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Emerging viruses are a major public health problem. Most zoonotic pathogens originate in wildlife, including
human immunodeficiency virus (HIV), influenza, Ebola, and coronavirus. Severe acute respiratory syndrome
(SARS) is a viral respiratory illness caused by a coronavirus called SARS-associated coronavirus (SARS-CoV). Vi-
ruses are charged colloidal particles that have the ability to adsorb on surfaces depending on pH. Their sorptive
interactionwith solid particles has important implications for their behavior in aquatic environments, soils, sew-
age sludge, and other solid materials and their removal or concentration by water treatment processes.
Current state of knowledge on the potential of wastewater surveillance to understand the COVID-19 pandemic is
reviewed. This study also identified wastewater irrigation systems with a higher risk of COVID-19 transmission.
Emphasis was placed on methodologies for the detection and quantification of SARS-CoV-2 in wastewater.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In light of recent epidemics around the world, there is increasing
awareness of the risk of exposure to emerging pathogens duringwaste-
water collection and treatment. Emerging pathogens may enter waste-
water systems from pathogen shedding in human waste, introduction
of decontamination wastewater, illicit activity, animal farming, and
medi).
hospital effluents, or surface water runoff following a wide-area biolog-
ical incident. Some emerging pathogens (e.g., Ebola virus [EBOV] and
SARS-CoV-2) pose a significant health threat and their exposure in a
wastewater system could have potentially serious health consequences.
The need to assess the potential exposure and transmission of disease
through sanitation systems is therefore necessary. Excretion of SARS-
CoV-2 and its RNA from the body in saliva, sputum, and feces can be
found in sewage. The main route of transmission of this virus would
be inhalation by person-to-person transmission and aerosol/droplet,
aswell as fomite and hand contamination. However, currently available
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data indicate that there is a need to better understand the role of waste-
water as a potential source of epidemiological data and a risk factor for
public health. The detection of SARS-CoV-2 in feces has prompted sev-
eral groups around the world to promote the analysis of wastewater
to assess its circulation in populations (Mallapaty, 2020; Lodder and
de Roda Husman, 2020).

Wastewater is all the water from homes and urban public facilities
(hospitals, schools, etc.) as well as from certain industries (if it does
not require specific treatment). This water is conveyed, via the “sewer-
age system”, to treatment plantswhere it is treated and then discharged
into the environment. Wastewater and wastewater-based epidemiol-
ogy (WBE) monitoring is a tool to guide epidemiological surveillance
and mitigation efforts for infectious diseases, such as the Global Polio
Eradication Initiative (Asghar et al., 2014). It is essential to continuously
monitor the prevalence of SARS-CoV-2 and take appropriate measures
to prevent and control the spread of the disease in the community.
However, it is very difficult to track the virus because most people are
asymptomatic; and further, it is not possible to do active clinical testing
of all individuals, due to resource and cost constraints. Furthermore,
COVID-19may also display second ormore waves. Under these circum-
stances, the passive, but effective, method of sewage or wastewater
monitoring can be used to trace and track the presence of SARS-CoV-
2, through their genetic material RNA, and screen entire community.
The presence of SARS-CoV-2 in wastewater is predictable because it
can infect the gastrointestinal tract and are shed through the stools of
the patients (Xiao et al., 2020; Leung et al., 2003; Zumla et al., 2015;
Gu et al., 2020).

With the objective of keeping the water community informed of
COVID-19 related findings, this review highlights the recent scientific
evidence, as well as topics not previously discussed. Emphasis was
placed on their presence and persistence, as well as detection methods
in different water matrices. Virus-infected wastewater treatment tech-
niques are also highlighted.

2. Persistence of SARS-CoV-2 on surfaces and environment

Environmental persistence refers to the length of time a pathogen,
such as the SARS CoV-2, is able to survive outside the human body;
the longer it survives, the more likely it is to cause infection. For the
most part, investigations on the fate of viruses in the aquatic environ-
ment have focused on non-enveloped enteric viruses, given that these
viruses are characterized by high resistance under a variety of environ-
mental conditions (Annalaura et al., 2020). As for the number of studies
concerning the fate of enveloped viruses in aquatic compartments, it is
rather limited, because enveloped viruses are predisposed to deactivate
inwater (Wigginton et al., 2015). In fact, although enveloped viruses are
inactivated more quickly than non-enveloped viruses, the survival time
of enveloped viruses can still be very long depending on the specific
environmental conditions. This is explained by the fact that the surface
Fig. 1. Virus s
S-proteins (Fig. 1) are deeply anchored and only pass through the enve-
lope: if the envelope is altered, but the surface S-proteins are preserved,
infectivity is maintained.

