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ABSTRACT: Optical imaging of microbial infections, based on the detection of targeted fluorescent probes, offers high sensitivity
and resolution with a relatively simple and portable setup. As the absorbance of near-infrared (NIR) light by human tissues is
minimal, using respective tracers, such as IRdye800CW, enables imaging deeper target sites in the body. Herein, we present a general
strategy for the conjugation of IRdye800CW and IRdye700DX to small molecules (vancomycin and amphotericin B) to provide
conjugates targeted toward bacterial and fungal infections for optical imaging and photodynamic therapy. In particular, we present
how the use of coupling agents (such as HBTU or HATU) leads to high yields (over 50%) in the reactions of amines and IRDye-
NHS esters and how precipitation can be used as a convenient purification strategy to remove excess of the targeting molecule after
the reaction. The high selectivity of the synthesized model compound Vanco-800CW has been proven in vitro, and the development
of analogous agents opens up new possibilities for diagnostic and theranostic purposes. In times of increasing microbial resistance,
this research gives us access to a platform of new fluorescent tracers for the imaging of infections, enabling early diagnosis and
respective treatment.

■ INTRODUCTION

Molecular imaging1−4 plays a crucial role in modern medicine,
and several imaging methods are routinely applied in the clinic
for diagnosis and monitoring of disease progression and
treatment efficacy or for guiding surgical interventions. These
methods include tomographic imaging, e.g., magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
or computed tomography (CT), which offer the advantage of
whole-body imaging but are limited by different factors, like
poor temporal resolution due to post-acquisition image
reconstruction, application of hazardous radiation (PET), or
limited choice of targeted contrast agents (CT and MRI).5

Conversely, fluorescence-based optical imaging overcomes
these drawbacks by enabling real-time, high-resolution visual-
ization in the absence of damaging radiation. Moreover, it
stands out due to its economical and straightforward usage.6

Optical imaging (OI) relies on the detection of fluorescent
probes after their excitation with light of an appropriate
wavelength using a fluorescence camera.7 However, absorption
and scattering of the excitation and emitted light in biological
tissues limit the possible imaging depth.8 Since these effects are
less pronounced for red or near-infrared (NIR) light, the
development of respective dyes enhances the imaging depth
and has led to the successful use of OI for different
applications, such as image-guided surgery,9−13 endos-
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copy,14−16 and pathology.17−19 The first clinically approved
NIR dyes20 were indocyanine green (ICG) and methylene blue
(MB), but a variety of molecules and nanoparticles are
currently being tested in clinical studies to implement agents
with improved absorptivity or fluorescence quantum yields at
even higher wavelengths or targeted agents, enabling selective
imaging of important biomarkers.10,14,21−24 Among those, the
NIR dye IRdye800CW25−30 has shown great promise in
clinical translation.
IRdye800CW shows a sharp absorption band at λmax = 774−

778 nm, high fluorescence quantum yield,5 and low nonspecific

binding to cellular components.31 It is mostly applied for the
creation of targeted OI agents in which it is conjugated to
molecules that enable its selective accumulation at the disease
spot. This is most prominently exemplified by proteins.
Different antibody-IRdye800CW conjugates show truly
promising results in clinical studies for intraoperative
imaging.19

While the conjugation to macromolecules has been
thoroughly researched and optimized,1 the coupling to small
molecules is still rather unexplored. However, synthetic
accessibility, stability, and lower price are substantial

Figure 1. (a) Molecular structures of the synthesized targeted optical imaging agents: Vanco-800CW (1), Vanco-FL-800CW (2), Ampho-800CW
(3), and Vanco-700DX (4). (b) General synthetic procedure.
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advantages of small molecules as targeting moieties. This is
further highlighted by their capacity to provide well-defined
molecular architectures of the final luminescent conjugates due
to the limited number of possible conjugation sites.32

