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1. Introduction
The Arctic region is undergoing some of the most
rapid rates of climate change in the world [1], with
dramatic transformations underway in terrestrial, coastal
and offshore environments that have immediate and
long-term consequences for socio-ecological systems
(e.g. [2–5]). Significant changes in the type, extent and
thickness of ice cover [6], meltwater input [7] and water
mass dynamics [8], coupled with warming and ocean
acidification [9], have already begun to impact ecosystem
processes and the flora and fauna that inhabit a range
of Arctic habitats [10]. The pace of change is such that
our understanding of the way in which Arctic systems
are structured and function is outdated, and insufficient
to inform management, mitigation and adaptation efforts
across the region [11,12]. Projections indicate that, even
if global stabilization of temperature below 1.5°C is
realized, changes will continue to manifest over an
extended period, perhaps even millennial timescales [13]
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and may include unprecedented shifts in structure [14]. Changes to key components of Arctic
ecosystems are already occurring, yet the collated evidence of how changes to baseline conditions
are proceeding across the Arctic Ocean is still poorly constrained [15], focused on a limited
number of exemplar areas [16], and seldom adopts a holistic view that begins to provide a
nuanced understanding of the modus operandi of the Arctic [17]. This is concerning because
informed decision- and policy-making benefits from a broad understanding of system dynamics,
including feedbacks and the likelihood of ecological surprises [18], yet the focus of study is
already shifting from the natural sciences to social sciences and humanities to meet legislative
and policy demands [19]. Now more than ever, foundational concepts and evidence are needed
to support sustainable management and policy, preferably with a focus on continually acquiring,
interpreting and applying new interdisciplinary knowledge to enhance understanding [20].

2. New evidence and emerging themes
With the recognition of the complexity of system dynamics comes a need to synthesize evidence
on how climatic forcing is changing the fundamentals of the system. It was within this spirit
that this thematic section was commissioned, with interdisciplinary contributions from a range of
active national and international research programmes. In doing so, we did not seek to represent
all active areas of Arctic science, nor was it the intention to produce a comprehensive overview of
specific topics of interest, rather our motivation was to highlight some of the emerging themes
and evidence, stimulate discussion and expedite insight. The contributions received consider
the mechanistic basis and consequences of change over a variety of spatio-temporal scales and
for a number of different Arctic regions and form three research clusters: the water column,
seasonality and benthic–pelagic coupling. Here, we briefly introduce the contributed papers
within the context of the wider literature before offering some observations on the salient research
deficiencies, challenges and opportunities that show promise in establishing a practical research
agenda.

(a) The water column
The waters of the Arctic Ocean respond quickly and in multiple ways to changing forcing
parameters, including changes in freshwater input from land, modulations of ocean currents
and water mass distribution, and shorter and more dispersed sea ice cover [8]. Of particular
interest are processes in the shallowest part of the Arctic Ocean, the photic zone, where changes in
primary productivity and ecosystem dynamics are expected to have significant effects on carbon
sequestration from the atmosphere. The photic zone is affected most directly by changing sea ice
conditions, increasing light availability, as well as stratification and nutrient limitation. A better
understanding of plankton ecology and biogeochemical processes in the photic zone is therefore
of critical importance to understand the role of a future Arctic Ocean as a potential atmospheric
carbon sink. In this respect, the extent to which under-ice algal blooms contribute to primary
production in the Arctic Ocean has become a highly topical issue (e.g. [21,22]). Bouman et al. [23]
use a spectrally resolved model of primary production to identify the set of conditions under
which subsurface chlorophyll maxima contribute to water column productivity, a key feature
that escapes detection by satellites. They conclude that the uneven distribution and sparsity of
chlorophyll measurements in the Arctic Ocean mean that the common practice of spatial and
temporal averaging of profile data underestimates the importance of subsurface chlorophyll
maxima. Next, Kostakis et al. [24] study a multitude of biogeochemical parameters in the Barents
Sea water column under different ice conditions using a glider system, a technology capable of
covering wide areas of the ocean autonomously and complementary to satellite-derived data.
Using these data, they develop and test a bio-optical model that links commonly measured
parameters from glider-mounted sensors with satellite-derived measurements of bulk optical
properties. Combining satellite data with discrete shipboard measurements, Orkney et al. [25]
adopt a similar philosophy to highlight the northward migration of certain phytoplanktonic
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groups (especially Phaeocystis algae) in the Barents Sea. They confirm previous suggestions of a
north-eastward expansion in coccolithophore blooms and suggest that observations of increased
levels of chlorophyll a in the region may, at least in part, be explained by increasing frequencies of
Phaeocystis blooms. Finally, Noethig et al. [26] use sediment traps to quantify the export of different
biogenic particles from the photic zone into the deeper waters of the Arctic Ocean, a crucial
aspect of pelagic-benthic coupling needed to move fixed carbon from shallow to deep waters and,
ultimately, to the seafloor—and a process that is currently impossible to resolve using remote
sensing technology, and poorly constrained by most models. They observe negligible export
fluxes of particulate matter and biomarkers during the Polar Night, but an increase in export
fluxes under reduced sea ice cover during the summer reflecting enhanced primary production.
However, they also find that export fluxes of particulate matter in the Nansen and Amundsen
basins decrease with depth, indicating a strong degradation of organic matter in Arctic surface
waters.