The persistence of viruses can be affected both by the type of en-
vironment (e.g., surface, water, wastewater) and by the physical and
chemical properties of the environment (e.g., temperature, pH, hu-
midity, exposure to sunlight and the type of surface (Rzeżutka and
Cook, 2004; Thevenin et al., 2013). Furthermore, it is also possible
to be influenced by the composition of the media. This is consistent
with a recent study published detailing the survival rates of SARS-
CoV-2 on different non-living surfaces: 72 h on stainless steel and
plastic, 24 h on cardboard, and 4 h on copper (Van Doremalen
et al., 2020).

Studies to verify the survival of SAR-CoV and SAR-CoV-2 have a
strong phylogenetic similarity (Forster et al., 2020), showing the sur-
vival rate of a pathogen with a viral titer of 105 on aluminum, plastic,
metal, wood and paper of 4–5 days at room temperature (Kampf
et al., 2020). Unfortunately, data on the environmental sustainability
of SARS-CoV-2 is limited to date. However, the basic understanding of
its persistence can be explained by the results of studies on other
coronaviruses such as SARS CoV-1 and MERS CoV.

3. SARS-CoV-2 in wastewater

Generally speaking, viruses aremicroscopic pathogenic agents rang-
ing in size from 18 to 1500 nm (Hurst and Gerba, 1989) and are abun-
dant in water and wastewater (Gantzer et al., 1998), especially
domestic and urban effluents, which are particularly laden with animal
and bacterial viruses. These two groups are of particular interest for en-
vironmental and human health studies.

Infected subjects are considerable and can have up to 1010 per gram
of stool (Masson, 1996). The transmission of these viruses to humans
generates several diseases and epidemics that affect all age groups. In
some cases, they can be fatal for children (e.g., gastroenteritis leading
to morbidity and mortality during the first five years of life) (Parashar
et al., 2013). Humans are considered to be the primary contaminator,
and secondary receptor (Gantzer et al., 1998). Several potential routes
ensure viral transmission to humans: domestic use of the contaminated
surface, or groundwater, bathing in contaminated water, consumption
of infected seafood, or crops grown in contaminated soil.

There are many different types of viruses to include, for example,
Picornaviridae (e.g. polioviruses, echoviruses, and hepatitis A),
Reoviridae (e.g. reoviruses, rotaviruses), Adenoviridae (e.g. adenovirus
A.), Coronaviridae (e.g. coronaviruses), Caliciviridae (e.g. caliciviruses),
small round viruses (e.g. astroviruses, Norwalk), and bacteriophages
(Gantzer et al., 1998; Girard and Hirth, 1989; Havelaar, 1991; Grabow
et al., 1995; Havelaar et al., 1986; Havelaar et al., 1990; Joffre, 1991).

Bacterial viruses or bacteriophages (or phages) are present every-
where there is bacterial life. In every environment, there are phages
tructure.
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from native bacteria and phages from elsewhere. The abundance of
phages in water environments, especially those polluted by fecal mat-
ter, is great. They come from various ecological niches, including the di-
gestive tract (Grabow et al., 1995; Havelaar et al., 1986; Havelaar et al.,
1990; Joffre, 1991). According to Kai et al. (1985), their concentration in
the feces is less than l05 particles per gram.

Owing to their characteristics, bacteriophages are considered by re-
searchers as indicators of fecal pollution and as models for monitoring
the fate of viruses in different water environments and WWTP
(Havelaar, 1991). Bacteriophages have a morphology, structure, and
composition similar to those of enteric viruses. Resistance and behavior,
especially of F-specified RNA phages, are comparable to those of enteric
viruses (Havelaar, 1991; Havelaar and Pot-Hogeboom, 1988; Lewis,
1995). Concretely, on the one hand, phages are not involved in human
pathology.

