NK cell receptor 

stimulation. Inhibiting phospho-receptor decay is particularly important for enhancing 

network activation when the input to the system is scarce. Alternatively, when the input is 

abundant, it is more important to inhibit phosphatase activity. In the case where NK cells are 

directed to recognize specific tumor-associated antigen via engineered receptors such as 

chimeric antigen receptors (CARs), our simulations suggest engineering receptors to be 

resistant to proteolytic cleavage, as the antigen may not be abundantly expressed on the 

tumor cell surface. In monoclonal antibody therapies, which can expose NK cells to a large 

concentration of input, the model simulations indicate that preincubation of NK cells with 

pan-SHP inhibitors may unbridle NK cell signaling and allow for a strong response. Thus, 

our computational modeling of NK cell stimulation is highly valuable and particularly 

useful. Besides the large amount of time and resources needed to complete such studies via 

experimentation alone, many of the nonlinear properties embedded in the signaling network 

would be difficult to capture and effectively characterize without knowledge of the 

parameters regulating the system. Instead, when there is a healthy union between data and 

modeling, our understanding of biology benefits the most.
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Our modeling results provide a robust quantitative framework to study the effects of co-

stimulation of NK cell receptors. These predictions are relevant for developing 

immunotherapeutic strategies. Researchers in recent years have designed CARs for NK cells 

that include intracellular signaling domains of CD16, 2B4 and NKG2D for antitumor 

therapy [46, 47]. Those studies found that CARs comprised of CD16, 2B4 and NKG2D 

signaling domains together outperformed activation induced by the individual receptors. In 

addition, CAR-NK cell immunotherapies [48, 49] that include intracellular domains from 

both CD16 and NKG2D are shown to be effective in eliminating tumors in preclinical 

studies. Through continued success in the preclinical stage, a few CAR-NK cell 

immunotherapies have entered clinical trials as potential therapeutics for cancer patients [50, 

51]. Excitingly, our model predicts that co-stimulation of CD16 and NKG2D activate the 

network strongly both individually and collectively. We infer from our results that CARs that 

express the signaling domains of CD16 (CD3ζ) and NKG2D (DAP10) may promote strong 

activation of the signaling network. Although the model presented here was not trained on 

data from CARs, our results are in accord with those found by researchers in 

immunotherapy. This demonstrates the model’s utility in predicting which strategies can 

augment NK cell signaling. Importantly, the modeling predictions go beyond observations 

from published experimental studies by providing detailed predictions about the magnitude 

of activation across a range of ligand concentrations and insight as to why certain 

combinations work better than others. We note that the focus of the current work is to predict 

how NK cell signaling can be maximized, one aspect of cell activation. The predictions 

complement strategies that enhance on-target specificity to tumor cells, such as through the 

use of CARs with extracellular domains specific to tumor antigens. This can help mitigate 

the deleterious effects of off-target NK cell activation.

We acknowledge some limitations that may affect the model predictions. Firstly, our model 

includes three important stimulatory receptors; however, several others could have been 

considered as well. Additionally, although multiple sites of phosphorylation and 

dephosphorylation can exist for each species, we have not included this level of detail in the 

model. This would increase the specificity of our model, but it would be at the expense of 

model simplicity. Since we are interested in understanding and comparing the dynamics 

between multiple pathways, we sought to retain a simplified model in order to effectively 

compare the pathways. In the future, researchers can adopt and improve the current model 

by considering site specific reactions and their importance in particular aspects of NK cell 

stimulation. Finally, although the initial concentrations of the signaling species were derived 

from literature [24–27], we expect that these values may differ based on the specific NK cell 

line or the donor for primary NK cells. Future research can address these limitations, 

building upon the work presented here. In addition, questions within tumor immunology, in 

particular tumor and NK cell dynamics, can be studied by integrating the present signaling 

model with a cell-based model. Mahasa and coworkers [14] provide an example of such a 

model that incorporates intracellular and intercellular dynamics.

Despite these limitations, our mathematical model is relevant in understanding NK cell 

signaling and how the stimulatory network can be enhanced. The results presented here lend 

support for multiple strategies to enhance cell signaling, including (1) the co-stimulation of 

specific receptor combinations, which is relevant to the design of engineered receptors (e.g. 
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CARs), and (2) modifying such engineered receptors to be degradation-resistant to promote 

continued signaling. We propose that the most useful experiment to corroborate and extend 

the work presented here would be to engineer NK cells with CARs co-expressing the 

intracellular signaling domains of CD16 and NKG2D, while also using site-directed 

mutagenesis to inhibit proteolytic cleavage or shedding of the receptor from the cell surface. 

