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Hypertension has been described as a condition of premature vas-
cular aging, relative to actual chronological age. In fact, many factors
that contribute to the deterioration of vascular function as we age
are accelerated and exacerbated in hypertension. Nonetheless, the
precise mechanisms that underlie the aged phenotype of arteries
from hypertensive patients and animals remain elusive. Classically,
the aged phenotype is the buildup of cellular debris and dysfunc-
tional organelles. One means by which this can occur is insufficient
degradation and cellular recycling. Mitophagy is the selective catab-
olism of damaged mitochondria. Mitochondria are organelles that
contribute importantly to the determination of cellular age via their

While the increased incidence of cardiovascular events as we
age is generally attributable to the natural decline in organ
function, in hypertension, dysfunction is premature in its
onset and particularly pronounced. As a result, hypertension
has been classified as a condition of premature aging.' In
particular, arteries from hypertensive patients and animals
present a range of phenotypes including, hypercontractility,
stiffening and remodeling, inflammation, oxidative stress,
and cellular senescence which are all relatively early in their
onset compared with age-matched normotensive controls.?
Clinically, vascular age determination, as opposed to chron-
ological age per se, has now been introduced into guidelines
for cardiovascular disease prevention.’ Nonetheless, a critical
barrier to our progress in reducing the morbidity and mor-
tality of hypertensive patients is our lack of understanding of
the mechanisms that cause arteries to prematurely age.

The aged phenotype is classically viewed as the accumula-
tion of cellular debris and dysfunctional organelles. Normally,
endogenous cellular recycling mechanisms function to re-
pair or clear damaged macromolecules. The two major
pathways by which eukaryotic cells perform degradation
and cellular recycling are autophagy and the ubiquitin-pro-
teasome system.* While both systems function to eliminate
cellular debris and dysfunctional organelles, there are mech-
anistic differences between the two proteolytic pathways.

production of reactive oxygen species (ROS; Harman'’s free radical
theory of aging). Therefore, the accumulation of dysfunctional and
ROS-producing mitochondria could contribute to the acceleration of
vascular age in hypertension. This review will address and critically
evaluate the current literature on mitophagy in vascular physiology
and hypertension.
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For example, the proteasome system functions primarily to
degrade single proteins, while autophagy specializes in the
degradation of larger cellular materials indiscriminately (e.g.,
protein aggregates, organelles, and pathogens).* However, if
either one of these systems is dysregulated, cellular debris
can accumulate and confer the classical “aged” phenotype.
Given that several recent publications have revealed that
autophagy is downregulated in the vasculature of old ani-
mals,”® new and exciting questions have emerged regarding
the connection between impaired autophagic mechanisms
and premature vascular aging observed in hypertension.’
Therefore, the broad focus of the following review is on the
emerging role of autophagy in the etiology of premature vas-
cular aging in hypertension, with a particular emphasis on
the organelle-specific autophagic mechanism, mitophagy.

AUTOPHAGY AND VASCULAR AGING

Autophagy is the evolutionarily conserved catabolic pro-
cess essential for maintaining homeostasis via the removal
of cellular debris and dysfunction organelles, to provide
micro- and macronutrients during times of stress (e.g., pro-
longed fasting or extreme exercise), and to initiate cell death
pathways (e.g., apoptosis or necrosis). Broadly, autophagy
can be classified by three unique subclasses: microautophagy,
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chaperone-mediated autophagy, and macroautophagy, and
it can be further refined based on the constituents being de-
graded.!® These classes have been shown to include different
initiation markers, materials being catabolized, and the cell
type in which the degradation occurs.!”® Microautophagy
involves the lysosomal membrane folding inwards to di-
rectly internalize cytosolic constituents to be degraded.!!
In contrast, the chaperone-mediated autophagy mech-
anism includes the chaperone protein heat shock cognate
71 kDa protein (Hsc70), a member of the heat shock pro-
tein 70 family. Hsc70, along with cochaperones, can recog-
nize and unfurl substrate proteins containing the KFERQ
amino acid sequence.!? After unfolding, substrates ad-
here to lysosome-associated membrane protein-2 isoform
A (Lamp-2A) and are subsequently translocated across the
lysosomal membrane for hydrolysis.!? Perhaps the most
described type of autophagy is macroautophagy, which
is evolutionarily conserved from single-cell organisms to
whole animals. Macroautophagy is further divided into
bulk autophagy or selective autophagy, each with different
initiating conditions.!* For example, starvation of the
cell and a lack of vital nutrients initiates bulk autophagy;
whereas selective autophagy occurs to clear damaged, dys-
functional, or otherwise extraneous organelles, including
mitochondria. Macroautophagy commences when an isola-
tion membrane termed the phagophore engulfs a portion of
the cytosol or an entire organelle. This subsequently forms
a double membrane structure termed an autophagosome
and the autophagosome then merges with the lysosome to
form an autolysosome. The autolysosome is the structure
within which the hydrolytic degradation of the contents of
the autophagosome occurs, completing the macroautophagy
mechanism.!"! Uniquely, mitochondria are removed by a spe-
cial form of macroautophagy called mitophagy, which will
be discussed more below.

