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ABSTRACT

The dendritic spines play a crucial role in learning and memory processes, epileptogenesis,
drug addiction, and postinjury recovery. The shape of the dendritic spine is a morphological
key to understand learning and memory process. The classification of the dendritic spines is
based on their shapes but the major questions are how the shapes changes in time, how the
synaptic strength changes, and is there a correlation between shapes and synaptic strength?
Because the changes of the classes by dendritic spines during activation are time dependent,
the forward-directed autoregressive hidden Markov model (ARHMM) can be used to
model these changes. It is also more appropriate to use an ARHMM directed backward in
time. Thus, the mixture of forward-directed ARHMM and backward-directed ARHMM
(MARHMM) is used to model time-dependent data related to the dendritic spines. In this
article, we discuss (1) how to choose the initial probability vector and transition and de-
pendence matrices in ARHMM and MARHMM for modeling the dendritic spines changes
and (2) how to estimate these matrices. Many descriptors to classify dendritic spines in two-
dimensional or/and three-dimensional (3D) are available. Our results from sensitivity anal-
ysis show that the classification that comes from 3D descriptors is closer to the truth, and
estimated transition and dependence probability matrices are connected with the molecular
mechanism of the dendritic spines activation.
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1. INTRODUCTION

Dendritic spines are short protrusions that harbor excitatory synapses, which are believed to play a

major role in neuronal plasticity and integration through their structural reorganization (Yuste and

Denk, 1995; Segal, 2002; Xu et al., 2009). Many physiological and pathological phenomena rely on brain

plasticity, including learning and memory, epileptogenesis, drug addiction, and postinjury recovery. Their

peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates

chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these

modifications affect synaptic transmission and plasticity are intriguing issues. Thus, the dendritic spine shape

has been accepted for determining the strength of the synaptic connections and is thought to underlie the

processes of information coding and memory storage in the brain. Indeed, the induction of long-term

potentiation (LTP) or long-term depression is associated with the enlargement or shrinkage of the spine,

respectively (Bosch and Hayashi, 2012).

Classification of dendritic spines, according to their shape and size, is a popular strategy to evaluate

maturation and pathological changes of neurons. Spines are often classified into four morphological classes:

filipodia, thin, stubby, and mushroom (Peters and Kaiserman-Abramof, 1970). It must be noted, however, that

the existing categorization of dendritic spine shapes does not provide a clear definition of each group. Some

researchers prefer to add two additional categories: branched and cup-shaped spines (Harris and Kater, 1994;

Hering and Sheng, 2001). An important question is whether the categorization of spines according to their

morphology represents a rigid classification of distinct entities or tentative labeling of transient spine states.

Live-cell imaging studies clearly show that spines are very dynamic and undergo reversible transformation

between thin and mushroom morphologies in a time scale of minutes to hours (Fischer et al., 1998).

Another important question is how the changes of the shapes of the dendritic spines in time correlate

with learning and memory process—is there a correlation between changes of the class of the dendritic

spines and changes of the enlargement or shrinkage of the spine and changes with the synaptic strength.

Another very important question is how to build a model based on the population of dendritic spines

including their classification changes, synaptic strength, learning, and memory process. These questions

can help us find answers to better understand the process of learning and memory and how the synaptic

plasticity process works. Several neuromorphological tracing tools are available to segment and classify

spines in two-dimensional (2D) and/or three-dimensional (3D). The major problem is determining which

descriptors in 2D or 3D give the most accurate classification (by accurate classification we mean stable

classification of dendritic spines, highest prediction accuracy, and highest biological relevance). Because of

the dynamic changes of dendritic spine shapes (and, therefore, its class) in time, we should use time-

dependent statistical models to answer for this problem. One of the most important models used in statistics

and machine learning is hidden Markov model (HMM), which was described by Rabiner (1989) and

Rabiner and Juang (1993). Figure 1A shows a sequence of states (S) and observations (O) for first-order

HMM (where sequence of states is S = S1‚ . . . ‚ ST and sequence of observations is O = O1‚ . . . ‚ OT ).

