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Abstract

The CREB-binding protein (CBP) pathway plays an important role in transcription and activity of 

acetyltransferase that acetylates lysine residues of histones and non-histone proteins. In the present 

study, we hypothesized that genetic variants in the CBP pathway genes played a role in survival 
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(OS) of non-small cell lung cancer (NSCLC). We tested this hypothesis using the genotyping data 

from the genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and 

Ovarian (PLCO) Cancer Screening Trial. In the single locus analysis, we evaluated associations 

between 13 176 (1107 genotyped and 12 069 imputed) single-nucleotide polymorphisms (SNPs) 

in 72 genes and survival of 1185 NSCLC patients. The identified 106 significant SNPs in the 

discovery were further validated in additional genotyping data from another GWAS dataset of 984 

NSCLC patients in the Harvard Lung Cancer Susceptibility Study. The combined results of two 

datasets showed that two independent, potentially functional SNPs (i.e., HDAC2 rs13213007G>A 

and PPARGC1A rs60571065T>A) were significantly associated with NSCLC overall survival, 

with a combined hazards ratio (HR) of 1.26 [95% confidence interval (CI) = 1.09–1.45 and 

P=0.002] and 1.23 (1.04–1.47 and P=0.017), respectively. Furthermore, we performed an 

expression quantitative trait loci analysis and found that the survival-associated HDAC2 
rs13213007A allele (GA+AA), but not PPARGC1A rs60571065A allele (TA+AA), was 

significantly associated with increased mRNA expression levels of HDAC2 in 373 lymphoblastoid 

cell lines. These results indicate that HDAC2 rs13213007A allele is a potential predictor of 

NSCLC survival, likely by altering HDAC2 expression.
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1 INTRODUCTION

Lung cancer has been the leading cause of cancer-related mortality since 1985, with over a 

million deaths each year worldwide [1]. In 2018, it is estimated that there were 

approximately 234,030 new cases and 154,050 lung cancer deaths in the United States 

(https://seer.cancer.gov/statfacts/html/lungb.html). Non-small cell lung cancer (NSCLC) is 

the most common histological type of lung cancer, accounting for approximately 80–85% of 

all lung cancer diagnosis [2]. Over the past few decades, advances in surgical procedures, 

chemo-radiotherapy, targeted therapy, and more recently immunotherapy have contributed to 

modest improvements in the survival of lung cancer [3]; yet, the five-year survival rate is still 

at an underwhelming 15–20%. Previous studies have found that molecular and genetic 

factors may play an important role in lung cancer progression and outcomes [4]; thus, it is 

important to search for additional molecular markers that may predict the survival of 

NSCLC patients who would benefits from individualized therapies.

Single nucleotide polymorphisms (SNPs) can affect gene expression and functions and thus 

may be associated with susceptibility to cancer development and progression [5]. To date, 

several genome-wide association studies (GWASs) of lung cancer have discovered SNPs that 

are associated with cancer risk, but few have found markers predictive of outcomes of 

NSCLC patients. The vast majority of SNPs under GWAS investigation did not reach the 

stringent genome-wide level of significance, and most of those identified as significant SNPs 

are located within non-coding regions of the genome, making such discoveries 

fundamentally difficult to comprehend and harder to reveal the underlying mechanisms. As a 
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result, it is recommended that research strategies in the post-GWAS era should include 

“discovery, expansion, and replication”, “biological studies”, and “epidemiologic studies” 

(https://epi.grants.cancer.gov/gameon/#funded) [6]. By using a hypothesis-driven approach 

of the pathway gene analysis pooling together GWAS datasets, one may have a better chance 

with an improved statistical power to identify novel loci with minor yet detectable effects, to 

examine functional consequences of such novel loci, and thus, to unravel possible 

mechanisms underlying the observed associations.