However, the reports on small molecule-IRDye800CW
conjugates are scarce, and they involve usually simple
molecules, such as vorinostat,33 2-deoxyglucose,34 NOTA
chelator,35 prostate-specific membrane antigen ligands,36,37

and simple peptides.38 To the best of our knowledge, there is
only one report describing a targeted small molecule-
IRdye800CW conjugate for OI that would use a multifunc-
tional structure as a starting point, namely, vancomycin-
IRDye800CW (Vanco-800CW). This molecule was designed
and evaluated for the imaging of infections with Gram-positive
bacteria, showing that it is possible to label the antibiotic
vancomycin without abolishing the binding affinity to its
bacterial target.39

General challenges in labeling small molecules with
IRdye800CW are the control over the selectivity of
modification in a complex molecular context of the target
molecule and the need for nonstandard reaction conditions
and purification methods due to the high polarity of the dye.
To facilitate the development of conjugates for OI, we
introduce here an optimized procedure for the synthesis and
facile purification of small molecule conjugates of IR-
dye800CW, taking Vanco-800CW (compound 1) as a
reference compound and expanding it toward other small
molecule targets and dyes (compounds 2−4; Figure 1), which
are potential fluorescent tracers for bacterial (2) and fungal (3)
infections and antimicrobial photodynamic therapy (aPDT)
agents (4). Moreover, we provide a thorough analysis of the
synthesized conjugates, revealing a revised structure for Vanco-
800CW.

■ RESULTS AND DISCUSSION
With the aim to establish a synthetic method for conjugation of
IRdye800CW and related IR dyes with small targeting
molecules, which could be easily performed in a standard
(bio-) chemistry lab, we started by exploring the published
procedure for the coupling of IRdye800CW-NHS ester with
vancomycin.39 We were particularly interested in establishing
reaction conditions that are easily reproducible also on a small
scale since often only minimal amounts of the respective
products are required for, e.g., screening of different

conjugates, and the dye molecules are generally quite
expensive. The published method describes the synthesis of
Vanco-800CW from IRdye800CW-NHS ester and vancomycin
hydrochloride hydrate in the presence of N,N-diisopropylethyl-
amine (DIPEA) in DMSO. The use of organic solvent ensures
the solubility of both the dye and the final conjugate.
Furthermore, the primary amine of vancomycin has been
proposed as the conjugation site, while it is important to point
out the presence of a secondary amine that could also
potentially act as a nucleophile in the reaction with
IRdye800CW-NHS ester (vide inf ra). Unfortunately, in our
hands, the reported procedure did not yield the desired
compound but resulted in hydrolysis of the NHS ester (Table
1, entry 1). A possible explanation for this outcome is the
presence of water in DMSO since already small amounts can
cause hydrolysis, and we did not take additional precautions to
assure dry reaction conditions. Inspired by conditions
optimized for labeling antibodies with IRdye800CW-NHS
ester,40 we explored how the reaction proceeds in phosphate
buffer at different pH values (Table 1, entries 2 and 3). The
data presented in Table 1 shows that, at pH > 7.3, hydrolysis is
the prevalent process and no product is formed. In contrast,
the reaction in a buffered medium at pH 6.5−7 gave
conversion to 1 but in a low yield. Aiming to improve this
result, we assessed the influence of different buffer strengths
and equivalents of vancomycin on the reaction outcome
(Table 1, entry 4). It is important to note that the cost of the
dye exceeds that of the antibiotic by several orders of
magnitude, which motivates the use of the latter in excess to
promote the conjugation. It was found that addition of ca. 13
eq of vancomycin boosts conversion, but additional escalation
did not improve it further. Likewise, different buffer strengths
did not have any significant effects on the product formation.
Under all conditions tested, hydrolysis of the NHS ester to the
free acid was the competing reaction.
To tackle this problem, we screened different coupling

reagents that would facilitate the formation of the desired
amide bond from the acid liberated upon hydrolysis (Table 1,
entries 6−8).41 Addition of the commonly used carbodiimide-
based coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide (EDC) and N,N′-diisopropylcarbodiimide
(DIC) to the reaction mixture containing the substrates and
DIPEA in DMSO did not lead to the desired result (Table 1,
entry 6), whereas 1-[bis(dimethylamino)methylene]-1H-1,2,3-

