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Although sequencing a human genome has become affordable, identifying genetic variants from whole-genome sequence data is
still a hurdle for researchers without adequate computing equipment or bioinformatics support. GATK is a gold standard
method for the identification of genetic variants and has been widely used in genome projects and population genetic studies for
many years. This was until the Google Brain team developed a new method, DeepVariant, which utilizes deep neural networks
to construct an image classification model to identify genetic variants. However, the superior accuracy of DeepVariant comes at
the cost of computational intensity, largely constraining its applications. Accordingly, we present DeepVariant-on-Spark to
optimize resource allocation, enable multi-GPU support, and accelerate the processing of the DeepVariant pipeline. To make
DeepVariant-on-Spark more accessible to everyone, we have deployed the DeepVariant-on-Spark to the Google Cloud Platform
(GCP). Users can deploy DeepVariant-on-Spark on the GCP following our instruction within 20 minutes and start to analyze at
least ten whole-genome sequencing datasets using free credits provided by the GCP. DeepVaraint-on-Spark is freely available
for small-scale genome analysis using a cloud-based computing framework, which is suitable for pilot testing or preliminary
study, while reserving the flexibility and scalability for large-scale sequencing projects.

1. Introduction

As the cost of sequencing a human genome decreased
dramatically, large-scale whole-genome sequencing projects
were launched alongside the rising demand for precision
medicine. Previous studies have stated that interethnic differ-
ences in drug response are substantial, and precision medi-
cine relies on genotype-based prescribing decisions aimed
at mitigating the risks and maximizing the efficacy of phar-
macotherapy. Accordingly, national projects, such as those
in the UK, United States, EU, Mexico, India, China, Sweden,

Korea, and Taiwan biobank [1-8], have been launched and
exemplify this trend.

To the best of our knowledge, the GATK [9-11] is one of
the dominant packages for the identification of germline
genetic variants and has been widely used in genome projects
[12-15] and applied to the analyses of 125,748 exomes and
15,708 genomes (https://gnomad.broadinstitute.org/about)
as part of population genetic studies. In 2016, the Google
Brain team announced DeepVariant [16], which utilizes deep
neural networks to construct an image classification model to
identify genetic variants. DeepVariant outperforms GATK—a
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golden standard method for variant calling—and has won the
PrecisionFDA Truth Challenge Award for the highest SNP
performance. Supernat et al. have confirmed the results of
the PrecisionFDA Truth Challenge, proving that DeepVariant
is currently the most precise variant caller available [16].

DeepVariant’s superior accuracy comes at the cost of
computational intensity, as it requires approximately two
times longer wall-clock times than GATK in variant identifi-
cation. DeepVariant is composed of three steps: (1) make_
examples obtains BAM files and converts them to images,
(2) call_variants performs the variant calling using the ML-
trained model, and (3) post process_variants transforms the
variant calling output into a standard VCF file. Following
the authors’ instructions, call_variants is the only step that
can make use of GPUs to reduce the variant calling time by
more than 50% [16]. However, overcoming the configuration
hurdle of GPU hardware can be difficult for users without
bioinformatics experience. Furthermore, the call variants
step currently only supports one GPU, and the other two
steps of DeepVariant are not optimized for speed, indicating
that there is room for improvement.

Our specific aim in constructing DeepVariant-on-Spark
is to enable multi-GPU support and optimize resource
allocation in the DeepVariant pipeline. DeepVaraint-on-
Spark leverages the Apache Spark and Hadoop technologies
to launch DeepVariant processes in parallel and ensure that
we can fully utilize all GPU resources. To make
DeepVariant-on-Spark more accessible to everyone, we have
deployed DeepVariant-on-Spark onto the Google Cloud
Platform (GCP). Users can follow our step-by-step instruc-
tion, and all necessary packages can be installed automatically
by Ansible [17] within 20 minutes. DeepVariant-on-Spark can
analyze at least ten whole-genome sequencing tasks using the
300 free USD credits provided by the GCP, which is suitable
for preliminary studies or pilot testing. On the other hand,
DeepVariant-on-Spark also provides the flexibility and
scalability for large-scale sequencing projects.

