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Systematic Analysis of Autophagy-Related Signature
Uncovers Prognostic Predictor for Acute Myeloid Leukemia

Xue-Xing Chen,' Zi-Ping Li! Jian-Hua Zhu? Hai-Tao Xia,® and Hao Zhou'

Autophagy, a highly conserved cellular protein degradation process, has been involved in acute myeloid
leukemia (AML). The present study aims to establish a novel, autophagy-related prognostic signature for pre-
diction of AML prognosis. Differentially expressed autophagy-related genes in AML and healthy samples were
screened using GSE1159. Univariate Cox regression analysis was applied to determine survival-associated
autophagy-related genes in The Cancer Genome Atlas (TCGA) AML cohort. Lasso regression was performed
to develop multiple-gene prognostic signatures. A novel six-gene signature (including CASP3, CHAFIB,
KLHL24, OPTN, VEGFA, and VPS37C) DC was established for AML prognosis prediction. The Kaplan—Meier
survival analysis revealed that patients in the high-risk score group had poorer overall survival (OS). The
receiver operating characteristic (ROC) curve validated its good performance in survival prediction in TCGA
AML cohort, and the area under the curve value was 0.817. Moreover, our signature could independently
predict OS. A nomogram was constructed, including the six-gene signature and other clinical parameters, and
predictive efficiency was confirmed using the ROC curve and calibration curve. Furthermore, gene set en-
richment analyses identified several tumor-associated pathways that may contribute to explain the potential
molecular mechanisms of our signature. Overall, we developed a new autophagy-associated gene signature and
nomogram to predict OS of AML patients, which may help in clinical decision-making for AML treatment.
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Introduction

ACUTE MYELOID LEUKEMIA (AML) is a clinically and ge-
netically heterogeneous malignancy characterized by
abnormal accumulation of immature hematopoietic progen-
itor cells in the bone marrow and peripheral blood (Dohner
et al., 2015). Despite the advances in AML pathogenesis
research and the occurrence of new drugs, the prognosis
of AML remains poor. The 5-year overall survival (OS) of
younger people with AML is <50% and only about 10% in
AML patients older than 60 years (Estey, 2018; Shallis
et al., 2019). Patients with AML showed a heterogeneous
prognosis after receiving chemotherapy, partly depending
on age, cytogenetic changes, and the karyotype (Slovak
et al., 2000; Grimwade et al., 2001; Byrd et al., 2002;
Dohner et al., 2010). Currently, molecular abnormalities
and cytogenetic characteristics at diagnosis are considered
the most crucial prognostic parameters and perform well in
evaluating the complete remission rate, disease-free survival
rate, and OS rate and in guiding rational AML management

(Dohner et al., 2010; Rollig ef al., 2011; Nebbioso et al.,
2015; Prada-Arismendy et al., 2017). Thus, the genetic
prognostic markers are crucial in evaluating patients with
AML and in guiding rational management. Several markers
have been proved to be associated with AML prognosis,
including AML-ETO (Lin et al., 2017), FLT3 (Gilliland and
Griffin, 2002), NPM1 (Heath et al., 2017), CEBPA (Green
et al., 2010), and KIT (Qin et al., 2018) genes. However,
since there is great heterogeneity among AML patients, the
current markers may not apply to every patient. Therefore,
there is an urgent need to screen novel and reliable prog-
nostic biomarkers for the therapy and prognosis prediction
of AML patients.

Autophagy is a highly conserved biological process that
plays an important role in the maintenance of cellular ho-
meostasis through degrading and recycling damaged cellu-
lar components and proteins to provide nutrition for cell
growth (Choi et al., 2013). The dysregulation of autophagy
is prevalent in tumor initiation, malignant progression, and
chemotherapy resistance (Levy et al., 2017; Li et al., 2017,
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Mowers et al., 2018). The role of autophagy in AML has
been previously reported (Auberger and Puissant, 2017).
For instance, genetic silencing of ATG7 in AML could
enhance chemotherapy sensitivity (Sumitomo et al.,
2016); moreover, autophagy activated by ULK] played a
protective role in AML resistance to daunorubicin (Qiu
et al., 2020), and LAMP?2 deficiency in AML was re-
ported to be associated with Aza resistance and hyper-
sensitivity (Dubois et al., 2019). Autophagy was also
shown to enhance chemoresistance and help in main-
taining the stemness of leukemia stem cells (Jang et al.,
2017).