(b) Seasonality
Perhaps the most characteristic feature of the Arctic region is the intense seasonality in physical,
chemical and biological features, both on land and in the sea. This seasonality results in pulses
of primary productivity that largely sustain ecosystems for the entire year. Warmer air and water
temperatures, however, affect timing of ecological processes via changing phenologies of plants
and animals, migration/advection patterns of predators and prey, and community composition
as Arctic species are replaced by advancing southern taxa [27–30]. These changes can have
substantial implications for ecosystem functioning by altering carbon drawdown and storage,
trophic interactions, nutrient cycling and the integrity of Arctic assemblages. Here, Henley et al.
[31] document seasonal availability of nitrate in the surface ocean on the northern Barents Sea
shelf. They show that, while availability varies little between ice-covered and ice-free locations,
the productivity season in ice-free waters is extended by advection of nutrients in Atlantic waters.
Increased Atlantification in the region could contribute to prolonged uptake of atmospheric
carbon in a warming Arctic. Von Jackowski et al. [32] investigate bacterioplankton dynamics that
are affected by changes in the organic matter pool. They show that seasonal patterns in pelagic
primary production affect availability of dissolved organic matter (DOM), and the availability
of substrate has a greater impact on bacterial activity than increasing temperature. Further, as
Tisserand et al. [33] show, algal community composition determines the lability of DOM available
for bacterial growth, and the bacterial strains that are most effective at its cycling. Thus, complex
relationships within the microbial community and at the base of the food web may be profoundly
altered by changes in seasonality of nutrient supply and algal community structure. The fate of
fixed carbon is tightly linked to climate feedback mechanisms via sedimentary processes, such as
bioturbation. Solan et al. [34] examine how invertebrate faunal activity and associated ecosystem
functioning is influenced by seasonal ice cover that affects food supply to the seafloor, and by
mesoscale oceanographic features that influence benthic community structure. Their experiments,
conducted over two consecutive summers along a transect intersecting the Barents Sea Polar
Front, reveal that while faunal composition reflects proximity to Arctic versus boreal conditions,
faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to
the benthos. In a recently ice-free Arctic fjord, however, Morata et al. [35] document a reduction
in seasonality in bioturbation and benthic carbon cycling, although nutrient fluxes retain a strong
seasonal signal. These authors suggest that increased detrital carbon dampens the seasonal carbon
signal from pelagic phytoplankton. In the only time-series study in this themed section capable
of detecting climate-related changes, Al-Habahbeh et al. [36] report slow recovery times from
disturbance and abrupt shifts in community structure for two shallow hard-bottom communities
and conclude, based on trait analyses, that Arctic systems may be particularly vulnerable to
climate-related perturbations. Food–web interactions in the Arctic are highly influenced by
seasonal migrations of both predators and prey. Hutchison et al. [37] incorporate migration
into a food–web model and find better approximation of predator-prey cycles than when a
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static model is used. Seasonal and interannual variability, therefore, modifies processes at the
base of the food chain, with consequent effects through microbial and faunal processing, up
to trophic interactions reaching top predators. Recent studies have indicated that the seasonal
paradigms of the Arctic are not so straightforward as once thought (e.g. [38]), and climate change
is likely to further alter perspectives as communities and their functioning respond to multiple
changing drivers.