One of the main problems is the spread of viruses between polluted
environmental waters and populations. It happens that water is con-
taminated by humans on the one hand, and water becomes a means
of infection for humans on the other hand. Since wastewater contains
viruses that are repelled by everyone, regardless of their health, moni-
toring for viruses in wastewater and environmental waters that receive
effluent from wastewater treatment plants (WWTPs) can determine
the true prevalence and molecular epidemiology of gastroenteritis vi-
ruses and the risks to human health (Guan et al., 2020; Huang et al.,
2020;Wang et al., 2020) in a given geographical area rather than clinical
research (Prevost et al., 2015; Kazamaet al., 2017). Suchdatawould be a
useful indicator, especially for poor countries, as it would allow simple,
reliable and inexpensive epidemiological surveillance. In such a situa-
tion, the two fundamental factors that require attention to prevent the
spread of infection, especially in high-risk locations such as hospitals,
are the interconnection of the plumbing system and its condition
(Gormley et al., 2020). The wastewater piping system is designed to
be a precursor to pathogenic microorganisms that, in some cases, can
cause airborne spread of viruses such as SARS-CoV-2.

Several studies in different countries have detected the genetic ma-
terial of SARS-CoV-2 in the human feces of patients with COVID-19
(Wölfel et al., 2020; Lescure et al., 2020; Holshue et al., 2020; Xiao
et al., 2020). The genetic material of SARS-CoV-2 has been detected in
the feces of COVID-19 patients with or without gastrointestinal symp-
toms (Wölfel et al., 2020; Lescure et al., 2020) and in cured individuals
who no longer have symptoms (Wölfel et al., 2020; Lescure et al.,
2020; Holshue et al., 2020). However, the presence of SARS-CoV-2 ge-
netic material in the stool does not necessarily indicate infection or dis-
ease. A few studies that have attempted to detect a viable infectious
virus in the stool have produced conflicting results. Three studies re-
ported the detection of live virus (Wölfel et al., 2020; Lescure et al.,
2020; Holshue et al., 2020) in the stool and one study reported nodetec-
tion of live virus despite the detection of the SARS-CoV-2 genetic mate-
rial (Holshue et al., 2020).

Researchers in Netherlands were the first to successfully isolate and
detect SARS-CoV-2 in wastewater (Medema et al., 2020). They demon-
strated that the coronavirus genome can be detected at several waste-
water collection sites within days of the identification of the first
human case of COVID-19. This hypothesis was confirmed by Wurtzer
and his colleagues (https://www.sciencemag.org/news/2020/04/
coronavirus-found-paris-sewage-points-early warning-system). It also
demonstrates, for the first time, that the quantities of viral genomes
detected in wastewater are increasing in line with the number of
COVID-19-related hospitalizations at the regional level. Preliminary re-
sults obtained even more recently at the same sites show a very signif-
icant reduction in the viral load in wastewater, an expected
consequence of containment measures on the circulation of the virus.

Very recently, researchers from Australia have also advocated sew-
age monitoring for SARS-CoV-2 surveillance in the community
(Ahmed et al., 2020). Researchers are now developing techniques to
track the spread of new coronaviruses in water. The early warning and
monitoring system will recognize the virus by its genetic material or
RNA (ribonucleic acid). The presence of coronavirus in untreatedwaste-
water has been proven by researchers at the University of Queensland
and the Australian National Scientific Agency CSIRO that took samples
froma suburban pumping station andWWTP. They analyzed thewaste-
water samples using RT-PCR tests, which helps identify gene fragments
of the SARS-CoV-2 virus. This is also themethodused byhospitals to test
for the virus in human samples.

Passive surveillance through wastewater mining and monitoring of
SARS-CoV-2, as a subset of the National Water Quality Monitoring Net-
work, therefore, can be utilized to assess community or public health in
COVID-19 pandemic as well as post-pandemic scenarios. The monitor-
ing should commence in red, orange, as well as green zones to alert
health officials in advance about the possible secondwave of COVID-19.

Culture techniques can detect viruses and provide information on
the viability of the virus. However, these methods remain more diffi-
cult, especially for SARS-CoV-2, and take more time than most mo-
lecular techniques, which explains why they are less frequently
used. In order to develop and test methods for monitoring SARS-
CoV-2 genetic material in sewage, a study is currently underway
(Kitajima et al., 2020). With this approach, it is possible to estimate
the frequency of the disease in communities, identify areas where
few tests are performed, predict a possible second wave of infection,
and monitor vaccine results. The approach is not yet ready and is not
an alternative to human testing.

4. Ecological and health impacts of COVID-19 contaminated
wastewater

In many countries, due to the lack of water resources, the following
are used to wastewater for irrigation of agricultural land. In addition,
sludge from the treated wastewater is excellent fertilizer; it is increas-
ingly used in agricultural amendment. The viruses contained in this
wastewater and sludge is thus deposited on crops and on the soil
where they are likely to survive. There are then creations of a risk to
public health either as a result of the contamination of water bodies
by migration of viruses through the soil or the consumption of contam-
inated market garden produce.