Notably, most of the studies have just focused on in-
vestigating the relationship between autophagy and leu-
kemia progression by individual genes; however, the
prognosis role of global autophagy-related genes has
not been extensively analyzed in patients with AML. In
the present study, we identified an autophagy-related
signature, including six genes, which could accurately
and independently predict the OS for AML patients.
Moreover, a novel prognostic nomogram, including the
autophagy signature and clinical parameters, was estab-
lished. Taken together, our study demonstrates the rela-
tionship between autophagy-related genes and the prognosis
of AML patients and provides new insights for AML
treatment.

Materials and Methods
Data acquisition and preparation

Raw microarray AML data were acquired from
GSE1159. The robust multi-array average method was
employed to normalize the raw microarray data. In addi-
tion, the RNA sequencing profiles of AML tissues with
gene expression and clinicopathological information were
downloaded from The Cancer Genome Atlas (TCGA) da-
tabase. The ComBat method was applied to eliminate any
batch effects so as to remove discrepancies among different
datasets. GSE1159, including 285 AML samples and 8
healthy people, and TCGA, including 128 AML patients,
were selected as the discovery cohort. GSE12417 con-
taining 150 AML patients was used as our validation co-
hort. All patients without clinical information were initially
excluded.

Identification of differentially expressed
autophagy-related genes in AML

A list of 546 autophagy-related genes was obtained
from the Human Autophagy Database and the Molecular
Signatures Database, (GO_autophagy, M12441). edgeR
(Robinson et al., 2010) was used to identify differentially
expressed autophagy-related genes (DEARGSs) in GSE1159.
The cutoff values were demonstrated according to the false
discovery rate (FDR) <0.05 and |log2-fold change (FC)| > 1.
Gene expression of profile interactive analysis is a newly
developed web server, which could analyze RNA ex-
pression data for tumor tissues and normal tissues in
TCGA and Genotype-Tissue Expression (GTEx) projects
(Tang et al., 2017). Since there were no normal AML
samples in TCGA, the expression levels of DEARGs
identified by GSE1159 were further validated by GEPIA
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using GDC TCGA Acute Myeloid Leukemia (LAML)
tumor data and matched normal tissue data from GTEx.
|[Log2FC| > 1 and p<0.05 were considered to be statisti-
cally significant.

Construction and evaluation of the prognostic risk
score model based on DEARGs

TCGA LAML cohort was employed to screen survival-
associated DEARGS; a univariate Cox proportional hazards
regression analysis was performed and the genes with p
value <0.05 were further analyzed by the Lasso—Cox re-
gression. Then, a prognostic autophagy-related gene signa-
ture of AML patients was constructed according to a linear
combination of regression coefficients () calculated by the
Lasso—Cox regression based on the glmnet package in R
(Candia and Tsang, 2019). The risk score was calculated
using the following formula: risk score=expression of gene
1 X coefficient + expression of gene 2 Xcoefficient + ...
expression of gene nXcoefficient (Wang et al., 2019).
The risk score was calculated for each patient in TCGA
cohort and validated set based on this model. Next, AML
patients were divided into high- and low-risk groups ac-
cording to the median value of the risk scores. The
Kaplan—Meier survival analysis was used to assess the
prognosis of AML patients in the high-risk score or low-
risk score group using the survival package. To evaluate
the prognostic capability of the autophagy-related risk
signature, we calculated the area under the curve (AUC)
with the R package survivalROC. Furthermore, to inves-
tigate whether the predictive power of the prognostic
model could be independent of other clinicopathologic
factors (including age, sex, risk group, FLT3 status, RAS
status, and NPMI1 status) for patients with AML, uni-
variate and multivariate Cox proportional hazards re-
gression analyses were conducted in TCGA LAML
cohort.