(c) Benthic–pelagic coupling
Benthic–pelagic coupling plays a major role in determining the production, biological structure
and food web stability of both systems [39]. This coupling is often stronger in shallower areas
compared to deeper areas, due to the shorter distance between the productive, euphotic zone
and the benthic realm [40]. However, in northern Baffin Bay, Olivier et al. [41], using a bivalve,
provide evidence of a strong benthic–pelagic coupling to 600 m depths. They identify a clear
shift in bivalve growth variation since the late 1970s related to food supply. Over the last half-
century, a more regular export of diatoms from the euphotic zone may have increased food
supply to the benthos. Two hypotheses are possible to explain a more regular export of food
supply: the potential temporal or spatial mismatch between the phytoplankton bloom and its
pelagic consumers, and/or local changes in sea ice dynamics that moderate phytoplankton
production. Climate change leading to ice loss could result in major gains in stored (probably
sequestered) carbon at the shelf seafloor adjacent to parts of Antarctica [42]. Here, Souster et al.
[43] compare the stocks of zoobenthic blue carbon between the Barents Sea and shelf seas of the
Western Antarctic Peninsula. They find that the blue carbon stock of the Barents Sea is twice
that of the Antarctic soft sediment shelf and could have great potential for increased carbon
drawdown. Their results highlight the need to investigate zoobenthic blue carbon in the Arctic
to better inform global estimates of carbon budgets and climate feedbacks. Along these lines,
Faust et al. [44] explore how ongoing changes in the Barents Sea will change the organic and
inorganic sediment composition in the future. Their results, based on comparisons between the
seasonally ice-covered north and permanently ice-free south Barents Sea, imply that continuing
sea ice reduction and the associated modification of vertical carbon fluxes might create shifts
in surface sedimentary organic carbon content which, in turn, may result in overall reduced
carbon sequestration. As the sea ice reduction will continue northward and modify the ocean
primary production, patterns of the benthic–pelagic phosphorus cycle are also likely to change.
By comparing sediments and porewaters from the Barents Sea slope and the Yermak Plateau,
Tessin et al. [45] conclude that increased delivery of labile organic matter in response to elevated
surface productivity will increase the oxidant demand and Fe remobilization within sediments
and cause the Yermak Plateau to shift towards the conditions observed in the Barents Sea slope.
Increased organic carbon fluxes on the Barents Sea slope may result in large fluxes of P from
sediments to bottom waters, as a large stock of P has been accumulated in surface sediments.
Stevenson et al. [46] demonstrate mechanistic links between microbial processing and changes
in organic and inorganic parameters that are coupled to biological mixing and the reactivity
of organic material. They find direct links between aerobic processes, reactive organic carbon
and highest abundances of bacteria and archaea in the uppermost sediment layer followed by
dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the
oxic-anoxic redox boundary and sulphate reducers at depth. Using an original approach, Freitas
et al. [47] combine field observations from the Barents Sea with a Reaction-Transport model to
quantify organic matter processing and its drivers. Their results indicate that, at sites influenced
by Atlantic Water, there is a clear burial of highly reactive marine derived organic matter. This
allows them to establish a baseline systematic understanding of seafloor geochemistry, helping to
anticipate likely modifications linked to future climatic scenarios in the Arctic. From all these
studies, it is clear that ice reduction, alongside other components of climate change, affects
the underlying seafloor without significant delay and plays a central role in moderating and
redefining benthic–pelagic coupling processes.
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3. Research priorities
By focusing on distinguishing natural variation and/or localized responses from long-term
regional climatic forcing, the contributions in this thematic issue provide a sensible focus for new
innovative science in the immediate future. While we acknowledge that the conclusions drawn
here are not based on a comprehensive review and gap analysis of the wider literature, it is clear
that contrasting regional responses to climate change across multiple seasons and locations are
informative and, when taken together, can hasten understanding. Based on this overview, and
in no particular order of importance, we offer the following observations in the hope they will
stimulate debate and novel lines of inquiry:

1. Value basic discovery and observational science, museum collections and historical archives and
use this repository of information and perspectives to inform hypothesis driven investigation.
A cursory look at the literature cited by the contributors to this theme reveals that
phenomenological observations are common and well-articulated, reflecting major
investments in the recent past that stimulated much effort in establishing the basic science
of the Arctic region. Emphasis is now needed to move beyond confirmatory observation
and towards interrogation of system complexities, including unambiguous experimental
demonstration of key mechanisms in the absence of confounding or collinear factors.