The CREB-binding protein (CBP) pathway regulates the post-translational modification 

with the activity of acetyltransferase that acetylates lysine residues of histones and non-

histone proteins, such as p53 [7]. The CBP pathway is also involved in basic cellular 

functions, including cell growth, differentiation, DNA repair, and apoptosis [8, 9]. Studies 

have revealed oncogenic roles of the CBP pathway genes; for example, it has been shown 

that CBP is highly expressed in lung cancer cells and tumor tissues, upregulating hTERT 

expression and promoting tumor growth in human lung cancer cells [10]. Furthermore, CBP 

overexpression by members of the activator protein-1 (AP-1) family and downregulation of 

the retinoid acid receptor β might promote lung tumor proliferation [11]. Intriguingly, CBP 

exerts its actions mainly by acetylation of histones and other regulatory proteins [12], and 

could be fused to MOZ and several other gene products in acute myeloid leukemia by 

chromosomal translocations [13]. In addition, mice monoallelic for the CBP gene may induce 

multilineage defects in hematopoietic differentiation with an elevated chance of hematologic 

malignancies [14].

To date, the role of SNPs in the CBP pathway genes and their functionality related to tumor 

growth and progression are still unknown, and there are few reports about the SNPs in CBP 

pathway genes and its related gene-set in NSCLC prognosis. In the present study, by using 

two publicly available GWAS datasets, we performed a CBP pathway gene-set analysis to 

evaluate the association between genetic variants in this gene-set and the survival of NSCLC 

patients.

2 MATERIALS AND METHODS

2.1 Study populations

As shown in the study flowchart (Figure 1), the discovery phase included 1,185 NSCLC 

patients obtained from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening 

Trial, after application and access approval from the National Cancer Institute (NCI). The 

PLCO is an NCI funded multicenter randomized trial of screening for cancer from ten 

medical centers in the United States between 1993 and 2011 [15]. The screening trial 

enrolled 77,500 men and 77,500 women aged 55–74. All individuals were randomized to 

either the intervention arm with screening or the control arm with standard care [15]. The 

PLCO trial collected blood specimens from the first screening visit and gathered extensive 

information about each individual, including smoking history, family history of cancer and 

demographic information [16]. All participants were followed for at least 13 years after the 

enrollment. Genomic DNA extracted from the blood samples was genotyped in a genome-

wide association study (GWAS) with Illumina HumanHap240Sv1.0, Human-Hap300v1.1 

and HumanHap550v3.0 (dbGaP accession: phs000093.v2.p2 and phs000336.v1.p1) [17, 18]. 
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In 1,187 Caucasian NSCLC patients from the PLCO trial, two with missing follow-up 

information were excluded. Therefore, the eligible subsets of the PLCO lung cancer dataset 

for survival analysis included 1185 NSCLC patients, whose clinicopathological variables 

and genotype data were available. Tumor staging was determined according to the fifth 

edition American Joint Committee on Cancer staging system. The institutional review 

boards of each participating institution approved the PLCO trial and the use of biological 

specimens for further research, and all subjects signed a written informed consent permitting 

the research represented here [15].

The validation phase used the GWAS dataset from the Harvard Lung Cancer Susceptibility 

(HLCS) Study with 984 histology-confirmed Caucasian NSCLC patients. The histological 

classification of the tumors were recorded by two staff pulmonary pathologists at the 

Massachusetts General Hospital. The time of blood collection was within 1–4 weeks of the 

diagnosis for each patient. DNA was extracted from blood samples by using the Auto Pure 

Large Sample Nucleic Acid Purification System (QIAGEN Company, Venlo, Limburg, 

Netherlands). Genotype data were obtained by using Illumina Humanhap610-Quad arrays, 

and imputation was performed by using MaCH based on the 1000 Genomes project [19]. 

Details of the participants in the Harvard study were described previously [20]. The 

comparison of the characteristics between the PLCO and the Harvard study is presented in 

the Supplemental Table 1.

