Table 1.
Amino acid changes in HA and NA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A(H1N1)pdm09 sequences (n=36) compared to A/Michigan/45/2015 | ||||||||||||||
HA |
6B.1A5 (5) |
S74R (5) Cb |
S164T (5) Sa |
I295V (5) |
N129D (5) Sa |
S183P (5) |
T185I (4) |
D222N (2) |
N260D (5) |
K161R (2) |
V193I (2) |
R223Q (5) |
|
|
6B.1A6 (4) |
S74R (4) Cb |
S164T (4) Sa |
I295V (4) |
V47L (4) |
D94N (2) |
T120A (4) |
S183P (4) |
|
|
|
R223Q (4) |
|
|
|
6B.1A7 (6) |
S74R (6) Cb |
S164T (6) Sa |
I295V (6) |
S183P (6) |
K302T (6) |
I77M (6) |
N169S (6) |
E179D (6) |
|
|
R223Q (6) |
|
|
|
6B.1A2 (6) |
S74R (6) Cb |
S164T (6) Sa |
I295V (6) |
S183P (6) |
L233I (6) |
V193A (6) |
|
|
|
|
R223Q (6) |
|
|
|
6B.1A - Outlier (15) |
S74R (15) Cb |
S164T (15) Sa |
I295V (15) |
L161I (15) |
L314M (2) |
I77M (15) |
N128T (15) |
D145N (2)+CHO |
D174E (15) |
|
R223Q (15) |
|
|
|
na |
6B.1A5 (5) |
G77R (5) |
V81A (5) |
N449D (5) |
Q51K (5) |
V67I (3) |
F74S (5) |
I188T (5) |
D416N (3) |
D416K (2) |
T452I (5) |
|
|
|
6B.1A6 (4) |
G77R (4) |
V81A (4) |
N449D (1) |
T72I (4) |
S79P (4) |
I188T (3) |
I365T (4) |
D416N (4) |
|
|
|
|
|
|
6B.1A7 (5) |
G77R (5) |
V81A (5) |
N449D (5) |
M314I (5) |
|
|
|
|
|
|
|
|
|
|
6B.1A2 (6) |
G77R (6) |
V81A (6) |
N449D (6) |
F74L (6) |
L85I (6) |
I188T (6) |
M314I (2) |
I436V (6) |
|
|
|
|
|
|
6B.1A- Outlier (15) |
G77R (15) |
V81A (15) |
N449D (15) |
F74L (15) |
S105N (15) |
I188T (15) |
I436V (14) |
|
|
|
|
|
|
|
A(H3N2) sequences (n=28) compared to A/Singapore/INFIMH-16-0019/2016 | ||||||||||||||
HA |
3C.2a1b +T135K (11) |
V43I (3) |
D53N (5) C |
E62G (11) E |
K92R (11) |
T128A(11) -CHO A |
T135K (11) –CHO A |
S198P (6) |
P289S (4) |
H311Q (11) |
E150G (11) |
K160T (10) +CHO B |
P194L (11) |
G225D (11) |
3C.2a1b +T131K (8) |
I34T (3) |
E62G (8) E |
K83E (7) E |
K92R (8) |
T131K (8) |
H311Q (8) |
E150G (8) |
V200I (8) |
|
|
K160T (8) +CHO B |
P194L (8) |
G225D (8) |
|
3C.2a2 (9) |
R33Q (6) |
K121N (8) |
T131K (8) |
G142R (9) A |
K171N (9) |
A212T (9) |
R261Q (9) |
D291E (6) |
V77I (9) |
E150G (9) |
K160T (9) +CHO B |
P194L (9) |
G225D (9) |
|
na |
3C.2a1b +T135K (10) |
G93S (5) |
P126L (10) |
I212V (10) |
K220N (10) |
N234D (5)-CHO |
V263I (5) |
V303I (10) |
N329S (10)-CHO |
L338F (6) |
V398I (5) |
D399N (5) |
|
|
3C.2a1b +T131K (7) |
P126L (7) |
I212V (7) |
K220N (7) |
V303I (7) |
S315R (7) |
N329S (7)-CHO |
E344K (7) |
G346D (7) |
|
|
|
|
|
|
3C.2a2 (9) |
T72N (2)-CHO |
I176M (9) |
I212V (9) |
H264Y (2) |
N329S (9)-CHO |
N339K (2) |
P386S (9) |
|
|
|
|
|
|
Only amino acid substitutions found in two or more viruses are presented in this table. The number of Bulgarian influenza sequences possessing the substitution is indicated within parentheses. The amino acid substitutions defining the subclade/subgroup are shown in grey shading. For A(H1N1)pdm09, amino acid substitutions that define HA and NA of subclade 6B.1A viruses are shown in bold type. Substitutions in HA2 are identified in italics using HA2 numbering used; substitutions in antigenic sites are identified in bold italic and red colour after parentheses. Gain/loss of an N-glycosylation motif is indicated by +/-CHO. On the right of the table the reversal of amino acid substitutions associated with egg-adaptation of vaccine viruses are indicated in bold type; no such substitutions were observed in NA. Sequences contained in GISAID isolate identifiers EPI_ISL_237793 (A/Michigan/45/2015) and EPI_ISL_344420 (A/Singapore/INFIMH-16-0019/2016) were used to make the comparisons.