Autophagy has long been associated with longevity for
multiple, compelling reasons,'* including the lengthening
of lifespan,!® and it has been well established that induction
of autophagy reduces the “aged” vascular phenotype.'®1”
Currently, our understanding of how autophagy exerts a ben-
eficial effect on the vasculature centered on the premise that
reduced autophagy leads to the accumulation of damaged
cellular debris and dysfunctional organelles. If undegraded,
this buildup results in a proinflammatory/prooxidative
milieu that promotes the generation of vasocontracting
factors,” quenching of nitric oxide bioavailability,*” and
uncoupling of endothelial nitric oxide synthase.!® Therefore,
upregulation or reconstitution of autophagy decreases these
vascular dysfunctions.

MITOPHAGY IN PHYSIOLOGY

Mitophagy is the selective elimination of dysfunc-
tional, damaged, or superfluous mitochondria, requiring
the two major degradation systems: autophagy and the
ubiquitin-proteasome system, working separately or in
concert.! It has been well established that disruptions to
mitophagy contribute to disease, including age-associated
pathologies.?® Therefore, it is tempting to rationalize that

decreased mitophagy, resulting in oxidative stress and in-
flammation from residual and dysfunctional mitochondria,
may be a novel mechanism of premature vascular aging
in hypertension (Figure 1). We briefly introduce some of
the normal molecular pathways of mitophagy to provide
context for which dysfunctional mitophagy may promote
pathophysiology.

Phosphatase and tensin homolog-induced putative pro-
tein kinase 1 (PINK1) is a nuclear encoded, mitochondrial
targeted serine/threonine-protein kinase. PINKI is involved
in mitochondrial quality control by identifying dysfunctional
mitochondria and targeting these mitochondria for degra-
dation. Healthy mitochondria maintain a membrane poten-
tial that can be used to import PINK1 via the translocase
of the outer membrane and translocase of the inner mem-
brane complexes at the outer and inner mitochondrial mem-
brane, respectively. The mitochondrial targeting sequence is
then cleaved off by the mitochondrial processing peptidase
located in the matrix. Subsequently, the inner mitochon-
drial membrane protease presenilin-associated rhomboid-
like protease (PARL) cleaves PINKI. The resulting peptide
is then retrotranslocated to the cytosol, where it is subjected
to constitutive degradation via the proteasome through the
N-end rule pathway?! (Figure 2a).

On the other hand, in severely damaged mitochondria
that lack sufficient membrane potential, PINK1 accumulates
on the outer membrane. As a result, PINK1 interacts with
the translocase of the outer membrane complex, dimerizes,
and PINKI1 kinase activity becomes activated through
autophosphorylation.?!’ PINK1 phosphorylates ubiquitin,
which triggers recruitment of Parkin to the outer mitochon-
drial membrane and activation of its E3 ligase activity. At the
same time, phosphoubiquitin recruits autophagy receptors
to initiate autophagosome formation. Parkin acts as an en-
hancer of this signaling through further ubiquitination of
mitochondrial proteins??> (Figure 2a). This mitochondrial
ubiquitination acts as the autophagic signal and adaptor
proteins, such as adaptor p62/SQSTM1 via its ubiquitin-
binding domain, recognizes and initiates autophagosome
formation.” If all components are functional, the PINKI-
Parkin-mediated mitophagic pathway is the major mech-
anism by which damaged mitochondria are marked for
degradation and cleared from cells before causing delete-
rious downstream effects.

Another major pathway by which mitochondria are cleared
after being damaged is Parkin-independent mitophagy.®*
In contrast to PINKI-Parkin-mediated mitophagy,
which requires the translocation of Parkin to the dam-
aged mitochondria followed by recruitment of autophagic
receptors, there exist several light chain 3 (LC3)-interacting
region containing autophagic receptors (e.g., FUN14
domain-containing protein 1 (FUNDCI), BCL2-interacting
protein 3 (BNIP3), and NIP3-like protein X (NIX)) that
are constitutively expressed on the outer membrane of
mitochondria and can bind to microtubule-associated pro-
tein 1A/1B LC3 proteins anchored in the membrane of the
phagophore. As a result, the autophagosome engulfs the
mitochondria for degradation and recycling®* (Figure 2b).
Interestingly, it has been proposed that basal mitophagy
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Figure 1. Impaired mitophagic degradation of damaged mitochondria leads to oxidative stress. In endothelial cells this prooxidative milieu promotes
the release of contractile factors, quenches nitric oxide bioavailability, and uncouples endothelial nitric oxide synthase (eNOS). Abbreviation: ROS, reac-

tive oxygen species.

occurs in a Parkin-independent manner within tissues of
high metabolic demand, including the vasculature.?