The reuse of treated and untreated wastewater in agriculture is a
practice that is steadily increasing. It is therefore important to know
the fate of these viruses, particularly on plants. This can only be done
with enteric viruses that can multiply on cell cultures. Indeed, the pres-
ence of viral genome does not indicate the presence of infectious viral
particles.

Studies reported in the literature show that viruses can survive on
plants irrigated with sewage for variable periods ranging from a few
days to nearly 4 weeks depending on conditions (Badawy et al., 1990;
Tierney et al., 1977). In addition to the nature of the vegetable under
consideration, it appears that two factors have a fundamental influence
on the survival time of viruses on plants after irrigation. These are the
initial level of contamination and the temperature associated with sun-
light. It must be fully aware that even in regions with a very hot climate
it takes more than 6 h to achieve a 2-log reduction in virus contamina-
tion. Thismeans, for example, that in case of irrigating a golf coursewith
wastewater in the morning, enteric viruses are likely to be still present
when the players will be on the course during the day. The same situa-
tion can be found on irrigated lawns in public parks. In both cases,
players or children are likely to come into contact with enteric viruses.

On the other hand, with regard to vegetables, it is clear, and this has
been well confirmed by Croci et al. (1991), that plants irrigated during
cultivation with contaminated water retain significant amounts of vi-
ruses on their surface. In addition, storage at+4 °C not only does not ac-
celerate viral inactivation but slows it down. It is therefore extremely
important to have virus-free vegetable crops at harvest time. Fig. 2 illus-
trates the potential impacts of reusing recycled wastewater for agricul-
tural irrigation.

https://www.sciencemag.org/news/2020/04/coronavirus-found-paris-sewage-points-early
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Fig. 2. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment.
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In addition, since the onset of the crisis, the impact of the COVID-19
pandemic on the environment has attracted attention, including
observation and analysis of recent impacts, and estimates related to
long-term changes. Qualitative assumptions prevail, while consistent
quantitative researchmust await relevant data sets and additional knowl-
edge. Most aspects of the environmental impact of the COVID-19 pan-
demic do not come directly from the virus itself. Sudden restrictions or
closures of economic sectors (such as heavy industry, transportation, or
hotel businesses) had a direct impact on the environment. From an an-
thropocentric point of view, the pandemicmay lead to amore sustainable
future, and particularly to more resilient socio-ecological systems or
shorter supply chains, which is a positive development.

However, countries can still choose less sustainability by pursuing
rapid economic growth and reducing environmental concerns. Although
the overall negative impact on the economyand society can be enormous,
it is likely that the reduction in global economic activity due to the COVID-
19 crisiswill triggermanymajor improvements in the quality of service of
the environment and climate systems. However, not all the environmen-
tal consequences of the crisis are orwill be positive. Some of these include
the increase in the amount of non-recyclable waste, the large amount of
organic waste generated due to declining agricultural and fisheries ex-
ports, and the failure to maintain and monitor natural ecosystems.
https://unctad.org/en/pages/newsdetails.aspx?OriginalVersionID=2333.

Anecdotal evidence indicates reduced biochemical oxygen demand
and coliform levels in rivers, improved air quality by reducing nitrous
oxide (NOx) loading, particulate matter (PM) and the formation of
ozone (O3) associated with other pollutants (UNCTAD, n.d). https://
unctad.org/en/pages/newsdetails.aspx?OriginalVersionID=2333

Many rural and coastal populations depend on the sustainable use of
the local environment and its natural resources, whether they are small
farmers, small andmedium enterprises (SMEs) or micro, small andme-
dium enterprises (MSMEs) involved in the production of organic trade,
forest and fisheries products and ecotourism services. Because the crisis
has disrupted their links to national and international markets on the
demand side, rural producers (many of whom are women supporting
entire families) can no longer fully maintain their business models
and livelihood resources. Attention needs to be paid to the threats to
the environment and natural resources posed by the coronavirus pan-
demic, and the social and economic consequences that result.
As inmany countries in theworld, wastewater offers Morocco an al-
ternative solution as the pressure on freshwater is constantly increas-
ing, particularly due to repeated droughts. In the country, wastewater
reuse is intended for industry, particularly phosphate washing, but
also for golf course irrigation. A letter from the Ministry of the Interior
addressed to the local authorities prohibits the use ofwastewater before
it has been treated due to the possible presence of traces of genomes
from the stools of affected persons (https://www.leconomiste.com/
article/1061485-les-eaux-usees-un-moyen-de-tracage-du-covid-19).
The letter mentions that the use of this wastewater is set by the laws
and regulations in force.