Predictive nomogram construction and gene set
enrichment analysis of function enrichment

The nomogram and calibration plot were generated using
the rms R package. Gene set enrichment analysis (GSEA)
was used to identify related pathways in AML patients.
Enriched gene sets with a nominal p <0.05 and FDR <0.25
were considered to be statistically significant.

Statistical analyses

All statistical analyses were conducted using the
R software, and p<0.05 was considered statistically
significant. The distribution variables were analyzed us-
ing the chi-square test or Fisher’s exact test. The Kaplan—
Meier survival analysis and log-rank test were applied
to analyze OS. A time-dependent receiver operating char-
acteristic (ROC) curve was used to detect the accuracy of
the models. ROC curve analysis was also used to estimate
the diagnostic value of gene expression. Univariate and
multivariate Cox regression analyses were performed to
assess survival. The hazard ratio (HR) and 95% confi-
dence interval (CI) were calculated to identify genes re-
lated with OS.
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Results
Identification of DEARGS in AML patients

We analyzed 546 autophagy-related genes (ARGs) that
were acquired from the Human Autophagy Database (232
genes) and the Molecular Signatures Database, v4.0. (GO_
autophagy, M12441), (314 genes). Next, edgeR was used to
analyze the expression of 546 ARGs in 285 AML and 8
healthy people from GSE1159, as shown in Figure 1A and
B, a total of 66 DEARGs were identified, including 32 up-
regulated (red color) and 34 downregulated (green color)
genes (Jlog2FC| > 1, FDR <0.05) (Supplementary Table S1).

Identification of prognostic-associated DEARGs
in AML patients

To explore the prognostic value of these 66 DEARGs in
AML patients, univariate Cox regression analysis was ap-
plied according to the expression levels of the DEARGs
from TCGA cohort consisting of 128 AML patients. As a
result, 9 of 66 DEARGs were significantly correlated with
OS (CASP3, CHAFIB, HDACI, HISTIH3G, KLHL24,
LAMTOR2, OPTN, VEGFA, and VPS37C) (p<0.05,
Fig. 2A) (Supplementary Table S2). Among these genes,
three genes (VEGFA, KLHL24, and CASP3) were identified
as protective factors (HR <1), while the other six genes
(HDACI, OPTN, LAMTOR2, VPS37C, CHAFIB, and
HISTIH3G) were identified as risk factors (HR >1). The
nine survival-associated genes in AML and healthy people
were further confirmed in the GEPIA, which included 170
AML samples and 70 normal samples; the results revealed
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that except LAMTOR2 HISTIH3G and HDACI, the ex-
pression levels of other genes were in keeping with
GSE1159, therefore we chose these genes for further anal-
ysis (CASP3, CHAFIB, KLHL24, OPTN, VEGFA, and
VPS37C).

Construction of a prognosis predicting
the autophagy-related risk signature in AML

Next, the six selected DEARGs were employed to con-
struct a signature; the Lasso—Cox regression analysis was
performed to calculate the coefficients (Supplementary
Fig. S1), and the risk score was calculated using the fol-
lowing formula based on the coefficient: (0.01532 x CASP3)
+ (0.0561 x CHAF1B) + (0.01959 x KLHL24) + (0.06514 x
OPTN) + (-0.05621 x VEGFA) + (0.07141 x VPS37C), then
AML patients were categorized into the high-risk group
(n=64) and low-risk group (n=64) according to the median
cutoff risk score (Supplementary Fig. S2). Interestingly, the
expression of the protective and risk genes showed distinct
patterns based on the risk score; the risk genes expressed
higher levels in high-risk score AML patients, while pro-
tective genes expressed higher levels in low-risk score group
patients (Fig. 3). Furthermore, there were significant clinical
differences between the high- and low-risk groups (Fig. 3)
(Table 1). In the high-risk group, patients tended to be older
compared with those in the low-risk group (p<0.05);
moreover, more than half of the patients who were admin-
istered hydroxyurea were in the low-risk score group
(67.8%) (p<0.05). In addition, more poor-risk group AML
patients were found in the high-risk group (70.8%) than in
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FIG. 1.