A first-order HMM instantiates two simplifying assumptions. First, as with a first-order Markov chain,

the probability of a particular state depends only on the previous state:

P(SijS1‚ . . . ‚ Si - 1) = P(SijSi - 1): (1)

Second, the probability of an output observation Oi depends only on the state that produced the obser-

vation Si and not on any other states or any other observations:

P(OijS1‚ . . . ‚ Si‚ . . . ‚ ST ‚ O1‚ . . . Oi‚ . . . ‚ OT ) = P(OijSi): (2)

Unfortunately, HMM can be poor at capturing dependency between observations because of the statistical

assumptions it makes. In many situations, the assumption that observation has a common effect in another

observation in the future simplifies the design of the Bayesian network: directed arcs should flow forward in

time. The extensions of the HMM called autoregressive HMM (ARHMM) and mixture ARHMM

(MARHMM) (Fig. 1B, C) are used especially for time series data (Rezaei Tabar et al., 2019). The ARHMM

can be calculated as the forward-directed ARHMM encourages correlation among observations by adding

direct dependencies between them. By adding direct dependencies between observations, samples drawn from

forward-directed ARHMM are thus smoother than samples from an HMM, usually making a better generative

model in time series problems (Stanculescu et al., 2014; Rezaei Tabar et al., 2019). The forward-directed

ARHMM is a Bayesian network and obeys the following two conditional independence relations:
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St?(S1‚ O1‚ . . . ‚ St - 2‚ Ot - 1)jSt - 1 and Ot?(S1‚ O1‚ . . . ‚ St - 1‚ Ot - 2)jSt‚ Ot - 1: (3)

Using these conditional independence relations, the joint distribution of a sequence of states and ob-

servations can be included as follows:

P(O‚ S) = P(S1)P(O1jS1)
YT

t = 2

P(StjSt - 1)P(OtjSt‚ Ot - 1): (4)

The backward-directed ARHMM is also known as a Bayesian network. According to D-separation

concept in Bayesian network, the backward-directed ARHMM also has the following two conditional

independence relations:

St? (ST ‚ OT ‚ . . . ‚ St + 2‚ Ot + 1)jSt + 1 and Ot? (ST ‚ OT ‚ . . . ‚ St + 1‚ Ot + 2)j(St‚ Ot + 1): (5)

The same way, forward-directed ARHMM also has the following two conditional independence

relations:

P(O‚ S) = P(ST )P(OT jST )
Y1

t = T - 1

P(StjSt + 1)P(OtjSt‚ Ot + 1): (6)

Also we can define the forward (fk(t)) and backward (bk(t)) algorithms that are to find out a recursive way

to represent the variable sequence in both models. The forward probability represents the probability of the

observation sequence up to time t and the state k at time t, given model k1 (or k2) as the following

formulas:

FIG. 1. (A) Graphical model for first-order

conventional HMM. (B) Graphical model for a

first-order forward-directed ARHMM. (C) Gra-

phical model for a first-order backward-directed

ARHMM. S means state, O means observation.

This figure is taken from Rezaei Tabar et al.

(2019). HMM, hidden Markov model; ARHMM,

autoregressive HMM.
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f(L - R)k(t) = P(O1‚ O2‚ . . . ‚ Ot‚ St = kjk1): (7)

f(R - L)k(t) = P(OT ‚ OT - 1‚ . . . ‚ Ot‚ St = kjk2): (8)

For some stochastic processes, it may be more appropriate to use an ARHMM directed backward in time

(Rezaei Tabar et al., 2019). The backward probability represents the probability of the partial observation

sequence from t + 1 to the end, given state k at time t as follows:

b(L - R)k(t) = P(Ot + 1‚ Ot + 2‚ . . . ‚ OT jSt = k‚ Ot‚ k1): (9)

b(R - L)k(t) = P(Ot - 1‚ . . . ‚ O1jSt = k‚ Ot‚ k2): (10)

In Equations (7)–(10), k1 and k2 are set of parameters where k = (the transition matrix, the initial

emission matrix, the emission matrix, and vector of initial state).

Note that the index L - R is timestamp from left to right for representing the forward-directed ARHMM

and R - L is timestamp from right to left for representing the backward-directed ARHMM.

For MARHMM, equation describing the model is as follows:

P(Ojk) = a1P1(Ojk1) + a2P2(Ojk2)‚ (11)

where P1(Ojk1) and P2(Ojk2) are the probability of the observation sequences given the forward-directed

ARHMM and backward-directed ARHMM, respectively, and a1 and a2 are mixing weights such that

a1‚ a2 � 0 and a1 + a2 = 1. P(Ojk) can be computed by obtained the Baum–Welch algorithm.