DYSFUNCTIONAL MITOPHAGY AND HYPERTENSION

It is clear that dysfunction in the mitophagy process can
cause the accumulation of dysfunctional mitochondria that
can contribute to a diverse range of pathologies. However,
much of the breadth of pathophysiological research on
mitophagy pertains to (age-related) neurodegenerative
diseases.?®?® Conditions, such as Huntington’s disease,
Parkinsons disease, and Charcot-Marie-Tooth 2A, have
been linked to altered, damaged, or absent mitophagy
mechanisms, usually due to genetic mutations. For example,
deleterious mutations in Parkin and PINKI are linked
with familial forms of Parkinsons disease.”” Additional
pathologies that are linked to dysfunctional mitophagy in-
clude cancers,?® lysosomal storage disorders (e.g., Pompe
disease),” Duchenne muscular dystrophy,® and innate im-
mune defense.’!

Although mitophagy has been measured in vivo in sev-
eral different hypertensive models including, spontaneously
hypertensive rats,>* Goldblatt two-kidney, one-clip (2K1C)
hypertension,*® unilateral renal artery stenosis,* and in vitro
after cellular exposure to hypertensive stimuli (e.g., elevated
angiotensin I1,>*-% a high fat diet,* reactive oxygen spe-
cies (ROS),* pressure overload,*>*? ischemia,*** oxidized
low-density lipoprotein,*® and high glucose and free fatty
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acids**), our understanding of mitophagy in hypertension
is still nascent. Indeed most of this literature has focused on
cardiomyocytes,33437-4042-45 and only a few studies have
investigated mitophagy in response to prohypertensive
factors in arteries,* vascular smooth muscle cells,*>* or en-
dothelial cells’®#44748 (Table 1). Moreover, the direction of
change in mitophagy activity varies between these studies,
and this may be model-, stressor-, or tissue-dependent (e.g.,
in the heart, inhibition of mitophagy ameliorates pressure
overload induced heart failure** and conversely, mitophagic
activity is protective against angiotensin II-induced cardiac
injury®) (Figure 3). Therefore, it is still premature to con-
clude whether mitophagy is in fact a cause or an effect of
hypertension, as no one has directly manipulated mitophagy
status in hypertensive animals in vivo.

It has also been well established that mitochondrial
dynamics (fusion, fission, and biogenesis) regulates
mitophagy status. It is widely considered that mitochon-
drial fission precedes and facilitates mitophagy by di-
viding elongated mitochondria into a manageable size for
autophagosome encapsulation,* while fusion protect elon-
gated mitochondria from mitophagy.®! In relation to hyper-
tension, it has been reported that prohypertensive stimuli
such as elevated levels of aldosterone,*> ROS,>* angiotensin
11,54 dietary salt,>® and calcium® can mediate mitochondrial
fission, and inhibition of fission is cardioprotective.’”5
Interestingly, acute inhibition of mitochondrial fission in
vascular smooth muscle cells can antagonize contractile
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Figure 2. Mitophagy signaling pathways. (a) Parkin dependent mitophagy: healthy mitochondria import PINK1 via the translocase of the outer mem-

brane (TOM) and translocase of the inner membrane (TIM) complexes

. The mitochondrial targeting sequence is then cleaved off by the mitochon-

drial processing peptidase (MPP) and the inner mitochondrial membrane protease presenilin-associated rhomboid-like protease (PARL) cleaves PINK1.
The resulting peptide is then retrotranslocated to the cytosol, where it is subjected to degradation via the proteasome. However, when mitochondria
are damaged, PINK1 accumulates at the outer mitochondrial membrane bound to the TOM complex. As a result, PINKT dimerizes and is activated by
autophosphorylation. PINK1 subsequently phosphorylates Parkin and ubiquitin chains, resulting in Parkin activation and relocation to the mitochondria
where it further ubiquitinates mitochondrial substrates and signals the removal of the damaged organelle. (b) Parkin-independent mitophagy:
microtubule-associated protein 1A/1B light chain 3 (LC3) proteins anchored in the membrane of the phagophore can bind to LC3-interacting region (LIR)
containing autophagic receptors (e.g., FUNDC1, BNIP3, and NIX) that are constitutively expressed on the outer membrane of mitochondria. Subsequently,
the autophagosome can engulf the damaged mitochondria for degradation.