Different expression levels of autophagy-related genes in AML patients. (A) Volcano plot of the differential

expression of 546 autophagy-related genes in AML samples (n=285) and healthy people (n=8). Red dots represent
upregulated genes, while green dots represent downregulated genes (p<0.05 and [log2(FC)| > 1). (B) The heat map
showing the expression of 66 DEARGs in AML samples and normal people (*p <0.05, **p<0.01, and ***p <0.001). AML,
acute myeloid leukemia; DEARGs, differentially expressed autophagy-related genes; FC, fold change.
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the low-risk group (29.2%), while more favorable-risk group
patients were in the low-risk group (81.4%) compared with
high-risk group (18.6%) (p<0.001).

Prognostic value of the six-autophagy-related
gene signature in AML

To better understand the prognostic role of our signature
in AML patients, the Kaplan—Meier survival analysis was
performed according to the median cutoff risk score, as a
result, the high-risk score group had significantly shorter
OS compared with the low-risk score group (Fig. 4A). The
5-year OS rate was 11.4% in the high-risk group and 35.9%
in the low-risk group. A time-dependent ROC curve was
employed to evaluate the specificity and sensitivity of the
model, and results indicated that the AUC value of our
model was 0.817, which was significantly higher compared
with that of age (AUC=0.768), gender (AUC =0.448), risk
group (AUC=0.462), FLT3 mutation (AUC=0.521), and
NPM1 mutation (AUC=0.583) (Fig. 4B). These results
demonstrated that our six-gene risk signature performed
well in survival prediction when compared with other clini-
cal factors. To assess whether the six-gene signature was an
independent prognostic factor, univariate and multivariate
Cox regression analyses were conducted. As a consequ-
ence, age at diagnosis (p<0.001, HR=3.361, 95% CI=
2.063-5.476), risk group (p=0.001, HR=1.761, 95%

CI=1.244-2.492), and riskScore (p<0.001, HR=4.915,
95% CI=2.835—8.524) were associated with OS in the uni-
variate analysis (Fig. 4C) and only age at diagnosis
(p<0.001, HR=2.906, 95% CI=1.679-5.029) and risk-
Score (p<0.001, HR=5.329, 95% CI=2.941-9.658) were
still obviously related to OS (p<0.05) in the multivariate
Cox analysis (Fig. 4D). These findings demonstrated that
the risk score retrieved from the six DEARGS could be re-
garded as an independent prognostic factor in AML.

Nomogram development for prediction of prognostic
risk in AML

To provide clinicians with a better quantitative way for
predicting cancer prognosis, a nomogram was constructed
using variables associated with OS (age, gender, FAB cat-
egory, cytogenetic abnormality, risk group, FLT3 status,
NPM1 status, and risk score) and it revealed that our sig-
nature risk score was the most important factor among the
various clinical parameters (Fig. 5A). Calibration curves
showed that the predicted and actual survival rates matched
very well at 1, 2, and 3 years (Fig. 5B). Moreover, the time-
dependent ROC curve was plotted to assess the efficiency of
the nomogram, as shown in Figure, and AUC values of 1-,
2-, and 3-year OS were 0.846, 0.867, and 0.875, respectively
(Fig. 5C). These findings suggest the appreciable accuracy
of the nomogram.
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TABLE 1. DEMOGRAPHIC AND CLINICOPATHOLOGIC
CHARACTERISTICS OF ACUTE MYELOID LEUKEMIA
PATIENTS IN THE CANCER GENOME ATLAS COHORT

Total,  Low risk  High risk
Variables N=112 (n=56) (n=156) p
Age, years
<60 44 16 (36.4%) 28 (64.6%) 0.032
>60 68 40 (58.8) 28 (41.2%)
Sex
Female 55 29 (52.7%) 26 (47.3%) 0.23
Male 57 27 (47.3%) 30 (52.6%)
FAB category
MO 11 7 (63.6%) 4 (36.3%) <0.001
Ml 26 11 (42.3%) 15 (57.6)
M2 26 17 (65.3) 9 (34.6%)
M3 13 13 (100%) 0
M4 23 7 (30.4%) 16 (69.6%)
M5 10 0 10 (100%)
M6 1 0 1 (100%)
M7 1 1 (100%) 0
Risk group
Favorable 27 22 (81.4%) 5 (18.6%) <0.001
Intermediate/ 60 26 (43.3%) 34 (56.7%)
normal
Poor 24 7 (29.2%) 17 (70.8%)
Hydroxyurea administration
Yes 28 9 (32.1%) 19 (67.8%) 0.015
No 84 47 (55.9%) 37 (44.1%)
FLTS3 status
Mutated 30 15 (50%) 15 (50%) 0.14
Wild type 82 41 (50%) 41 (50%)
NPM1 status
Mutated 28 10 (35.7%) 18 (64.3%) 0.57
Wild type 84 46 (54.8%) 38 (45.2%)