2.2 Gene and SNP selection

The genes or gene-set involved in the CBP pathway were selected through the Molecular 

Signatures Database (http://software.broadinstitute.org/gsea/msigdb/index.jsp), by the 

keyword “CBP”. After removing duplicated genes and excluding genes in the X 

chromosome, 72 genes remained as candidate genes for further analysis (Supplemental 

Table 2). We first performed imputation for the 72 genes plus the 500-kb flanking buffer 

regions by using IMPUTE2 and the 1000 Genomes Project data (phase 3) [19]. After 

imputation, we extracted all the SNPs in these genes and within their ±2 kb flanking regions 

according to the following criteria: a minor allele frequency ≥ 0.05, a genotyping rate ≥ 

95%, and a Hardy-Weinberg equilibrium P value ≥ 1×10−5. As a result, 1107 genotyped 

SNPs were chosen from the PLCO GWAS dataset with an additional 12,069 SNPs as a 

result of imputation.

2.3 Statistical analyses

The follow-up time in both PLCO and HLCS datasets was from the diagnosis of lung cancer 

to the last follow-up or time of death. OS was the primary endpoint of the present study, and 

disease-specific survival (DSS) of lung cancer was also examined. In the single-locus 

analysis, multivariate Cox proportional hazards regression analysis was used to evaluate 

associations between each of the SNPs and survival (in an additive genetic model) with 

adjustment for age, sex, smoking status, histology, tumor stage, chemotherapy, radiotherapy, 

surgery and the top four principal components of the PLCO dataset using the GenABEL 

package of R software [21]. We first used the false discovery rate (FDR) to correct multiple 

testing with a threshold of 0.2.
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Since the majority of SNPs were imputed and there was a high level of linkage 

disequilibrium (LD), we used the Bayesian false discovery probability (BFDP) with a cutoff 

value of 0.8 for multiple test corrections as recommended [22]. We assigned a prior 

probability of 0.10 to detect an HR of 2.0 for an association with variant genotypes or minor 

alleles of the SNPs with P < 0.05. Then, we chose SNPs for the HLCS GWAS dataset 

validation, which satisfied the following conditions: SNPs passed the threshold of BFDP ≤ 

0.8, and tagging SNPs based on their LD. To identify independent SNPs, we included the 

validated SNPs in a multivariate stepwise Cox model with adjustment for demographic 

characteristics, previously published SNPs, clinical variables and the top four principal 

components of the genotyping data in the PLCO dataset. Combined-analysis of discovery 

and validation datasets was also performed to provide summary results. The fixed-effects 

model was applied If the Cochran’s Q-test P value > 0.100 and the heterogeneity statistic 

(I2) < 50%; otherwise, the random-effects model was employed. Kaplan-Meier curves were 

used to estimate the survival associated with the genotypes. The combination of risk or 

unfavorable genotypes was used to estimate the cumulative effects of the identified SNPs.

Functions of the validated SNPs were further predicted by HaploReg23 , SNPinfo24 and 

RegulomeDB25. The criteria for functional SNPs were: 1) the SNPs were associated with 

survival in both the PLCO trial and HLCS study and 2) genotypes of the SNPs were 

associated with mRNA expression of their genes as shown in one of these databases. 

Expression quantitative trait loci (eQTL) analysis was further performed to assess 

correlations between SNPs and mRNA expression levels by using linear regression analysis 

with the R (version 3.5.0) software. mRNA expression data of genes were obtained from 

lymphoblastoid cell lines derived from the 373 European descendants included in the 1000 

Genomes Project19, and from the whole blood and normal lung tissues in the genotype-

tissue expression (GTEx) project26. Using the data from the Cancer Genome Atlas (TCGA) 

database (dbGaP Study Accession: phs000178.v9.p8), we examined the differences in 

mRNA expression levels between paired tumor tissues and adjacent normal tissues by the 

paired t test27. Next, we detected the association of mRNA expression and OS through 

Kaplan-Meier (KM) analysis (n=1,926) (http://kmplot.com/analysis/index.php?

p=service&cancer=lung). Finally, receiver operating characteristic (ROC) curves were 

constructed and time-dependent ROC analysis were performed to examine the prediction 

accuracy of models integrating both clinical and genetic variables on NSCLC survival with 

the “timeROC” package in R (version 3.5.0)28. Unless specified, all statistical analyses were 

performed using the SAS software (version 9.4; SAS Institute, Cary, NC, USA).