2. Materials and Methods

2.1. Deployment of DeepVariant-on-Spark. DeepVariant-on-
Spark is designed as a cloud-based application, utilizing Goo-
gle Cloud Dataproc (https://cloud.google.com/dataproc/) to
manage services for running Apache Spark [18] and Hadoop
[19] clusters in a fast, more straightforward, and eflicient
way. Installing the gsutil tool is the first step and enables
users to access the Google Cloud Dataproc and publicly
accessible objects (https://cloud.google.com/storage/docs/
gsutil_install). Cloud Dataproc provides a mechanism for
automating cluster resource management, which enables
flexible addition and subtraction of cluster nodes. After suc-
cessfully launching the DataProc cluster, Ansible is used to
automate the deployment of all necessary packages to the
entire cluster, which includes DeepVariant [20], Adam [21],
SeqPiper, and PiedPiper, using the YAML language in the
form of Ansible playbooks. Detailed installation instruc-
tions can be found on the tutorial page (https://storage
.cloud.google.com/sparkdv/performance-test/DeepVariant-
On-Spark_Tutorial.htmlI?hl=zh-TW).
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2.2. Whole-Genome Sequencing and Alignment of the
NA 12878 Reference Sample. The 30x whole-genome sequenc-
ing of the NA12878 reference sample was downloaded from
the European Nucleotide Archive (ENA), which was
sequenced by an Illumina NovaSeq 6000 instrument with a
150 bp paired-end sequencing protocol. Reads were aligned
to the human reference genome—Gencode GRCh38.p13
by bwa-mem. We deposited the aligned sequences in
Google Storage as a BAM file (gs://sparkdv/performance-
test/NA12878-novaseq.bam) and used Qualimap2 to evalu-
ate the alignment quality of the obtained BAM file [22].

2.3. Framework of DeepVariant-on-Spark. Currently, Deep-
Variant only supports single GPU acceleration in variant
calling, and we cannot obtain any benefit on machines with
multiple GPUs. Therefore, DeepVariant-on-Spark was
designed to leverage Apache Spark to launch multiple Deep-
Variant processes in parallel to address the scalability prob-
lem of variant calling. The input BAM file was first
uploaded to the Hadoop Distributed File System (HDEFS),
followed by segmentation into several 1 Mbp data blocks.
Then, we transformed the resulting data blocks into Apache
Parquet file format (*.parquet) to enhance the transfer per-
formance through data compression. To overcome the load
imbalance introduced by the uneven length of chromosomes,
we aggregated those 1 Mbp data blocks into 155 approxi-
mately equal-sized BAM files according to contiguous
unmasked regions of the human genome. These BAM files
were transformed into resilient distributed datasets (RDD)
data structure, which can be further partitioned and distrib-
uted across a Spark cluster. Finally, the Spark PipeRDD was
used to parallelize the DeepVariant processes on Spark to
ensure that all the GPU resources can be fully utilized across
compute nodes (Figure 1).

2.4. Quality Evaluation of Variant Calling. We performed
variant calling using DeepVariant and DeepVariant-on-
Spark to obtain variant call format (VCF) files from the
NA12878 reference sample. DeepVariant version 0.7.0 was
used for constructing the original DeepVariant pipeline and
our accelerated DeepVariant-on-Spark pipeline on the cloud
computing environment. The results from both pipelines with
different CPU/GPU combinations were compared to the
GIAB NIST v3.2.2 HG001 truth data [23, 24] (ftp://ftp-trace
.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3
.3.2/GRCh38/) to determine the F-score, recall, and precision
values for SNPs and Indels. The RTG vcfeval tool (https://
github.com/RealTimeGenomics/rtg-tools) was used to
generate intermediate VCF for variant comparison [25].
Mumina’s hap.py (https://github.com/Illumina/hap.py/blob/
master/doc/happy.md), a quantify tool, was utilized to
count and stratify variants.

2.5. Data Access. The DeepVariant v0.7.0 used in this study is
available on the following GitHub page: https://github.com/
google/deepvariant/releases/tag/v0.7.0.