responses, and vasoconstriction stimuli induce mitochon-
drial fission.” Moreover, hyperhomocysteinemia increased
mitochondrial fission, causing endothelial cell damage,
and collagen deposition in the mesenteric arteries.*
Nonetheless, the cause-and-effect relationship between mi-
tochondrial dynamics and mitophagy is difficult to discern
because fission is not only essential for the removal of dam-
aged mitochondria, it can facilitate cell death during high
levels of stress, and it can also stimulate creation of de novo
mitochondria.®

Given the importance of mitophagy in maintaining
cellular homeostasis and it participation in a number
of pathophysiological conditions, there are numerous
clinical and experimental drugs that have shown effi-
cacy at activating and inhibiting mitophagy (Table 2).

These drugs include classical autophagy activators such
as mammalian target of rapamycin inhibitors (e.g., rapa-
mycin), inositol monophosphatase inhibitors (e.g., carba-
mazepine), and epigenetic mediators (e.g., spermidine)
and classical autophagy inhibitors such as lysosomal
alkalizers (e.g., chloroquine) and phosphatidylinositol
3-kinase inhibitors (e.g., 3-methyladenine). Table 2 also
contains a number of novel mitophagy drugs. These
drugs offer the opportunity to therapeutically manipu-
late the mitophagy pathway a number of different ways
and depending on the conditions. However, caution
needs to be observed when proposing the use of these
drugs as mediators and modulators of mitophagy (and
autophagy), as these drugs have a number of known and
unknown pleiotropic effects.
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Table 1. Investigations that have reported changes in mitophagy in vascular cells, including the model (or stressor to induce mitophagy) and

the direction of mitophagy change (increased or decreased)

Model Tissue/cell type Mitophagy status Reference
Angiotensin I Endothelial cells ! 36
Vascular smooth muscle cells ! £
Glucose and palmitate Endothelial cells ! 48
Ischemia Endothelial cells ! &
Oxidized low-density lipoprotein Vascular smooth muscle cells t 46
Palmitic acid Endothelial cells t &
Insufficient Homeostatic Exacerbated
! !
Accumulation of Efficient degradation of Self-eating
undegraded cellular debris cellular debris !
l Cell death
Dysfunction
!
Cell death
)

Autophagic/mitophagic activity
]

Model

Stress

&P

Tissue

Figure 3. Autophagy and mitophagy activity spans a continuum, where too much or too little is detrimental to homeostasis and health. Differences
between studies indicate that increases or decreases in activity are model-, stressor-, or tissue-dependent. We hypothesize that decreases in mitophagy
confer an aged phenotype in the vasculature of hypertensive patients and animals.

HARMAN'S FREE RADICAL THEORY OF AGING:
A POTENTIAL LINK BETWEEN MITOPHAGY AND
VASCULAR AGE

First described over 60 years ago, one of the most prom-
inent theories on aging is Harman’s free radical theory of
aging. This theory postulated that decreased cellular lon-
gevity is caused by increased ROS.”>% ROS are highly re-
active and short lived due to their unpaired valence shell
electron. While ROS occur as a consequence of normal cel-
lular metabolism, when ROS formation overwhelms anti-
oxidant defenses, it is defined as oxidative stress. Oxidative
stress can cause damage to cellular constituents (e.g., lipids,
proteins, and nucleic acids), and has been suggested to lead
to a variety of pathophysiological conditions. Hence, an ideal
balance between ROS production and antioxidant defense is
paramount for maintenance of physiological homeostasis.
Harman’s theory held that these nonspecific, essentially ir-
reversible oxidative reactions with cellular macromolecules
over time are likely involved in the chronological aging pro-
cess, and conversely, the longevity of an organism can be
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increased by slowing the incidence of ROS.7> Progressively,
the understanding of ROS reactions has evolved and ex-
tended Harman’s initial theory®*?>; however, the basis of the
senescence-promoting nature of ROS, remains consistent.
More recent work has implicated the role of mitochondria
as a primary target of ROS-mediated damage.”® It is well
known that mitochondria are a major source of intracel-
lular ROS as a natural byproduct of mitochondrial respira-
tion and energy production. Exacerbated ROS production
causes damage to certain macromolecules, most notably mi-
tochondrial DNA, which can then induce an amplification
and further buildup of ROS within cells.”® Recently, it was
confirmed that vascular mitochondrial respiratory capacity
significantly deteriorates with advancing age as a result of
declining mitochondrial content.”” Despite this decline,
aging also resulted in greater mitochondrial-derived ROS.”
These findings are a direct application of Harman’s theory to
the aging vasculature and support the idea that increasing
the degradation of damaged mitochondria can prevent age-
related vascular dysfunction.® Nonetheless, if decreased
mitophagy is also involved in exacerbated mitochondrial
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Table 2. Clinical and experimental drugs that that shown efficacy at activating and inhibiting autophagy and mitophagy, including the putative mechanism of