3 RESULTS

3.1 Associations between SNPs in the CBP pathway gene-set and NSCLC survival in 
both PLCO and HLCS datasets

The study flowchart is shown in Figure 1, and basic characteristics of 1,185 NSCLC patients 

have been described previously29 (also see Supplemental Table 3). In the PLCO discovery 

dataset with an additive genetic model, the multivariate Cox model with adjustment for age, 

sex, smoking status, histology, tumor stage, chemotherapy, radiotherapy, surgery and the first 

four principal components (Supplemental Table 4) identified 405 SNPs that were 
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significantly associated with NSCLC survival after multiple test correction by BFDP ≤ 0.8 

but not by False Discovery Rate ≤ 0.2 – the results are summarized in a Manhattan plot 

(Figure 2A). Potentially functional SNPs were further validated by the HLCS dataset. As a 

result, two SNPs in two different genes (i.e., rs13213007 in HDAC2 and rs60571065 in 

PPARGC1A) were validated (Table 1), both of which were imputed. Further combined 

analysis of these SNPs of the two datasets showed a worse survival associated with the 

rs13213007 A and rs60571065 A alleles (Padjusted = 0.0003 and 0.002, respectively), and no 

heterogeneity between the two studies were observed (Table 1).

3.2 Identification of independent SNPs associated with survival of NSCLC in the PLCO 
dataset

Because the HLCS study provided only the summary data, we used only the PLCO dataset 

to identify independent SNPs after full adjustment for other co-variables. To identify 

potential functional SNPs associated with NSCLC survival with three online bioinformatics 

tools (i.e., RegulomeDB25, SNPinfo24 and HaploReg23), we found that both of the validated 

SNPs were located in the intron regions with some functions. In the RegulomeDB25, 

rs60571065 had a score of 5, indicating a potential transcriptional factor binding or DNase 

peak, while rs13213007 had no data (Supplemental Table 5); both of the validated SNPs had 

no obvious function based on SNPinfo24 or HaploReg23.

The two validated SNPs (i.e., HDAC2 rs13213007 and PPARGC1A rs60571065) were also 

included into a multivariate stepwise Cox model with adjustments for demographic and 

clinical variables as well as previously published SNPs and the first four principal 

components available in the PLCO dataset. As a result, both of the two SNPs remained 

independently associated with NSCLC survival (Table 2, also see Supplemental Table 6); a 

regional association plot of each SNP is shown in Supplemental Figure 1. In the PLCO 

dataset, patients with rs13213007 A or rs60571065 A alleles had an increased risk of death 

(Ptrend = 0.004 or 0.015, Table 3). Compared with the reference genotype in a dominant 

genetic model, HDAC2 rs13213007 GA+AA and PPARGC1A rs60571065 TA+AA were 

associated with a significantly increased risk of death (HR=1.26, 95% CI=1.09–1.45 and 

P=0.002 for rs13213007 GA+AA; and HR=1.23, 95% CI=1.04–1.47 and P=0.017 for 

rs60571065 TA+AA).

3.3 Combined and stratified analysis of the two independent and functional SNPs in the 
PLCO dataset

To provide a better estimation of the hazards for survival, we combined the risk genotypes 

(i.e., rs13213007 GA+AA and rs60571065 TA+AA) into a genetic score, which was used to 

divide all NSCLC patients into three groups. As shown in Table 3, in the multivariate 

analysis, an increased genetic score was associated with worse survival (trend test: P<0.001). 