Table 1. Screened Reaction Conditions for the Synthesis of Conjugate 1a

entry solvent(s) pH/base equivalents of vancomycin coupling reagent conversionb

1 DMSO DIPEA 2.4
2 DMSO/phosphate buffer (20 mM) >7.3 2.4
3 DMSO/phosphate buffer (20 mM) 6.5−7 12.4 <10%
4 DMSO/phosphate buffer (10−1000 mM) 6.95 2.4−24.7 <10%
5 DMSO DBU (5−13 eq) 13
6 DMSO DIPEA (13 eq) 13 EDC or DIC
7 DMSO DIPEA (13 eq) 13 HATU or HBTU 50 −73%
8 DMSO DIPEA (13 eq) 13 HOBt 11%

aEntry 1 presents the published conditions.39 The reaction medium (DMSO/phosphate buffer), the base, and equivalents of vancomycin and
additives were varied, leading to entry 7 as the optimized conditions. bThe conversion to product 1 was assessed by analysis of the HPLC trace
recorded at 760 nm (see the Supporting Information for details).
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triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate
(HATU) or (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluro-
nium hexafluorophosphate (HBTU) successfully provided up
to 73% conversion to 1 (Table 1, entry 7). Interestingly, we
observed that the already hydrolyzed NHS ester was not
consumed in the course of the reaction. Furthermore, we did
not observe the formation of the vancomycin dimer, which
could emerge as a result of the reaction of the amine group in
one antibiotic molecule with the coupling agent-activated
carboxylic group in another molecule. Accordingly, HATU and
HBTU did not seem to function as coupling reagents but
rather to promote the product formation in a different manner.
In contrast to EDC and DIC, HATU and HBTU comprise a 1-
hydroxybenzotriazole (HOBt) moiety, which is known to act
as a nucleophilic catalyst for acyl transfer reactions.41

Therefore, we were curious to explore the effect of using
only HOBt in the conjugation reaction (Table 1, entry 8).
Remarkably, HOBt did not promote amide formation to the
same extent. Considering these results, we attribute the
efficient formation of the product in the HATU- and
HBTU-mediated reactions to their solvent drying effect,
which minimizes the competing hydrolysis of the NHS ester
and favors the conversion to the product. We have further
established that, in those reactions, the order of addition of the
reactants does not influence the reaction outcome and no
special instrumental setup or expensive nonstandard chemicals
are required. Moreover, it should be emphasized that the
reaction does not need to be carried out under strict anhydrous
conditions, making this procedure easily reproducible. It has to
be noted, however, that substrate concentration plays an
important role and dilution of the reaction mixture
substantially slows down the chemical conversion (see below).

Next, we proceeded with the purification of compound 1.
The method of choice for such highly complex and polar
compounds is usually the purification by (semi-) preparative
reversed-phase high-performance liquid chromatography
(HPLC), which is often very inefficient regarding time and
isolated yields. Hence, we were pleased to achieve a first and
straightforward purification step by addition of an excess of
water to the reaction mixture, resulting in the precipitation of
the conjugate, while most of the vancomycin used in excess in
the reaction remained in the solution (Figure 2). This measure
allowed a much more efficient removal of the remaining
impurities by semipreparative HPLC. Subsequently, the newly
synthesized Vanco-800CW was analyzed by ultraperformance
liquid chromatography−mass spectrometry (UPLC-MS) and
UV−vis spectrometry to assess its purity and identity, as
illustrated in Figure 2.
The molecular structure of vancomycin bears two amine

functionalitiesa primary one on the sugar moiety and a
secondary one at the peptide N-terminusthat could possibly
undergo the reaction with an NHS ester to form an amide
(Figure 3a). Generally, coupling to the secondary amine is
more efficient42 due to its higher nucleophilicity. Moreover,
the fact that the primary amine is positioned at a tetra-
substituted carbon atom increases steric hindrance and thus
impedes reaction at this position. To assess which amine reacts
to form the conjugate, we investigated the identity of the
synthesized product 1 using high-resolution tandem mass
spectrometry (HRMS-MS) (Figure 3b). Remarkably, the
detected fragments correspond to Vanco-800CW after the
loss of one or both sugar moieties, revealing that the dye is
coupled to the secondary amine instead of the primary one, as
opposed to what was suggested in the earlier report.39