5. SARS-CoV-2 detection in wastewater

The detection of viruses in wastewater and drinking water requires
the following detection methods: sensitive, resistant to false-positive
results, and enabling full automation. In addition, the method used
must be fast and inexpensive. A method, which fulfills all needed re-
quirements, as yet was not worked out.

In addition to economic agents, the implementation of methods for
the detection of viruses in the aquatic environment can comeup against
several obstacles, including: the considerable dilution of the sample, the
influence of the environmental matrix on the analytical results and the
mutagenic variability of viruses. In faecally contaminated water, viruses
are present in relatively small amounts. It is therefore often necessary to
concentrate the samples before determining the exact virus content
(Marzouk et al., 1979). These include, for example: Polymerase chain re-
action (PCR) (Li et al., 2002; Pina et al., 1998; Lee et al., 2005; Cho et al.,
2000; Fout et al., 2003; Schvoerer et al., 2000), nucleic acid sequence-
based amplification (NASBA) (Rutjes et al., 2006; Jean et al., 2002;
Jean et al., 2001), DNA chip technique (Nettikadan et al., 2003;
Alhamlan et al., 2013), atomic force microscope (AFM) (Nettikadan
et al., 2003), fluorescence microscopy (Hara et al., 1991; Hennes and
Suttle, 1995; Noble and Fuhrman, 1998; Shibata et al., 2006; Wen
et al., 2004; Weinbauer and Suttle, 1997), electron microscopy
(Weinbauer and Suttle, 1997; Bettarel et al., 2000; Alonso et al., 1999;
Wommack et al., 1992), biosensor application (Liu and Zhu, 2005;
Rengevych et al., 1999), enzyme-linked immunosorbent assay (ELISA)
(Kittigul et al., 2000; Nasser and Metcalf, 1987; El-Esnawy, 2000;

https://unctad.org/en/pages/newsdetails.aspx?OriginalVersionID=2333
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Nishida et al., 2009) and flow cytometry (Marie et al., 1999; Abad et al.,
1998; Brussaard, 2004; Chen et al., 2001). Some of these methods have
been modified by: i) concentration (ELISA tests, PCR and NASBA reac-
tions, application of microarrays) (Li et al., 2002; Alhamlan et al.,
2013; Kittigul et al., 2000), ii) combinationof differentmethods (PCR re-
action combined with plate-forming tests, atomic force microscopy
combined with protein microarray technology) (Straub et al., 1995;
Haab et al., 2001; Zhu and Snyder, 2001), iii) change in the pore size
of the filter (epifluorescence microscopy) (Weinbauer and Suttle,
1997), iv) dilution of the sample (flow cytometry) (Nettikadan et al.,
2003). Combined methods can also be used. For example, the combina-
tion of PCR with plate formation tests is possible. Polymerase chain re-
action is used to amplify the specific sequence of deoxyribonucleic
acid (DNA). In this reaction, double-stranded DNA, called template
DNA, is amplified. The PCR technique, because of its high specificity,
has been adopted for several years for the detection of viruses in the en-
vironment, in particular enteroviruses and hepatitis A virus (HAV)
(Egger et al., 1995; Gantzer et al., 1997). PCR is a technique that am-
plifies (i.e. synthesizes many copies) a specific segment of DNA of inter-
est using short sequences of synthetic nucleotides called primers that
bind to unique regions of the target genome for organism-specific
identification.

While much simpler than cell culture, molecular methods also
present many challenges. The degree of methodological sensitivity
and specificity depends both on the efficiency of virus recovery
from samples by concentration and purification processes and on
the final degree of purity of the virus recovered by removal of PCR in-
hibitory substances. The system still does not meet the established
standards for virus detection. It is not possible to determine unequiv-
ocally whether the virus detected is infectious or even if the PCR re-
sult is positive. In addition, the PCR reaction can only detect one type
of virus at a time and there are many different types of viruses in
water (Li et al., 2002). Molecular methods pose another problem
when it comes to translating nucleic acid test results in public health
risks. Using nucleic acid-based analysis, the result is the expression
of all viral genetic material present, without distinguishing between
infectious and non-infectious particles (Metcalf et al., 1995). It is be-
yond the scope of PCR to measure the extent to which viruses are af-
fected by different disinfectants. In fact, PCR targets specific parts or
fragments of RNA, regardless of the type and severity of damage
caused by the disinfectant to the genome (e.g., RNA structural mod-
ification, phosphate backbone scission, etc.) (Torrey et al., 2019). Re-
cent efforts to monitor COVID-19 virus in wastewater in the
Netherlands, Australia, and the United States have relied on RT-PCR
as a detection tool. These studies had the primary objective of both
supporting public health surveillance and estimating the number of
infections in the community.