After dichotomizing the genetic score, we re-grouped all the patients into a low-risk group 

(0 risk score) and a high-risk group (1–2 risk scores); patients in the high-risk group had 

significantly poorer survival compared with the low-risk group (HR=1.31, 95% CI=1.14–

1.52 and P=0.0002). Kaplan-Meier survival curves were generated to depict the associations 

between risk genotypes and NSCLC OS (Figure 2Ba and 2Bb) and DSS (Figure 2Bc and 

2Bd).
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To assess the ability of risk genotypes to predict outcomes, we compared the area under the 

ROC curve (AUC) from the model with clinical variables to that from the model including 

both clinical variables and risk genotypes. The addition of risk genotypes to the prediction 

model of five-year OS increased the AUC from 87.0% to 87.27% (P=0.375, Supplemental 

Figure 2a); similarly, the addition of risk genotypes to the prediction model of five-year DSS 

increased the AUC from 86.7% to 87.01% (P=0.391, Supplemental Figure 2b). Finally, the 

time-dependent AUC curve was generated to quantify the ability of risk genotypes to predict 

NSCLC survival through the entire follow-up period (Supplemental Figure 2c and 2d).

We further analyzed the effect of combined risk genotypes on NSCLC OS, and whether it 

was modified by age, sex, smoking status, histology, tumor stage, chemotherapy, 

radiotherapy and surgery (Table 4). The results showed no significant interactions (P>0.05) 

except with smoking status (P=0.002). Hence, as shown in Supplemental Tables 7 and 8, we 

further assessed the associations of HDAC2 rs13213007 and PPARGC1A rs60571065 with 

OS of NSCLC in three subgroups of never, current and former smokers and found that 

cigarette smoking and HDAC2 rs13213007 had an interactive effect on NSCLC OS, where 

the highest risk was observed amongst current smokers. Additionally, never smokers were at 

a higher risk than former smokers.

3.4 in silico functional validation

Experimental data from the ENCODE project25 (Supplemental Figure 3a and 3b), revealed 

the two SNPs (i.e., HDAC2 rs13213007 and PPARGC1A rs60571065) to be located in a 

DNase I hypersensitive site, where the DNase hypersensitivity and histone modification 

H3K4 acetylation indicated some strong signals for active enhancer and promoter functions. 

The evidence from the DNase cluster and transcription factor CHIP-seq data25 predicted that 

rs60571065 is located in the Barhl2/ Msx-3/ Sox1 motif as shown by the position weight 

matrix (Supplemental Figure 3c, 3d and 3e), and that the minor allele may affect the binding 

activity to have an impact on the transcription factors.

In addition, we performed eQTL analysis to correlate genotypes of the SNPs and mRNA 

expression levels using data of the 373 European descendants available from the 1000 

Genomes Project19. Only the HDAC2 rs13213007 A allele (GA+AA) showed a significant 

correlation with increased mRNA expression levels of the gene (P=0.043, Figure 2Ca), 

while this was not the case for the PPARGC1A rs60571065 A allele; however, in the whole 

blood and lung tissue data of the GTEx project, both SNPs were not associated with 

expression levels of HDAC2 and PPARGC1A (Supplemental Table 9). Taken together, these 

findings suggest that HDAC2 rs13213007A allele, but not PPARGC1A rs60571065A allele, 

may influence HDAC2 gene expression at the transcription level.

Finally, to find the expression of these genes in NSCLC, we compared the mRNA 

expression levels of these genes in 111 paired NSCLC tumor and adjacent normal tissue 

samples obtained from the TCGA database. Expression levels of HDAC2 were higher in the 

tumor tissues (P<0.001), compared with the adjacent normal tissues (Supplemental Figure 

4a, 4b and 4c), and the higher expression levels were associated with a poorer NSCLC OS 

(Supplemental Figure 5a). On the other hand, the expression levels of PPARGC1A were 

lower in the tumor tissues (P<0.001), compared with the adjacent normal tissues 
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(Supplemental Figure 4d, 4e and 4f), and the higher expression levels were associated with a 

better NSCLC OS30 (Supplemental Figure 5b).