active, and mitophagy-specific reference

Drug Putative autophagic action Reference

Autophagy/mitophagy activators
AICAR AMPK-dependent inhibition of mTOR i
Betulinic acid AKT-mTOR inhibitor 62
BEZ235 mTOR inhibitor G
Carbamazepine IMPase inhibitor and mTOR-independent activator 64
3-Carboxyl proxyl nitroxide AMPK-dependent inhibition of mMTOR 55
CCI-779 mTOR inhibitor 66
Ceramide (i) AKT-mTOR inhibitor &

(ii) Dissociation of the Beclin 1:Bcl-2 complex

Lithium chloride IMPase inhibitor and mTOR-independent activator o
Metformin AMPK-dependent inhibition of mTOR 69
MDL-28170 Inhibition of calpains | and Il and subsequent cleavage of autophagic machinery "
Mitochondrial toxins ROS-induced translocation of Parkin to mitochondria a2

Mito-metformin
Nicotinamide derivatives

Olanzapine

p62-mediated mitophagy inducer (PMI)

Phenanthroline
Rapamycin
RADOO01
Resveratrol
Rilmenidine
Selenite
Spermidine
Trehalose
Urolithin A

Autophagy/mitophagy inhibitors
Acid protease inhibitors
Ammonium chloride

Antioxidants (butylated
hydroxyanisole, N-acetylcysteine)

Bafilomycin A1
Brefeldin A
Chloroquine
Cyclosporine A

Idebenone

Liensinine diperchlorate
LY294002
3-Methyladenine

Mitochondrial division inhibitor 1 (Mdivi-1)

Wortmannin

AMPK-dependent inhibition of mMTOR

SIRT1 activators

(i) ROS-induction of FoxO transcription factor

(i) AMPK-dependent inhibition of mTOR

Parkin-dependent and -independent mitophagy
Mitochondrial fission

mTOR inhibitor

mTOR inhibitor

NAD*-dependent deacetylase and mTOR-independent activator
mTOR inhibitor

Superoxide-induced mitochondrial damage
Acetyltransferase inhibitor and mTOR-independent activator
mTOR-independent activator

(i) Mitochondrial fission

(ii) AMPK-dependent inhibition of mTOR

Lysosomal alkalizers
Lysosomal alkalizer

(i) Protection of mitochondrial from ROS-mediated damage

(i) Inhibition of the MPTP

Vacuolar-type H*-ATPase inhibitor

Inhibitor of intracellular protein transport and alternative (Atg5/Atg7-independent) autophagy
Lysosomal alkalizer

Inhibition of the MPTP

(i) Protection of mitochondrial from ROS-mediated damage
(i) Inhibition of the MPTP

Inhibition of autophagosome—lysosome fusion

Class Il PI3K inhibitor

Class Il PI3K inhibitor

Inhibition of mitochondrial fission

Nonspecific PI3K inhibitor

65

73

74

75

76

7

63

78

79

80,81

82

83

84

85

86

87

88

89

88

85,87

90

91

85

77,85

43

85

Abbreviations: AKT, protein kinase B; AMPK, 5’AMP-activated protein kinase; Atg, autophagy-related gene; Bcl-2, B-cell lymphoma 2; IMPase, inositol
monophosphatase; MPTP, mitochondrial permeability transition pore; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase; ROS, reactive
oxygen species; SIRT, sirtuin.
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ROS production in the vasculature of hypertensive patients
or animals is yet to be determined.

Mitophagy is the selective catabolic process for removing
damaged mitochondrial. Insufficient mitophagy would lead
to the accumulation of dysfunctional mitochondria. Given
that mitochondria are a prominent source of intracellular
ROS in all cell types, including cells of the vasculature, and
our knowledge of Harmans free radical theory of aging,”%
we hypothesize that diminished mitophagy in the vascula-
ture contributes to oxidative stress and the vascular aging
phenotype associated with hypertension. This hypothesis
is supported by studies which showed an upregulation of
autophagy and mitophagy reversed several phenotypes of
vascular aging in old mice®® and premature vascular aging
in spontaneously hypertensive rats.’
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