Figure 2. Analytical data for the synthesis and evaluation of Vanco-800CW (1). (a) UPLC-MS traces (TIC), collected after addition of water to
the reaction mixture, of the supernatant (top), pellet (middle), and HPLC-purified product (bottom). Peak A corresponds to vancomycin, and
peak B corresponds to Vanco-800CW. (b) Mass spectrum corresponding to Vanco-800CW (compound 1, peak B from panel a). (c) UV−vis
absorption spectra for Vanco-800CW (1), (d) IRdye800CW NHS ester, and (e) vancomycin hydrochloride (2.8 μM, 1% DMSO in water). In
panel (c), distinct bands at λmax = 776 and 232 nm are observed, which are also present in the spectrum of IRdye800CW NHS ester (λmax = 776
nm, spectrum d) and vancomycin (λmax = 232 nm, spectrum e).
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Importantly, the fragmentation that leads to the loss of sugar
units in tandem MS is a common phenomenon, often applied
in oligosaccharide sequence analysis.43 It remains unclear what
the exact structure of the originally published compound is due
to lacking access to respective analytical data and the fact that
small changes in reaction conditions may influence the
regioselectivity, as shown in an early publication by Staroske
and Williams.44 Of note, an alternative strategy for precise
labeling of vancomycin for imaging purposes, which relies on
the thiol−maleimide reaction, has been published recently.45

With the purified conjugate in hand, we performed a
biological evaluation to confirm that the newly synthesized
regioisomer of 1 shows the same binding affinity toward Gram-
positive bacteria as the earlier reported conjugate.
Staphylococcal biofilms, composed of either a Staphylococcus
aureus clinical isolate or Staphylococcus epidermidis ATCC, were
established on the surface of 18 mm chemically resistant
borosilicate glass coverslips. Escherichia coli ATCC was used as
a Gram-negative control since vancomycin is known to target
only Gram-positive bacteria.39 The biofilms were then
incubated with Vanco-800CW, and images were acquired
with a fluorescence microscope. As shown in Figure 4a, Vanco-
800CW is capable of binding to both S. aureus and S.
epidermidis with similar affinity. As predicted, no binding was
observed to E. coli, supporting the view that vancomycin
modified with the IRdye800CW retains its binding selectivity

and molecular target. Moreover, a control experiment with S.
epidermidis showed that the IRdye800CW-carboxylic acid
without a targeting moiety does not bind to Gram-positive
bacteria, excluding the unselective staining (Figure S17).
With the aim to broaden the applicability of the targeted

tracer, we proceeded with the synthesis of a dual-labeled
vancomycin, starting from commercially available vancomycin
BODIPY-FL (Vanco-FL). This probe bears a fluorescent
BODIPY moiety on the primary amine, which absorbs light of
λ = 505 nm and emits at λ = 512 nm. Even though this
wavelength range is not in the optimal window as explained
earlier, functionalizing it with an NIR fluorescent moiety opens
up new possibilities to use one single probe for multimodal
imaging and theranostic approaches (e.g., coupling of Vanco-
FL to a photosensitizer for the diagnosis of bacterial infections
and subsequent eradication with antimicrobial photodynamic
therapy). Toward this end, we reacted Vanco-FL with the
IRdye800CW-NHS ester as a model dye using the standard
conditions established before for the synthesis of Vanco-
800CW. Due to the limited availability of Vanco-FL, we used
less equivalents of vancomycin (5 eq compared to 13 eq used
before) and a lower substrate concentration, which resulted in
longer reaction times with ca. 60% conversion to the product
after 5 days (Figure S4). The successful formation of the
desired dual-labeled vancomycin (2, Vanco-FL-800CW; Figure
1) was confirmed by UPLC-MS and analysis of the UV−vis