3.5 Mutation analysis

We accessed the mutation status of HDAC2 and PPARGC1A in lung tumor tissues by using 

the public database of the cBioPortal for Cancer Genomics. As shown in Supplemental 

Figure 6a and 6b, HDAC2 had a low somatic mutation rate in NSCLC (1.05%, 12/1144) in 

the 2016 TCGA study31, LUAD (1.64%, 3/183 and 1.24%, 7/566) in the Broad32 and TCGA 

PanCan studies27, respectively; and LUSC (0.41%, 2/487) in the TCGA PanCan study. In 

contrast, PPARGC1A had a relative higher somatic mutation rate in NSCLC (3.06%, 

35/1144) in the TCGA 2016 study31, LUAD (3.28%, 6/183; 3.89%, 22/566; and 3.89%, 

22/566) in the Broad32 and TCGA PanCan studies27, respectively; and LUSC (3.37%, 

6/178; 2.26%, 11/487; and 0.98%, 5/511) in the TCGA pub, TCGA PanCan and TCGA27 

studies, respectively. Given the rarity of mutations in these two genes, our results suggest 

that the functional SNPs in HDAC2 may play a relatively important role in the dysregulation 

of mRNA expression in tumor tissues, whereas the mutations might also play a role in 

altered functions and expression of PPARGC1A in addition to the causal SNPs.

4 DISCUSSION

In the present study, we found two genetic variants (i.e., HDAC2 rs13213007 G>A and 

PPARGC1A rs60571065 T>A) in the CBP pathway gene-set to be significantly associated 

with survival of patients with NSCLC in both the PLCO trial and the HLCS GWAS datasets. 

The results suggest that patients with risk genotypes (i.e., HDAC2 rs13213007 GA+AA or 

PPARGC1A rs60571065 TA+AA) had a worse prognosis. Furthermore, HDAC2 
rs13213007 G>A appears to influence HDAC2 mRNA expression, which makes this SNP-

associated risk of death biologically plausible.

Histone deacetylases (HDACs) function to deacetylate the ε-amino group of lysine residues 

of both histone and non-histone substrates7. HDACs are grouped into class I–IV enzymes33, 

i.e., Class I contains HDAC1, 2, 3 and 8, class II HDAC4, 5, 6, 7, 9 and 10, and class IV 

HDAC, whereas Class III enzymes contains the SIRT deacetylases34. Studies suggest that 

HDAC2 is crucial for embryonic development, growth regulation, and affects cytokine 

signaling relevant for immune responses35 and is often overexpressed in lung cancer and 

other tumors36. Both published in vitro and in vivo experiments have indicated that the 

aberrant regulation of HDAC2 may confer an oncogenic potential for lung cancer cells and 

hepatocellular carcinoma cells by deregulating apoptosis and expression of cell cycle 

proteins37, while overexpression of HDAC2 has been found to be associated with a shorter 

relapse-free survival after radical prostatectomy in prostate cancer38. Furthermore, the 

upregulation of HDAC2 may enhance proliferation of gastric cancer cells by deregulating 

cell cycle proteins39, and HDAC2 may also play a fundamental role in the Myc-mediated 

oncogenesis40. These are consistent with our findings that HDAC2 expression was increased 

in lung cancer tissues, compared with normal tissues in the TCGA dataset. However, the 

detailed mechanisms of HDAC2 SNPs underlying the observed death-risk associations 

warrant further investigations.