The DeepVariant-on-Spark pipeline used in this study is
available on the following GitHub page: https://github.com/
atgenomix/deepvariant-on-spark.
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FIGURE 1: Framework of DeepVaraint-on-Spark. DeepVariant-on-Spark is based on the Google Dataproc service. After importing the BAM
file into the DeepVariant-on-Spark cluster, the BAM file will be segmented into several 1 Mbp blocks in the “Adam Transform” step, and these
blocks will be merged into 155 small BAM files in the “Select BAM” step. The 1 Mbp blocks and small BAM files are stored in the HDFS.
PiedPiper will pipe the path of each BAM file to SeqPiper, which launches DeepVariant to produce the VCF file. Finally, in the “Merge

VCFs” steps, each VCEF file will be merged into a complete VCF file.

The GIAB NIST v3.3.2 true variant dataset used for
evaluating variant caller performance can be downloaded
through the following link: ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/release/NA12878_HGO001/NISTv3.3.2/GRCh38/.

Variant evaluation and comparison tools can be obtained
from https://github.com/Real TimeGenomics/rtg-tools and
https://github.com/Illumina/hap.py.

3. Results

3.1. Comparison of the DeepVariant and DeepVariant-on-
Spark for Analysis of Human 30x WGS Data. First, we need
to confirm that DeepVariant-on-Spark can achieve compara-
ble accuracy to DeepVariant. Before we can perform a side-
by-side comparison between DeepVariant-on-Spark and
DeepVariant, we need to have a standard BAM file for the
evaluation of the variant calling accuracy. The 30x WGS of
the NA12878 reference sample with 611,997,146 reads was
aligned to the GRCh38.p13 reference genome to obtain the
BAM file, with 99.82% aligned reads, 41.25% GC, and 29.08x
mean coverage. Our analysis showed that the F-scores, the
harmonic mean of the recall, and precision, for both SNVs
and Indels, were the same (F-scores of 0.99940 and 0.96168,
respectively) for DeepVariant-on-Spark as compared to Deep-
Variant. As shown in Table 1, the analyses have been compre-
hensively performed under different combinations of
hardware settings, and the results were consistent.

3.2. The Computation Bottlenecks of DeepVariant. To explore
the bottleneck of DeepVariant, we evaluated the DeepVar-
iant pipeline on the GCP using a virtual machine equipped

with 16 CPUs (2.0 GHz) and 60 GB of memory, with flexibil-
ity for adding or removing CPU/GPU on existing virtual
machine instances. The reference runtime for DeepVariant
was established using 16 CPUs (2.0 GHz), which took 17.5
hours to finish variant calling from 30x WGS. The results
show that “Make_Examples” and “Call_Variants” are com-
putational bottlenecks of the DeepVariant pipeline. Increas-
ing the number of CPUs may have improved both steps,
but the impact on the “Call_Variants” step is not apparent
(Figure 2(a)). However, when the number of CPUs increases,
DeepVariant-on-Spark can provide a significant improve-
ment in both the “Make_Examples” and “Call_Variants”
steps, resulting in an ideal speedup ratio for the overall
processes (Figures 2(a) and 2(b)). Only two compute nodes,
which are equivalent to 32 CPUs, are required by
DeepVariant-on-Spark to achieve the same computing per-
formance as DeepVariant with 64 CPUs. In addition, the
GCP has limited the maximum number of CPUs for a single
virtual machine to 96, leading to poor scalability of DeepVar-
iant. We present DeepVariant-on-Spark with a scalable
architecture for parallel execution of DeepVariant based on
the Apache Spark framework. The distributed Apache Spark
framework provides an excellent solution for addressing this
scalability issue. DeepVariant-on-Spark can accelerate the
default DeepVariant pipeline by seven times, taking the full
load of 128 CPUs through 8 compute nodes, thereby achiev-
ing high performance due to the memory-based computing
and good scalability on multiple nodes. We can reduce the
overall wall-clock time for the variant calling of 30x WGS
from 17.5 to 2.5 hours using 128 CPUs under the
DeepVariant-on-Spark frameworks.


ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/
https://github.com/RealTimeGenomics/rtg-tools
https://github.com/Illumina/hap.py

Computational and Mathematical Methods in Medicine

TaBLE 1: Comparison of variant calling results of DeepVariant and DeepVariant-on-Spark with different combinations of CPUs/GPUs.

ppene+ype. CPU GPU'EC Reall presion oS8 LRSS omch oV
16 0 099940 0.99937 0.99943 3040855 1928 1744 363 3886287
32 0 099940 0.99937 0.99943 3040856 1927 1744 363 3886337
64 0 099940 0.99937 0.99943 3040856 1927 1744 363 3886366
DeepVariant 96 0 099940 0.99937 0.99943 3040855 1928 1744 363 3886339
16 1 099940 0.99937 0.99943 3040855 1928 1744 363 3886287
16 4 0.99940 0.99937 0.99943 3040855 1928 1744 363 3886287
32 2099940 0.99937 0.99943 3040856 1927 1744 363 3886337
SNP 64 4 099940 0.99937 0.99943 3040856 1927 1744 363 3886366
32 0 099940 0.99937 0.99943 3040856 1927 1744 363 3886403
64 0 099940 0.99937 0.99943 3040856 1927 1744 363 3886403
DeepVariant- 128 0 099940 0.99937 0.99943 3040856 1927 1744 363 3886403
on-Spark 32 2 0.99940 0.99937 0.99943 3040856 1927 1744 363 3886403
64 4 0.99940 0.99937 0.99943 3040856 1927 1744 363 3886404
128 8 099940 0.99937 0.99943 3040856 1927 1744 363 3886403
16 0 096168 0.95711 0.96628 478265 21432 17373 11151 868527
32 0 096168 0.95711 0.96628 478265 21432 17373 11151 868535
64 0 096168 0.95711 0.96628 478265 21432 17373 11151 868520
96 0 096168 095711 0.96628 478265 21432 17373 11151 868535
DeepVariant
16 1 096168 0.95711 0.96628 478265 21432 17373 11151 868527
16 4 096168 095711 0.96628 478265 21432 17373 11151 868528
del 32 2 096168 0.95711 0.96628 478265 21432 17373 11151 868535
Inde 64 4 096168 095711 0.96628 478265 21432 17373 11151 868520
32 0 096168 0.95711 0.96628 478265 21432 17373 11151 868541
64 0 096168 0.95711 0.96628 478265 21432 17373 11151 868541
DeepVariant- 128 0 096168 0.95711 0.96628 478265 21432 17373 11151 868541
on-Spark 32 2 096168 0.95711 0.96628 478265 21432 17373 11151 868542
64 4 096168 095711 0.96628 478265 21432 17373 11151 868542
128 8 096168 0.95711 0.96628 478265 21432 17373 11151 868541

*CPU means the number of CPU cores. "GPU means the number of NVIDIA Tesla P100 GPUs. “F1 means F1 score calculated by 2 * (recall * precision)/(

recall + precision).

3.3. Scalability Analysis of DeepVariant and DeepVariant-on-
Spark Based on Heterogeneous Computing Architecture.
Heterogeneous computing, which uses a different type of
processor (CPU or GPU) to gain efficiency and performance,
therein incorporating specialized processing capabilities to
handle specific tasks, has been gaining popularity in the past
few years. Accordingly, we attempted to incorporate GPUs
into existing virtual machine instances on the GCP. The
results show that GPU acceleration is trivial at the “Make_
Examples” step, whereas it introduces significant improve-
ments at the “Call_Variants” step. The speedup rate increases
after incorporating the GPUs (Figures 2(b) and 2(d)); how-
ever, we cannot find additional benefit from multiple GPUs,
indicating that the current release of the DeepVariant pipe-
line supports a single GPU (Figure 2(b)). Accordingly, we
introduce DeepVariant-on-Spark to unleash the full power
of multiple GPUs. DeepVariant-on-Spark is evaluated on
Google Cloud DataProc Spark clusters with 2, 4, and 8 com-
pute nodes (Figures 2(c) and 2(d)). Each node is equipped
with 16 CPUs (2.0 GHz), 104 GB of memory, and 1 NVIDIA

Tesla P100 GPU processor. Through DeepVariant-on-Spark,
not only the CPUs but also all the GPU resources can be fully
utilized across multiple nodes, and we can reduce the wall-
clock times for the “Call_Variants” step by ~45% when we
double the number of GPUs. With eight compute nodes,
which is equivalent to 128 CPUs and 8 NVIDIA Tesla P100
GPU processors, we can reduce the overall wall-clock time
from 17.5 to 1.51 hours for the variant calling of 30x WGS.
As shown in Figure 2(d), when we use 128 CPUs and 8 GPUs,
we can accelerate the pipeline by 11 times, and the speedup
ratio is still increasing, indicating that DeepVariant-on-
Spark can achieve a high CPU and GPU utilization rate and
is more scalable than the original DeepVariant pipeline.
Table 2 describes the wall-clock times of DeepVariant-on-
Spark and DeepVariant with 1, 2, 4, and 8 compute nodes
equipped with different CPU and GPU processors.