Figure 3. Structure determination of 1. (a) Molecular structure of synthesized compound 1 and of Vanco-800CW published in the literature.39 (b)
Fragment ions detected by HRMS-MS correspond to the conjugate of IRdye800CW with vancomycin after loss of one or both sugar moieties.
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spectra recorded on an HPLC system with photodiode array
(PDA) detection (Figure 5). To determine whether the
binding of vancomycin to Gram-positive bacteria was affected
upon dual labeling, biofilms of S. epidermidis ATCC were
incubated with Vanco-FL-800CW and images were acquired
with a fluorescence microscope, as performed before for
Vanco-800CW. As shown in Figure 4b, Vanco-FL-800CW is
capable of binding to S. epidermidis ATCC and the
fluorescence signals from BODIPY-FL and 800CW colocalize
with the bacteria. With the successful preparation of this new
molecule, we not only broadened the potential applicability of
vancomycin as a dual-imaging targeting probe but also
supported our findings regarding the molecular structure of
Vanco-800CW (Figure 3) since IRdye800CW was successfully
coupled to the free secondary amine of Vanco-FL under the
optimized conditions.
Inspired by the positive results for the synthesis and

purification of compounds 1 and 2, we further investigated
the scope of the established synthetic method. First, we
explored the possibility of using a different targeting agent,
namely, amphotericin B, to provide an optical imaging agent
for fungal infections.46,47 Amphotericin B binds to ergosterol,
which is abundant only in the cell membrane of fungi.48 We
were pleased to discover that the optimized reaction conditions

successfully yield compound 3 (Ampho-800CW; Figure 1).
After purification by semipreparative HPLC, the purity and
identity were confirmed by UPLC-MS and UV−vis analysis
(Figure 5). Since amphotericin B only contains one amine
functionality as a possible coupling site, the fragmentation
analysis by HRMS was omitted.
Next, we explored the generality of the synthetic method

with respect to different dyes by applying the conditions
optimized for compound 1 for the conjugation of vancomycin
to the NHS ester of IRdye700DX, an NIR dye that
simultaneously functions as a photosensitizer, enabling its
application for antimicrobial photodynamic therapy.49,50 Also
in this case, the desired product (4, Vanco-700DX; Figure 1)
was obtained and could be purified in the same way, as
described for Vanco-800CW. Subsequently, the product was
analyzed by UPLC-MS and UV−vis spectrometry to confirm
the purity and identity (Figure 5). High-resolution tandem
mass spectrometry indicates that, also, this dye couples to the
secondary amine at the N-terminus of vancomycin (Figure
S16). To investigate whether the ability of IRDye700DX to
produce reactive oxygen species (more specifically, singlet
oxygen [1O2]) was affected upon conjugation to vancomycin, a
detection method based on 1,3-diphenylisobenzofuran
(DPBF) was applied (see the Supporting Information, Figure

Figure 4. In vitro detection of bacterial biofilms using the (a) Vanco-800CW and (b) Vanco-FL-800CW probes. (a) Biofilms of S. aureus, S.
epidermidis ATCC, or E. coli ATCC were grown on microscopy coverslips and were subsequently incubated with Vanco-800CW. Images recorded
by fluorescence microscopy reveal binding of Vanco-800CW (red) to the Gram-positive bacterial biofilms (S. aureus and S. epidermidis ATCC) but
not to the Gram-negative bacteria (E. coli ATTC). (b) S. epidermidis ATCC was further selected to investigate the binding of Vanco-FL-800CW.
Vanco-FL-800CW was also able to bind to S. epidermidis ATCC and the BODIPY-FL signal (green) colocalized with the 800CW signal (red). The
colocalization is presented in yellow. Scale bars: 40 μm.
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S18). DPBF is photo-oxidized by 1O2, and its absorbance
decay can be monitored by UV−vis spectrophotometry at 415
nm. Irradiation of both IRDye700DX and Vanco-700DX for
70 s with a high output LED device that emits light at 690
nm,51 at an irradiance of 10 mW cm−2, resulted in complete
photo-oxidation of the DPBF (initial concentration: 100 μM)
at similar rates.
The conformational changes that vancomycin might under-