Functional characteristics enrichment
of the AML autophagy-related signature

To better understand the molecular function of the six-
autophagy-related gene signature, GSEA was performed in
high-risk (n=56) and low-risk (n=56) AML patients based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways gene set from the MSigDB database; when
p<0.05 and FDR <0.25, the gene sets were thought to be
significantly enriched. In our GSEA (enrichment) results,
we observed that the pathways, KEGG_APOPTOSIS,
NOTCH_SIGNALING_PATHWAY, MAPK_SIGNALING_
PATHWAY, KEGG_OXIDATIVE_PHOSPHORYLATION,
and KEGG_P53_SIGNALING_PATHWAY, were enriched
in the high-risk score group (Fig. 6). Previous studies
have reported that these pathways had a close relationship
with AML. Briefly, the GSEA results revealed that the six-
autophagy-related gene signature played a role in AML
development and progress.

Verification of the six-autophagy-related gene
prognostic model in GSE12417

To further validate the accuracy of our prognostic model,
we predict OS in an external Gene Expression Omnibus
(GEO) cohort, including 150 AML patients (GSE12417,
GPL 96). The patients in this dataset were divided into
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high-risk (n=75) and low-risk (n=75) groups based on the
median risk score. As a result, patients in the high-risk
score group had a poorer prognosis (p <0.001) (Fig. 7A). In
addition, the time-dependent ROC curve analysis was per-
formed and AUC values for the OS model at 3 and 5 years
were 0.752 and 0.74, respectively (Fig. 7B). Taken together,
these results demonstrated that both the risk models accu-
rately predicted the prognosis of AML patients.

Discussion

Autophagy has been reported to play a crucial role in
oncogenesis, progression aggressiveness, and chemotherapy
resistance of various tumors, including hematologic malig-
nancy (Auberger and Puissant, 2017). Piya et al. (2017)
observed that high ATG7 levels in AML blasts are associ-
ated with shorter remission duration, and knockdown of
ATGT7 obviously enhanced the apoptosis induced by Ara-C.
Nguyen et al. (2019) found that high p62 expression was
correlated with poor prognosis in AML and silencing of p62
could suppress leukemia progression in a mouse. Heydt
et al. (2018) reported that inhibition autophagy or ATF4
remarkably impaired FLT3-ITD-positive leukemic cell pro-
liferation as well as tumor burden in a murine leukemia xe-
nograft. Importantly, autophagy suppression also overcame
FLT3 inhibitor resistance. Therefore, autophagy-related
genes are promising prognostic predictors and therapeutic
targets in AML. However, comprehensive expression pat-
terns based on DEARGs have not been previously devel-
oped in AML.