3.4. The Cost Effectiveness and Cost Efficiency of DeepVariant
and DeepVariant-on-Spark. The primary purpose of this
study is to provide a reference guide for users who plan to
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FiGurg 2: Wall-clock time and speedup of DeepVariant and DeepVariant-on-Spark with different combinations of CPU/GPU. Runtime
comparison of DeepVariant and DeepVariant-on-Spark with different combinations of CPU/GPU. (a) DeepVariant runs on the pure CPU
machine. (b) DeepVariant runs on the CPU/GPU hybrid machine. (c) DeepVariant-on-Spark runs on the pure CPU cluster. (d)
DeepVariant-on-Spark runs on the CPU/GPU hybrid cluster. AdamTransform, SelectBAM, Make_Examples, Call_Variants, Postprocess_
Variants, and Merge VCF represent each step in DeepVariant or DeepVariant-on-Spark. Speedup represents how many times each
condition is faster than DeepVariant’s (16 CPU) mode. The speed improvement of DeepVariant-on-Spark over DeepVariant is provided
above. DeepVariant-on-Spark using 128-CPU and 8-GPU configurations improved the wall-clock time by 11.58x compared to
DeepVariant using 16 CPUs.

TaBLE 2: Comparison of the wall-clock time of DeepVariant and DeepVariant-on-Spark with different combinations of CPUs/GPUs.

Variant caller DeepVariant DeepVariant-on-Spark

Machine model CPU only CPU+GPU CPU only CPU+GPU
CPU? 16 32 64 96 16 32 64 32 64 128 32 64 128
GPU® 0 0 0 0 1 2 4 0 0 0 2 4 8
Spark® No No No No No No No Yes Yes Yes Yes Yes Yes
AdamTransform (hr) 0 0 0 0 0 0 0 0.56 0.32 0.2 0.58 0.31 0.2
SelectBAM (hr) 0 0 0 0 0 0 0 0.5 0.33 0.23 0.48 0.29 0.2
Make_examples (hr) 6.13 3.5 1.73 1.2 5.93 3.1 1.6 2.72 1.6 1 2.82 148  0.83
Call_variants (hr) 10.8 653 535  3.83 1.51 1.52 15 366 202 098 0.7 038 021
Postprocess_variants (hr)  0.56 0.54 0.53 0.48 0.46 0.46 0.45 0.2 0.13 0.07 0.2 0.1 0.06
Merge VCF (hr) 0 0 0 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.02
Total time (hr) 1749 1022  7.61 5.51 7.9 5.08 3.55 7.66 4.42 2.5 4.8 2.58 1.52
USD/per genome 14.02 1594 20.77 2531 17.86 22.72 31.76 2325 2398 2554 2857 2923 33.17
#genomes/SOOUSDd 21 18 14 11 16 13 9 12 12 11 10 10 9

*CPU means the number of CPU cores. "GPU means the number of NVIDIA Tesla P100 GPU. “Spark means using Apache Spark or not. d#genornes/?aOOUSD
means the numbers of whole-genome sequence jobs that can be completed under the trial credit of 300 USD.



initiate a small-scale genome analysis to select their ideal
solutions for their preliminary study. When computing time
is not a major concern, the original DeepVariant pipeline
with 16 CPUs can be a relatively cost-effective solution,
which can analyze as many as 21 WGS datasets within the
300 USD free credits provided by the GCP. However, the
default virtual machine architecture provided by the GCP
has poor scalability, with a constraint on CPU number, mak-
ing it difficult to optimize the trade-ofts between cost and per-
formance in running DeepVariant. At the same cost of 25
USD, DeepVariant takes 5.5 hours to finish a 30x WGS variant
calling task with its inherited constraint of using 96 CPUs,
while DeepVariant-on-Spark has the flexibility to adjust the
cost-performance ratio to finish the same task in 2.5 hours.
If pressed for time, DeepVariant-on-Spark would be a cost-
efficient option that can finish the variant calling of 10 WGS
data in just one day. Table 2 summarizes the wall-clock times
and cost estimates for analyzing 30x WGS on the GCP.