Tang et al. Page 8

Mol Carcinog. Author manuscript; available in PMC 2020 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Few studies have reported the role of HDAC2 SNPs in cancer outcomes. One study found 

that the rs11391 SNP in the 3’-UTR of HDAC2 was a potential genetic marker of poor 

prognosis for NSCLC41, while another study identified several functional SNPs in HDAC2 
and evaluated their associations with clinical outcomes in hepatocellular carcinoma, but no 

significant associations were found42. In the present study, we showed that the HDAC2 
rs13213007 A allele was associated with a poorer survival of NSCLC, likely due to its 

association with an increase in mRNA expression levels of the gene; moreover, HDAC2 
mRNA expression levels were found to be higher in tumor tissues, and higher expression 

levels were also associated with a worse survival in NSCLC. According to the ENCODE 

project database25, HDAC2 rs13213007 is located in a DNase I hypersensitive site with 

considerable levels of histone modification H3K4 acetylation, which may lead to an 

enhanced transcriptional activity. Therefore, it is likely that that HDAC2 might act as an 

oncogene in NSCLC.

Similarly, there are also few studies that have reported the role of PPARGC1A SNPs in 

cancer outcomes. Previous studies have reported that abnormalities in cell metabolism are 

associated with tumorigenesis where mitochondria are key regulators43. PPARGC1A is a 

known regulator of mitochondrial biogenesis and is a multiple-function transcriptional 

coactivator that has been noted to be associated with various human diseases, including type 

II diabetes mellitus44, coronary disease45 and others. One study utilized ChIP-seq to obtain 

PPARGC1A binding sites across the genome in hepatoma cells HepG2 and the subsequent 

conserved-motif analysis showed that the majority of the PPARGC1A binding sites were 

located in multiple regulatory factor binding regions46. To date, however, the studies on the 

expression and function as well as oncogenic roles of PPARGC1A in lung cancer are 

inconsistent. For example, one report found that PPARGC1A might be an oncogene47, while 

the other demonstrated that it might be a suppressor gene48.

In the TCGA database, we found that mRNA expression levels of PPARGC1A were higher 

in normal lung tissues than in tumor tissues (n=111), while its lower expression levels were 

associated with a worse survival in NSCLC. However, PPARGC1A was also reported to act 

as an oncogene, because its expression levels were upregulated in tumor tissues (n=3), 

facilitating lung cancer metastasis49. It is possible that the expression levels of PPARGC1A 
in lung cancer tissues may be affected by other factors, such as an imbalanced activation by 

risk genotypes, which may cause abnormal expression of PPARGC1A, in addition to 

mutations. Based on the ENCODE Project data, PPARGC1A rs60571065 is located in a 

DNase I hypersensitive site, indicating its potential function to modify gene expression. 

Clearly, additional studies are warranted to investigate possible mechanisms underlying 

PPARGC1A rs60571065-associated death risk of NSCLC.

In the clinical setting for NSCLC patients with EGFR mutations, treatment with epidermal 

growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has resulted in an increased 

survival rate in comparison with the standard chemotherapy50. Because EGFR-TKIs have 

been used as the first-line treatment in the application of concurrent or sequential chemo-

radiotherapy regimens, different treatment options should be incorporated into the phenotype 

analysis51. Recently, the 3rd-generation EGFR-TKIs (EGFR-TKI3rd) have displayed 

remarkable efficacy against the T790M-related resistance in mutation-positive NSCLC52. 
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Despite dramatic initial responses, a genetically driven resistance to the targeted therapy 

eventually emerged; thus, limiting their effectiveness in prolonged treatments52. Some 

reports suggest that it is due in part to differences in co-occurring genetic alterations, such as 

mutations of TP53 or PTEN53, but few reports have addressed the roles of SNPs in other 

oncogenes. In the present study, we found that risk genotypes of HDAC2 rs13213007 

promoted its mRNA expression levels, suggesting that the risk genotypes may have an 

impact on T790M-related resistance in NSCLC, which may provide a clue for individualized 

therapy54.

While tobacco smoking is a major risk factor for lung cancer, smoking behavior could 

enhance the adverse genetic effect of the variants by increasing c-Jun expression in lung 

cancer55. In the present study, we found that smoking might increase the risk of death 

associated with HDAC2 rs13213007 SNP in patients with NSCLC. It is likely that smoking 

could affect the function of epigenetics genes or the H3K4 acetylation activity associated 

with HDAC2, a similar phenomenon seen on other cancers, including cancers of the 

pancreas, stomach, bladder, head and neck, and the colorectum56.