In the current study, we first identified 66 DEARGS based
on the GEO database (GSE1159), including 32 upregulated
and 34 downregulated genes. Then, six survival-associated
risk DEARGs (CASP3, CHAFIB, KLHL24, OPTN, VEGFA,
and VPS37C) were identified through univariate Cox re-
gression and Lasso—Cox regression. Several of them have
been found to play an essential role in tumor development
and progression. For instance, CASP3, a primary mediator
of apoptosis (Yuan et al., 2016), has been reported to reg-
ulate invasion, migration, and metastasis of colon cancer
cells (Zhou et al., 2018). VEGFA is an angiogenesis stim-
ulator and overexpressed in majority malignancies with poor
prognosis, which plays a significant role in tumor inva-
siveness, metastasis, increased vascular density, and recur-
rence (Nagy et al., 2009) (Kerbel, 2008; Lacal and Graziani,
2018). Several strategies that aim to target the VEGFA-
VEGFR signaling pathway for treatment of neoplasm have
been investigated (Kowanetz and Ferrara, 2006; Ellis and
Hicklin, 2008). CHAFI1B is a key facilitator in chromatin
assembly in damaged DNA repair (Di er al., 2020). High
expression of CHAF1B has been observed to be associated
with poor prognosis in several solid tumors, including gli-
omas (de Tayrac et al., 2011), melanoma (Mascolo et al.,
2010), and prostatic cancer (Staibano et al., 2009), and in-
creased expression of CHAF1B also plays a role in tumor
aggressiveness, cell cycle arrest, and apoptosis (Polo et al.,
2010; Peng et al., 2018; Duan et al., 2019). Therefore, the
identified DEARGs may also affect the prognosis and pro-
gression of AML.

Next, we constructed a novel prognostic risk signature
based on the expression of six DEARGs. Based on the
DEARG-based risk score model, patients with AML were
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categorized into the high-risk group and low-risk group.
There were significant differences in prognosis and clini-
cal characteristics between the two groups. Multivariate Cox
regression analysis demonstrated that the prognostic models
could independently predict the prognosis of AML patients.

The nomogram has been widely employed in clinical
practice for its intuitive visual presentation (Wan et al.,
2019). As far as we know, this nomogram is the first to
combine an autophagy-related risk signature for predicting
the survival of AML patients. In this study, we established a
nomogram incorporating the autophagy risk signature, age,
gender, FAB category, cytogenetic abnormality, risk group,
FLT3 status, and NPM1 status. The calibration plot based on
TCGA databases revealed that the actual survival rate was
roughly in line with the predicted survival rate, suggesting
the excellent predictive performance of our nomogram. This
visual scoring system could help both physicians and pa-
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tients perform individualized survival prediction, which
would facilitate the selection of chemotherapy regimens.
Moreover, GSEA analyzed the differences between high-
risk and low-risk groups, stratified by the autophagy-related
signature. Several pathways that correlated with oncogene-
sis and progression in the high-risk score AML patients were
identified, including the MAPK_SIGNALING_PATHWAY,
KEGG_APOPTOSIS, KEGG_P53_SIGNALING_PATH-
WAY NOTCH_SIGNALING_PATHWAY, and KEGG_
OXIDATIVE_PHOSPHORYLATION pathway. MAPK was
found to be abnormally activated in leukemia cells and pro-
moted cell proliferation by regulating the expression of
oncogenic proteins (Rocca et al., 2018). It is known that
dysregulation of apoptosis is the most obvious hallmark of
various cancers (Pistritto et al., 2016). Moreover, the apo-
ptosis arrest was one of the causes of leukemia chemore-
sistance (Valentin et al., 2018). P53 plays a central role in
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hematopoietic stem cell function, its aberrations could affect
AML biology, progression, and even therapy response and
usually predict poor prognosis of AML patients (Prokocimer
et al., 2017). Increasing evidence indicates that dysregulation
of oxidative phosphorylation was associated with leukemia
stem cell chemoresistance (Kuntz et al., 2017). The muta-
tions of Notch were proved to be involved in development of
chronic lymphocytic leukemia or T cell acute lymphoblastic

leukemia in several studies (Bellavia et al., 2018). Taken
together, we revealed that our autophagy-related signature is
involved in many oncogenic signaling pathways, suggesting
their crucial roles in initiation and development of AML.
To our knowledge, this is the first study that makes a
comprehensive and systematic exploration of the prognosis
value of autophagy-related genes in AML. We acknowledge
that there were some drawbacks and shortcomings in the
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current study. On the one hand, since the total number of
AML patients involved in our study was limited, a larger
dataset in the future study is urgently needed to further vali-
date our prediction models. On the other hand, biological
experiments and clinical trials are required to verify the func-
tion and clinical significance of the identified autophagy-
related signatures.

Conclusion

In summary, in this study, we constructed a novel six-
gene signature and nomogram to predict the OS of AML
patients, which may contribute to the clinical decision-
making for individual therapy.
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