Promising method which may be used in the near future is a device
which is called laboratory-on-a chip (LOC). It is kinds of biosensors
which can respond to certain properties of analyte and converts these
responses into detectable signal; the most common kind of signal is
electrical. These are complex devices with a network of fluid
microchannels, valves,mixers, pumps, reaction chambers, and intercon-
nected detectors, and they can perform many laborious procedures
without manual intervention (Jung et al., 2015). These features make
the LOCs suitable for clinical diagnostic applications and immediate
care tests (Wang et al., 2017), allowing mass production at low cost.
The LOC-based technology has been widely used for virus detection,
and research has been published in the past, such as a comprehensive
description of pathogen detection using microfluidic systems
(Mairhofer et al., 2009). Other reviews on viral infection and
microfluidic technology are specifically used to diagnose a single virus,
including methods for sample preparation and detection, such as
Ebola virus (Coarsey et al., 2017), dengue fever (Darwish et al., 2018),
hepatitis (Duchesne and Lacombe, 2018) and human immunodefi-
ciency virus (HIV) (Mauk et al., 2017).
With LOC technology, the detection of microbiological pathogens in
environmental samples is fast and sensitive. Its use in environmental
microbiology can be done in several ways. LOC-based detection system
is cost-effective, rapid, sensitive, specific, and has relatively high
throughput for parallel identification, which is especially suitable for
resource-limited facilities/areas and POC testing (Huang et al., 2017).
Biosensors or methods based on connection between plaque-forming
tests and PCR reactions seem to be the right alternatives. The application
of biosensors has the capability to detect viruses for 7–16 min (Liu and
Zhu, 2005). In addition, the technology is highly sensitive and allows ob-
servation of the interaction between molecules in real-time (Liu and
Zhu, 2005; Keusgen, 2002). Considering the need for rapid information
on the infection status of the population, and the presence of the virus in
the environment, biosensors can play an essential role in the diagnosis
and surveillance of the disease in the current global pandemic. Qiu
et al. (2020) were able to demonstrate a dual-function plasmonic bio-
sensor that combines plasmonic photothermal effect (PPT) and local-
ized surface plasmon resonance (LSPR) to detect SARS-CoV-2 RNA
transduction without the use of RT-PCR. The biosensor demonstrated
high specificity and a low detection limit of SARS-COV-2 sequences
down to 0.22 pM (Qiu et al., 2020). As the viral concentration is rela-
tively low in a patient sample, the detection limit is of paramount im-
portance. LOC devices appear to have the lowest detection limits,
making them most immediately relevant for this application (Qiu
et al., 2020; Peng et al., 2019; Kaarj et al., 2018; Seo et al., 2020).

Plaque forming tests connected with PCR reaction enable detection
of viruses present in water in time of 2 to 4 days (Straub et al., 1995).
In this method, the detection period is considerably shorter than that
of the traditional plate-forming test, as well as a shorter incubation pe-
riod. Techniques based on biosensors in terms of time-saving are much
better (Liu and Zhu, 2005). Comparison of described methods is pre-
sented in Table 1.

6. Treatment of virus-contaminated wastewater

Wastewater treatment is designed to reduce or eliminate
suspended solids, dissolved and particulate organic matter, nutri-
ents, and heavy metals. The degree of wastewater treatment is
often indicated by the effluent standards prescribed by regulatory
agencies, and by the end-use of the effluent. The sanitation and
health guidelines of the World Health Organization (WHO) must
always be followed (WHO, 2018). At present, no additional measures
specific to COVID-19 are recommended by WHO, the US Centers for
Disease Control and Prevention (CDC), or the Occupational Safety
and Health Administration (OSHA).

With well-designed and well-functioning wastewater treatment
plants and on-site sanitation systems with reliable in-situ disposal or a
network for emptying and discharge to a sewage sludge treatment
plant, the risk posed by fecal pathogens, including SARS-CoV-2, should
be limited.