Although we observed associations between genetic variants in two CBP pathway genes and 

NSCLS survival along with some functional evidence, the exact molecular mechanisms are 

still unclear. Further functional experiments are required to corroborate the present findings. 

Additionally, since both the discovery and validation datasets used in the present study were 

from Caucasian populations, the results may not be generalizable to other ethnic 

populations. Although the sample size of PLCO was relatively large, the number of patients 

in each subgroup were still relatively small, which might have reduced the statistical power 

to detect a small effect in one particular subpopulation. Furthermore, since only a few 

clinical factors were available for additional analysis, other covariates, such as performance 

status and treatments, were not available for further adjustments. Additionally, it is worth 

noting that the detailed genotype and phenotype data from the HLCS study were not 

accessible for us to perform additional stratified analysis in a larger sample size.

In conclusion, two independent functional SNPs (i.e., HDAC2 rs13213007 G>A and 

PPARGC1A rs60571065 T>A) were found to be significantly associated with NSCLC 

survival in both the PLCO trial and the HLCS GWAS datasets. The combined analysis 

revealed that the two SNPs had a significant association with survival and that patients with 

more risk genotypes had a worse prognosis, possibly due to the progression acceleration and 

metastatic effects of overexpressed HDAC2. Knowing the characteristic overexpression of 

HDAC2 in cancer, the discovery of the novel genetic variant of HDAC2 rs13213007 may 

serve to showcase additional insights for potential therapeutic capabilities of HDAC 

inhibitors and in cancer treatment. The findings in the present study also provides a solid 

foundation for further functional studies to identify molecular mechanisms underlying the 

observed death-risk associations in the progression of NSCLC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Study workflow chart. BFDP, Bayesian false-discovery probability; eQTL, expression 

quantitative trait loci; Harvard Study, Harvard Lung Cancer Susceptibility Study; PLCO, 

Prostate, Lung, Colorectal and Ovarian cancer trial; ROC, receiver operating characteristic; 

SNP, single-nucleotide polymorphism
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FIGURE 2. 
Functional and survival-associated SNPs. A. Manhattan plot of 13,176 SNPs of the CBP 

Pathway genes in the PLCO trial. The statistical values across the autosomes for associations 

between 13,176 SNPs and overall survival of patients with NSCLC are plotted as −log10 P 
values. The blue horizontal line indicates P = 0.05 and the red line indicates BFDP = 0.80. 

Abbreviations: NSCLC, non-small cell lung cancer; PLCO, Prostate, Lung, Colorectal and 

Ovarian cancer screening trial; BFDP, Bayesian false-discovery probability. B. Kaplan-

Meier (KM) survival curves for NSCLC patients of two validated SNPs and combined 

unfavorable genotypes in the PLCO trial. (a) by 0, 1 and 2 unfavorable genotypes (log-rank 

test for trend: P) in OS, (b) by 0 and 1–2 unfavorable genotypes (log-rank test and 

multivariate analysis: P) in OS from the PLCO trial, (c) by 0, 1 and 2 unfavorable genotypes 
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(log-rank test for trend: P) in DSS, and (d) by 0 and 1–2 unfavorable genotypes (log-rank 

test and multivariate analysis: P) in DSS from the PLCO trial. Abbreviations: NSCLC, non-

small cell lung cancer; PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening trial; 

OS, overall survival; DSS, disease-specific survival. C. eQTL analysis of HDAC2 
rs13213007 and PPARGC1A rs60571065 genotypes and corresponding gene mRNA 

expression. All the data were from the 1000 Genome Project dataset. (a) rs13213007 

additive model (P=0.043); (b) rs13213007 dominant model (P=0.080); and (c) rs13213007 

recessive model (P=0.122) but no significant results for rs60571065 (P=0.556, 0.743 and 

0.339, figures not shown). Abbreviations: eQTL, expression quantitative trait loci.
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