2. Undertake diversification in the gathering of knowledge and evidence while adopting a holistic
pan-Arctic view.
The major geographical and seasonal bias in knowledge needs to be addressed by
diverting effort away from regionally and/or temporally constrained study and focusing
on testing the generality of observations, theory and/or conceptual advances. Historical
compartmentalization of disciplines [48] has compounded this problem as there are large
gaps in understanding about the extent to which different landscapes are interconnected
[49].

3. Remove over-reliance on infrequent occupancy by embracing new technology, including cultural
knowledge, satellite-derived information and autonomous systems, while extending ground-
truthing and calibration efforts.
Synoptic efforts are required to routinely gather information at large scales and across
all seasons, with a view to understanding system generalities and localized exceptions.
Effort will be needed to expand capability beyond the current subset of variables and
to employ novel complex-system approaches to identify inter-linkages and distinguish
natural variability from directional change. Such efforts will need thorough interrogation,
even relatively well-established parameters like chlorophyll concentrations in relatively
accessible marginal parts of the Arctic Ocean require a more detailed deconvolution.

4. Establish detailed unambiguous understanding of the vulnerability and/or resilience of Arctic
species and ecosystems to the type, timing, sequence and combination of multiple drivers of change.
Most projections of the fate of Arctic species, ecosystems and associated levels of
ecosystem functioning are based on assumed or extrapolated responses to change. There
is little empirical backing for assumptions made, and little attention has been devoted
to establishing the relative importance of the different components, or properties, of
directional forcing (e.g. [40,50,51]).

5. Divert effort from using bulk or integrative indicators of ecosystem response towards establishing
specific mechanistic understanding of how and when specific drivers of change operate.
While various measures of ecosystem response are accepted and routinely used, the
relative roles of specific pathways or components that underpin the bulk signal are less
known, but have been summarized [52]. For carbon, for example, which degradation
pathways are important, what type of carbon matters, and what are the relative roles of
deposition versus burial? [53] Further, the adequacy and utility of methods for measuring
and assessing the stocks and flows of various aspects of ecosystem responses have
received little attention [54–56].
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6. Transition from documenting negative impacts of change to formulating a socio-ecological,
solution-based narrative that will be effective in providing evidence to support decision and policy
making across the Arctic.
Very little attention has been devoted to formulating an integrated sustainable
management plan for the Arctic, or to determining which evidence is needed to support
decision and policy making. Indeed, a solution-based narrative is not well-developed for
the marine benthos [57], and there are virtually no socio-economic studies for the Arctic
[58,59]. Approaches involving multiple disciplines that mobilize and build on indigenous
and local knowledge are urgently required [16,60], but need to be supplemented by
socio-ecological contributions to aid understanding of system dynamics.

4. Conclusion
Understanding the consequences of climate change and anthropogenic activity in the Arctic
requires a multi-faceted approach and, as the contributions in this themed issue indicate,
there has been significant progression in a number of areas. However, it is clear that Arctic
science is undergoing a transition from observational and phenomenological documentation to
interrogative empirical research aimed at developing theory and mechanistic understanding.
Recent availability of national and international funding has fuelled this evolution, and the
extensive use of observing technology, coupled with the extended occupancy time of field
researchers within the Arctic, is allowing new insights about seasonal dynamics and processes
that occur over larger spatial scales. Nevertheless, investigations remain regionally constrained
and compartmentalized within disciplines or domains, although an integrative comprehension is
beginning to materialize. Our brief analysis here, albeit limited in scope, suggests a developing
directional change in research foci towards an interdisciplinary research agenda focused on
understanding how whole system changes lead to alternative outcomes. Achieving this research
agenda will require the merger of perspectives, scaling up of data acquisition and analysis,
and pooled initiatives that pursue the mechanistic basis of consequential change for biological
communities, biogeochemical processes and ecosystems. For the moment, as this themed section
illustrates, compiling new and existing data, and taking advantage of state-of-the-art models
and adopting upscaling approaches, allows generalities to be established about how Arctic
systems respond to perturbation. As new data become available, model-data comparisons will
highlight areas of divergence, allowing refinement of hypotheses and data needs, while field
data and experiments will provide mechanistic information to enable the re-parameterization of
models to reflect new understanding of system complexity. It will be important to implement
this knowledge to identify thresholds and feedbacks, minimize uncertainty and provide
evidence/advice for prioritizing mitigation and/or adaptation needs as the expression of climate
change intensifies.
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