As a further precaution, WWTPs may consider adding a final dis-
infection step (often called tertiary treatment) to further reduce the
risk posed by viral pathogens, such as SARS-CoV-2, before spilling.
The methods are available for the inactivation of viruses in wastewa-
ter effluents and water range from the purely physical (ionizing
radiation by gamma rays, non-ionizing radiation by ultraviolet
light, photodynamic oxidation and heat) to the purely chemical
(chlorine, chlorine dioxide, ozone, iodine, bromine, and bromine
chloride). Two treatments such as the addition of chlorine to provide
a residue after ozonation can be used to produce finished water free
of toxic residues.

Chlorine is the most widely used disinfectant because it is
effective at low concentrations, relatively inexpensive, and forms a
residue if applied in sufficient doses. It can be applied as gas or hypo-
chlorite, the gaseous form being the most common. Chlorine gas re-
acts readily with water to form hypochlorous acid and hydrochloric



Table 1
Advantages and limitations of virus detection methods for environmental sample
application.

Method for
virus
detection

Limitations Advantages

PCR ➢ Unable to detect several
types of viruses at the same
time (it is possible to detect
different types of viruses
using multiplex PCR, but
this technique requires
more primers and the
application of multiple
primers interferes with
each other, which can make
virus detection difficult.

➢ Inhibition of reaction by
humic acids

➢ Low sensitivity
➢ Requires sample concentra-

tion
➢ Can be used only for

organisms, which are
already known

➢ Specificity
➢ Short detection time

Plaque
forming test

➢ Time-consuming
➢ High analysis cost
➢ Difficulties associated with

plaque observation

➢ Enables to distinguish
between pathogenic and
nonpathogenic viruses

Plaque
forming test
combined
with PCR

➢ Requirement for prior
sequence data of the spe-
cific target gene of interest.

➢ Time-consuming

➢ High sensitivity
➢ Removal of PCR inhibitors
➢ Distinction between patho-

genic and nonpathogenic
viruses

➢ High detection limit
NASBA ➢ Low detection limit

➢ Requires sample concentra-
tion

➢ Can be used only for
organisms, which are
already known

➢ Resistant to influence of
matrix

ELISA ➢ Concentration of sample is
necessary

➢ Suspected to be influenced
by bacteria that may be
present in the sample.

➢ It can be inefficient if rec-
ognizable epitopes are hid-
den in protein structure

➢ Cost-effective
➢ Relatively simple

Biosensors ➢ It enables rapid virus
detection (virus detection
using lab-on-a-chip
methods takes 7 to 16 min)

➢ Low-cost analysis
➢ Size of biosensors enables

easy transport
➢ Minimize sample and

reagent volume
➢ Possibility of intermolecu-

lar observations in real time
➢ High sensitivity
➢ No sample pre-treatment

➢ The range of transcription
factor promoter pairs
available

➢ Transcriptional regulation
is rarely a simple process

➢ The antibody binding
capacity is strongly depen-
dent on assay conditions
(e.g. pH and temperature)

➢ The antibody-antigen
interaction is generally
robust, however, binding
can be disrupted by
chaotropic reagents,
organic solvents, or even
ultrasonic radiation
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acid; the hypochlorous acid produced then dissociates to give the hy-
pochlorite ion:

Hypochlorous acid (HOCl) form is themain form of chlorine respon-
sible for its disinfecting properties. At neutral and lower pH levels, more
HOCl is formed, resulting in greater disinfection capacity at these pH
levels. Chlorine in the formof HOCl or OCl− is the available free chlorine.
The combination of HOCl with ammonia and organic compounds in
wastewater produces combined chlorine in the form of chloramines.
Low-level wastewater disinfection can effectively inactivate SARS-
CoV-1 (0.5 mg L−1 free chlorine residual), although standard dosage
recommendations must be followed (Wang et al., 2005). Therefore,
the safety of drinking water and wastewater depends on the appropri-
ate selection of the disinfectant dose and contact time in the treated en-
vironment, which are very important analytical techniques and
methods that can detect viruses.

Viruses are charged colloidal particles that have the ability to adsorb
on surfaces. Their adsorption interaction with solid particles is very im-
portant for their behavior in aquatic and soil environments and for their
elimination or concentration by water treatment processes (Bitton,
1975). To control the adsorption of viruses on surfaces, factors such as
the type of virus and the relevant surface, pH, electrolytes, and the pres-
ence or absence of interfering substances in the suspension medium
must be considered (Bitton et al., 1976).