The ARHMM and MARHMM parameters are estimated by the expectation-maximization (EM) algo-

rithm (Rezaei Tabar et al., 2019). The algorithm arises in many computational biology applications that

involve probabilistic models, and it also enables parameter estimation in probabilistic models with in-

complete data. The EM algorithm computes probabilities for each possible completion of the missing data,

using the current parameters. These probabilities are used to create a weighted training set consisting of all

possible completions of the data. Finally, a modified version of maximum likelihood estimation that deals

with weighted training examples provides new parameter estimates (McLachlan and Krishnan, 2007). By

using weighted training examples rather than choosing the single best completion, the EM algorithm

accounts for the confidence of the model in each completion of the data (Chuong and Batzoglou, 2008). In

the rest of the article, we refer to a population of spines stimulated by LTP as dynamic data.

2. DATA PREPARATION

Details about data preparation are described in Bokota et al. (2016) in section ‘‘Data preparation and

analysis.’’ Here we describe only the differences in chemical substances that were used in experiments in

dynamic data sets gathered at three time points. In this experiment, the chemical LTP was induced through

the application of bath in a mixture of 50 mM forskolin, 50 mM picrotoxin, and 0.1 mM rolipram [each

dissolved in dimethyl sulfoxide (DMSO)] in a maintenance medium. Subsequently, experiment was ob-

tained from three points in time (timestamps): control (timestamp t0), 10 minutes after stimulation

(timestamp t10), and 40 minutes after stimulation (timestamp t40).

3. METHODS

Details about all four descriptors that were used to classify dendritic spines are given in Supplementary

Data S1. In Supplementary Data S2, details about how we prepare the data and how the vectors and

matrices should look like to run the code are described. Classification of the dendritic spines in all three

timestamps was done by four descriptors. Two descriptors were used for 2D classification and two were

used for 3D classification. A Viterbi algorithm that was used in machine learning is also described in

Supplementary Data (Supplementary Data S1).

In Matlab (The MathWorks, 2018), we implemented the ARHMM and MARHMM algorithms, whereas

Viterbi analysis was conducted in R in version 3.4 in HMM package (Development, 2010). We took den-

dritic spines marked by SpineMagick descriptor (Ruszczycki et al., 2012) and marked the same dendritic

spines using 2D programs (2dSpAn and Spinetools) and 3D programs (3dSpAn and Neurolucida 360).
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Depending on the descriptor we were working on, dendritic spines were classified as stubby, filipodia,

mushroom, thin, and long (combining filipodia and thin into one class) and ‘‘not existing’’ (i.e., after

stimulation we observed that these spines did not exist anymore—this class represents spines that were

absorbed by the neuron). Finally, we proceed to run the descriptor using the following parameters: data,

level, transition probability matrix, initial probability vector, number of iterations, and dependence matrix

As an output, the algorithm produces an estimated transition probability matrix, estimated emission

probability matrix, and logarithm of probability (logarithm of likelihood) at each iteration. Also, we use

methods such as principal component analysis ( Jolliffe, 2002), fuzzy partition coefficient, and hierarchical

clustering by k-means the same way as by Bokota et al. (2016) and Urban et al. (2019)—the results and

comments are described in Supplementary Data S3.

4. RESULTS

In this section, we describe the sensitivity analysis results of MARHMM and machine learning for

various combinations of the parameters: initial probability vector, transition probability matrix, and de-

pendence probability matrix, different a values. We also show how the changes in synaptic strength over

time depend on the changes in the area surface (for 2D descriptors) or volume (for 3D descriptors). Also,

we show that differences in transition probabilities between states in time depend on 2D or 3D classifi-

cation.

4.1. Sensitivity analysis—initial probability vector

To show the impact of different initial probability vectors for the same data, we prepare six versions of

the initial probability vector with a level equal to 3. We use the same transition probability matrix and

dependence matrix in all six situations. Table 1 gives versions of initial probability vectors. Results of our

experiment with the initial probability vector are presented in Figure 2A. We can see that version 3 (v3 in

legend, gray triangle line) is better than other curves—convergence is achieved after *150 iterations, and

the value of the logarithm of probability is lowest. In addition, version 4 (v4 in legend, light gray vline) is

also good but converges only after *370 iterations. The remaining versions have inferior performance.

4.2. Sensitivity analysis—transition probability matrix

To show the impact of different input transition probability matrices for the same data, we prepare five

versions of the transition probability matrix with level = 3, initial probability vector was the same in all five

situations, the same with dependence matrix. Table 2 gives versions of transition probability matrices. The

results are shown in Figure 2B. We can see that version 5 (v5 in legend, square dark gray line) is better than

other tested versions because it converges quicker (the line representing the logarithm of probability is

stable after *150 iterations) and has a smaller - log p value (i.e., higher probability) than the others

versions. The version 2 (v2 in legend, dark gray line) performs similarly, but more iterations are required to

have convergence (*210). Version 1 (v1 in legend, black line) converges very quickly (*110 iterations)

but it has visibly worse quality. Versions 4 and 3 (v4 [light gray vline] and v3 [triangle gray line] in the

legend) have some oscillations and show intermediate quality. The estimated transition probability matrix

for version 5 is given in Supplementary Data S4.