go upon labeling with one or two dyes did not impair its ability
to bind to bacteria, as demonstrated using biofilms grown in
vitro (Figure 4). However, the conjugation can affect its
antimicrobial activity since IRDye800CW and IRDye700DX
bind to the secondary amine of N-methyl-leucine, which is an
important amino acid in the binding to the target dipeptide D-
Ala-D-Ala in the bacterial cell wall, thereby influencing the
antimicrobial properties of vancomycin.52 Thus, the minimum
inhibitory concentrations (MIC) of vancomycin, Vanco-
800CW, and Vanco-700DX against an S. epidermidis strain
were assessed in liquid cultures by testing serial dilutions and

by antibiotic disk diffusion assays on agar plates (Supporting
Information, Figure S19). The MIC of vancomycin toward S.
epidermidis was 2 mg/L, while the MIC of both conjugates was
higher than 8 mg/L (Figure S19). Moreover, 5 μg of diffusion
discs placed on sample agar plates showed no inhibition of
bacterial growth around the discs for Vanco-800CW and
Vanco-700DX (Figure S19e). The loss of antimicrobial activity
upon conjugation probably relates to a lowered affinity for the
D-Ala-D-Ala dipeptide when compared to the unlabeled
vancomycin. Importantly, we regard the absence of antimicro-
bial activity as beneficial from a microbiological viewpoint
because this makes it less likely that the repeated usage of the
conjugates will elicit resistance to vancomycin.

■ CONCLUSIONS

In conclusion, we established an efficient, transferable, and
reproducible method for the synthesis and purification of
conjugates of near-infrared dyes that can potentially be used

Figure 5. Analytical data for (a, b) Vanco-FL-800CW 2, (c, d) Ampho-800CW 3, and (e, f) Vanco-700DX 4. (a) Overlay of the PDA spectra of
HPLC peaks corresponding to Vanco-FL (red), IRdye800CW-NHS ester (yellow), and Vanco-FL-800CW (green). (b) Mass spectrum of the
product peak (Figure S9) recorded on a UPLC-MS device. (c) Overlay of PDA spectra of the HPLC peak corresponding to amphotericin B (blue),
IRdye800CW NHS ester (yellow), and Ampho-800CW (green). (d) Mass spectrum of the product peak (Figure S10) recorded on a UPLC-MS
device. (e) Overlay of the UV−vis absorption spectra of vancomycin (blue), IRdye700DX-NHS ester (orange), and Vanco-700DX (green). The
spectra were obtained of the pure samples in 1% DMSO in water on a UV−vis spectrophotometer. (f) Mass spectrum of the product peak (Figure
S11) recorded on a UPLC-MS device.
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for the imaging and treatment of bacterial and fungal
infections. The reported research fulfils the need for selective
methods to synthesize adducts of highly functionalized small
molecules with relevant dyes used in medical imaging. It may
substantially facilitate the development of new optical imaging
agents since it offers a straightforward procedure that can be
repeated also in laboratories that are not dedicated to organic
synthesis.

■ EXPERIMENTAL SECTION
Optimized Procedure for the Synthesis of Compound

1 (Vanco-800CW Conjugate). Vancomycin hydrochloride
(100 mg/mL in DMSO, 146 μL, 10 μmol), HBTU (25.5 mg/
mL in DMSO, 57.6 μL, 3.9 μmol, or equimolar amount of
HATU), DIPEA (22.5 mg/mL in DMSO, 57.3 μL, 10 μmol),
and IRdye800CW-NHS ester (5 mg/mL in DMSO, 180 μL,
0.8 μmol) were mixed and left at room temperature overnight.
Subsequently, H2O (2.6 mL) was added to the reaction
mixture and the suspension was centrifuged for 10 min at rcf =
16.9 × 1000g. The supernatant was centrifuged again, and the
combined pellets were redissolved in a mixture of DMSO,
acetonitrile, and H2O for purification by semipreparative
HPLC (elution gradient from 10 to 70% organic phase).

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.0c02094.

Synthetic procedures, HPLC traces for the reaction
monitoring, UPLC-MS and HRMS data for final
products and biological evaluation procedures, and the
determination of singlet oxygen production and MIC
values (PDF)
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