As with all other treatment systems capable of removing viruses
from water and effluents, carbon requires continuing study. Although
it is not an exciting system for this purpose, carbon does retain viruses.
The extent to which it acts as a filter by adsorbing or filtering other ma-
terials that adsorb viruses should be investigated.

Carbon, of course, is important in the disinfection process because it
removes organic compounds that interfere with disinfectants. Carbon
may also alter effluent quality in a way that adversely affects disinfec-
tion. For example, iron used for coagulation may react in carbon col-
umns and subsequently reduce iodine making it unavailable for
disinfection. Problems of this kind must always be monitored.

Treatment processes are generally unable to remove all viruses from
sewage. Research must therefore focus on how best to remove sub-
stances that interfere with the disinfection process from effluents and
raw waters. Techniques that lead to an increase in pH are of particular
interest because strong alkalinity has a destructive effect on viruses.
The concentration of viruses entering treatment facilities varies greatly
from season to season, from one location to another, and even within
24-h (Bitton et al., 1976). Management of virus removal by treatment
procedures requires coordination and synchronization of sampling.
Quantitative methods of virus concentration must be developed to ac-
curately assess the effectiveness of treatments.

The ability of some viruses to survive in disinfected effluent can be
problematic (Cromeans et al., 2010; Li and Mitch, 2018). To overcome
this dilemma, one solution is to adoptwastewater treatment technologies
that achieve high levels of pathogen inactivation while removing carbon
and nutrients. For example, the removal of pathogens (as well as bio-
chemical oxygen demand (BOD) and nutrient removal) can be achieved
by size exclusion using membrane bioreactors (Purnell et al., 2016). But
highmembrane costs and frequent fouling limit their large-scale applica-
tion. The efficient operation of membrane bioreactors is suggested in this
regard by filtering coronaviruses attached to suspended solids (Naddeo
and Liu, 2020). Use of electrospun nanofibre membranes, which have
the property of attracting the genetic material of viruses, is a potential
tool forWBE surveillance (Venugopal et al., 2020). In addition, pathogens
can be reduced by bioabsorption, photodegradation, gravity settling or
chemical lysis (Curtis et al., 1992; Curtis, 2003).

The use of Algal-basedWWT should also be evaluated. Theywere in-
troduced in the 1950s to minimize the energy requirements of the acti-
vated sludge (AS) process and/or improve secondary effluent to meet
nutrient discharge standards. In recent years, algae-based wastewater
treatment systems have evolved to become sustainable and cost-
effective alternatives to conventional, energy-intensive wastewater
treatment systems (Rawat et al., 2011; Oswald and Gotaas, 1957).
These systems have been shown to inactivate pathogens at high levels
while removing carbon and nutrients (Young et al., 2016; Buchanan,
2014).
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7. Conclusions and future perspectives

The presence of SARS-CoV-2 genetic material in wastewater can be
used to monitor the spread of COVID-19 in a community. The use of
wastewater as a disease surveillance tool is not widespread, but it is
beginning to grow. Lack of a standardized protocol for monitoring
SARS-Cov-2 in wastewater is a major challenge. Detecting viral genetic
material inwastewater requires a virus concentration step to enable ex-
traction and detection, but there is limited knowledge on how to do this
efficiently for SARS-CoV-2. Understanding how the virus breaks down
in the aquatic environment is also critical to assessing risks to human
health at present; the stability of the SARS-CoV-2 genome in wastewa-
ter is unclear. It is possible to use an effective surveillance tool to provide
an alert if viral particles rise above thresholds, allowing for quicker ac-
tion and containing the infection before it spreads at an alarming rate.

Further research is also needed in other fields: methods for the
quantitative detection of viruses adsorbed on solids; suitability of soils
to eliminate viruses; search for better indicators for the presence of vi-
ruses; viral concentrations in the shellfish; frequency of human infec-
tions caused by shellfish by ingestion of small amounts of viruses
contained in the water; epidemiology of waterborne human viral infec-
tions; effects of non-human viruses on people; presence of oncogenic
agents in humans; presence of oncogenic agents in the water.

During this period, the authorities may reconsider their recommen-
dations for local irrigation of wastewater. This also requires a renewed
effort to promote micro-irrigation technology that can safely irrigate
the soil without leaving the farmers and bring fresh produce into direct
contact with the wastewater.

As the latest data on SARS-CoV-2 and other coronaviruses show,
they can survive on different environmental surfaces for hours or
days. Accordingly, further research is needed to better understand
such differences in persistence duration. In this manner, supports-
based these materials can be developed for the treatment of COVID-19
in wastewater.
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