4. Discussion

In this study, we provide a flexible and scalable framework
for DeepVariant acceleration. DeepVariant is the most pre-
cise variant caller that outperforms existing tools in SNV
and Indel identification, therein having great potential for
implementation in routine genetic diagnosis. Our proposed
framework, DeepVariant-on-Spark, can not only reduce the
wall-clock time while maintaining the same accuracy but also
break the limitation on the number of utilizable CPUs and
GPUs of DeepVariant.

The user needs to set up a new account on the GCP to
receive the free credits, which can provide a convenient place
to run DeepVariant with CPU and GPU support. Following
the author’s instructions, we can easily set up the CPU ver-
sion of DeepVariant without any hurdles. However, we have
to recompile a compatible NVIDIA GPU driver for a specific
DeepVariant version on the GCP to enable the support of
GPU hardware, which can be a challenge for inexperienced
users. On the other hand, DeepVaraint-on-Spark provides
step-by-step instructions on how to prepare a Google Data-
Proc cluster. The installation script will recognize the hard-
ware specifications and automatically deploy related drivers
and packages to enable CPU or GPU acceleration of
DeepVariant-on-Spark within 20 minutes. To the best of
our knowledge, substantial efforts, such as Nextflow, DNA-
nexus, DNAstack, and Parabricks, have been devoted to
accelerating the DeepVariant pipeline. Nextflow offers paral-
lel processing of multiple samples for DeepVariant at a time
[26], producing the results in a convenient and reproducible
manner; however, the total wall-clock time for each sample is
unchanged. DNAnexus and DNAstack can provide paralle-
lized execution of DeepVariant with a GUI interface, but
licenses are required to obtain the full functionality of these
commercial packages. Parabricks introduced an accelerated
DeepVaraint pipeline with multi-GPU support. However,
license fees will be charged for all attached GPUs to receive
their maximum performance. Google Genomics also
suggests a cost-optimized configuration, using 32 virtual
machines with 16 CPUs and 32 virtual machines with 32
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CPUs for the “Make_Examples” and “Call_Variants” step,
respectively, to complete the DeepVariant pipeline for 30x
whole genome sample in 1 to 2 hours at a cost of between 3
USD and 4 USD. The configuration takes advance of CPUs
from preemptible virtual machines, which are 80% cheaper
than regular virtual machines. However, the compute
engines might terminate at any time without guaranteeing
turnaround time and are recommended only for fault-
tolerant applications and users familiar with the GCP. Fur-
thermore, a billable account is required to launch the
preemptible virtual machines, and free credits for new users
are not allowed for the acquisition of compute resources.
Unlike most of the solutions mentioned above,
DeepVariant-on-Spark is free for academic use. Despite not
being the most cost-optimized solution available,
DeepVariant-on-Spark can complete variant calling for 30x
whole genome sample in 1.51 hours, which is comparable
with the cost-optimized solution provided by Google Geno-
mics. The reduction in wall-clock time to process a single
30X WGS sample is crucial in clinical settings where a result
is needed to quickly take a diagnostic decision. When we
were preparing this manuscript, multi-GPU support has
been implemented in the recent release of DeepVaraint,
making some of the benefits of DeepVariant-on-Spark
become redundant. However, DeepVariant-on-Spark sup-
ports multi-GPU across multiple nodes, which seems to be
conceptually better than limited to a single node.

To conclude, we present DeepVariant-on-Spark, a flexi-
ble and scalable tool for variant calling based on the Spark
framework. DeepVariant-on-Spark implements the paralleli-
zation of the DeepVariant algorithm on a multinode cluster
and enables the support of multiple GPUs, therein accelerat-
ing the processing of the DeepVariant pipeline while main-
taining accuracy. Following our instructions, users can
easily deploy the DeepVariant-on-Spark on the GCP within
20 minutes and start to analyze WGS datasets on the GCP,
which is also useful for researchers who plan to initiate a
small-scale genome analysis for preliminary study and makes
DeepVariant, the TensorFlow-based variant caller, more
attractive to general users, simplifying the usage to catalyze
DeepVairant to a more broadly used tool.
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