The model predicts these modifications to the NK cell would lead to greater species 

activation. NK cells with the modifications outlined here, could then be tested to determine 

if there is increased activation of the intracellular signaling species included in the model 

and, subsequently, if there is a greater release of cytotoxic molecules. In conclusion, our 

work provides strategies and insight into engineering NK cells for enhanced killing effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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INSIGHT BOX

We constructed an experimentally validated, mechanistic model of three natural killer cell 

signaling pathways (CD16, 2B4 and NKG2D) to provide insight on how to enhance 

activation of key cytotoxicity-mediating species. The receptor concentrations and their 

rate of activation influence the maximum level of species activation and the amount of 

stimulus needed to attain maximal activation, respectively. The co-stimulation of CD16 

and NKG2D most effectively activates the signaling species compared to other 

combinations. The model predicts strategies to enhance species activation: when ligand 

concentration is low, one should inhibit receptor degradation; when ligands are abundant, 

inhibiting phosphatase activity is more effective. Our work provides a framework for 

understanding NK cell signaling and how to improve NK cell cytotoxicity for 

immunotherapies.
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Figure 1. 
Model schematic. Reaction network for three stimulatory receptors expressed on the surface 

of NK cells: CD16, 2B4 and NKG2D. These receptors promote signaling species that 

mediate NK cell activation: SFK, Erk, Akt and PLCγ. Arrows indicate stimulation, while 

red crossbars indicate inhibition. Orange arrows are specific to the NKG2D pathway; blue, 

CD16 pathway; purple, 2B4 pathway; black, all pathways.
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Figure 2. 
Model calibration and validation. The model was fit to experimental data for (A) pSFK, (B) 

pZAP70, (C) pSLP76, (D) pLAT, (E) pPLCγ, (F) pVav, (G) pErk and (H) pAkt. The model 

predictions were validated against separate data for (I) pErk, (J) pAkt, (K) pPLCγ and (L) 

pVav under co-stimulation of 2B4 and NKG2D. Blue: CD16 pathway; purple: 2B4 pathway; 

orange: NKG2D pathway; Green and Brown: 2B4 and NKG2D co-stimulation from separate 

experiments. Note that the green and brown lines represent independent western blot 

experiments that only differ in the time-points of data collection. Solid lines: mean model 

predictions from 1000 parameter estimates. Shaded area: standard deviation of mean model 

predictions. Squares, circles and triangles: experimental data.
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Figure 3. 
Baseline network activation of individual receptors. The magnitude of network activation 

induced by mono-stimulation of NKG2D (orange), CD16 (blue) and 2B4 (purple). Bars 

represent the mean model prediction from the 1000 parameter estimates and the error bars 

represent one standard deviation.
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Figure 4. 
Network activation as a function of ligand stimulation. The mean value (solid line) of the 

magnitude of network activation from the 1000 parameter estimates, along with one standard 

deviation (shaded area), is shown for stimulation of CD16 (blue), 2B4 (purple) and NKG2D 

(orange).
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Figure 5. 
Receptor co-stimulation. Each receptor combination is stimulated with varying 

concentrations of ligands. (A) The co-stimulation of 2B4 and NKG2D (magenta), CD16 and 

2B4 (green), CD16 and NKG2D (red) as well as the stimulation of all three receptors (black) 

are shown. The solid line represents the mean value from the 1000 parameter estimates and 

the shaded area is one standard deviation. Network activation was scaled onto a range of 

[0,100] by normalizing the network activation by the maximum value across all three 

pathways. (B) The ligand concentration required to reach half-maximal activation (dashed 

line in (A)). Bars represent the mean model prediction from the 1000 parameter estimates 

and the error bars represent one standard deviation.
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Figure 6. 
Perturbations to the stimulatory network. The percent change of the magnitude of network 

activation from baseline for stimulation of NKG2D (A–C), CD16 (D–F) and 2B4 (G–I) is 

shown. The perturbations were simulated using a ligand concentration of 6.67 × 10−4 μM 

(left column), 6.67 × 10−2 μM (middle column) and 6.67 μM (right column). Circles: 

decreasing pSFK deactivation rate; triangles: decreasing pSHP activity; squares: increasing 

receptor-ligand affinity; diamonds: decreasing phospho-receptor decay rate; and Marker: 

mean value from 1000 parameter estimates. Error bars: one standard deviation.
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