Table 1. Vectors Used in Sensitivity Analysis for Initial Probability

Version no. Vector

Version 1 [0.3;0.4;0.3]

Version 2 [0.5;0.2;0.3]

Version 3 [0.8;0.1;0.1]

Version 4 [0.2;0.7;0.1]

Version 5 [0.2;0.2;0.6]

Version 6 [0.4;0.4;0.2]
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4.3. Sensitivity analysis—dependence matrix

To show the impact of different dependence matrices for the same data, we prepare six versions of the

dependence matrix with a level equal to 3. We use the same transition probability matrix and the initial

probability vector in all six situations. Table 3 gives versions of dependence probability matrices that were

used. The results are shown in Figure 3A. We can see that both version 4 (v4 in legend, light gray vline) and

version 3 (v3 in legend, triangle gray line) are good. In triangle gray line after *150 iterations, the line is

stable but in the opposite, to the triangle gray line, the light gray vline has less value of the logarithm of

probability. The versions 5, 2, and 6 (v5 [square dark gray line], v2 [dark gray line], and v6 [gray dotted

line] in legend) have similar performances. The worst version is 1 (v1 in legend, black line). The estimated

dependence probability matrix for version 4 is given in Supplementary Data S3.

4.4. Autoregressive hidden Markov model

Based on the results from Sections 4.1 to 4.3, we plot the curve for the best matrices and vectors and plot

the curve for random matrices and vectors (but not the best). Figure 3B shows that after choosing random

A

B

FIG. 2. (A) Results for different initial probability vectors for the same data, transition probability matrix, and

dependence matrix. (B) Results for different transition probability matrices for the same data, initial probability vector,

and dependence matrix.
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matrices and vectors, our logarithm of probability is on the level of -523 after 125 iterations. The curve that

was a plot with the best matrices and vectors has logarithm of probability on level -505 after 215 iterations.

That means is better to make more iterations and have better results ( - 505 > - 523). Here, of course, the

difference is not so big, but in other data, the difference can be bigger and can give wrong information.

4.5. Sensitivity analysis—a in MARHMM

The application of the MARHMM method is similar to the ARHMM. The only difference is that we

must also give initial values of mixture coefficients (a1 and a2). Figure 4A shows the results of the different

values (eight situations) for the same data set and the number of iterations as the ARHMM methods used in

the previous Sections 4.1–4.4. The transition probability matrix, initial probability vector, and dependence

matrix were the same. Table 4 gives versions of a values used in MARHMM. Figure 4A shows that version

Table 2. Matrices Used in Sensitivity of Analysis

for Initial Transition Probability

Version no. Matrix

Version 1

0:4 0:4 0:2
0:7 0:2 0:1
0:2 0:5 0:3

2
4

3
5

Version 2

0:3 0:5 0:2
0:2 0:7 0:1
0:3 0:4 0:3

2
4

3
5

Version 3

0:1 0:8 0:1
0:3 0:2 0:5
0:6 0:3 0:1

2
4

3
5

Version 4

0:2 0:1 0:7
0:2 0:2 0:6
0:1 0:3 0:6

2
4

3
5

Version 5

0:3 0:6 0:1
0:4 0:4 0:2
0:1 0:7 0:2

2
4

3
5

Table 3. Matrices Used in Sensitivity Analysis

for Initial Dependence Probability

Version no. Matrix

Version 1

0:3 0:2 0:3 0:2
0:4 0:1 0:4 0:1
0:2 0:5 0:1 0:2

2
4

3
5

Version 2

0:1 0:1 0:1 0:7
0:2 0:5 0:2 0:1
0:5 0:3 0:2 0:1

2
4

3
5

Version 3

0:2 0:2 0:4 0:2
0:1 0:1 0:1 0:7
0:3 0:3 0:2 0:2

2
4

3
5

Version 4

0:3 0:4 0:2 0:1
0:2 0:1 0:5 0:2
0:1 0:2 0:5 0:2

2
4

3
5

Version 5

0:5 0:2 0:3 0:2
0:6 0:1 0:2 0:1
0:5 0:3 0:2 0:1

2
4

3
5

Version 6

0:1 0:6 0:2 0:1
0:3 0:1 0:1 0:5
0:1 0:1 0:7 0:1

2
4

3
5
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4 (light gray vline for a1 = 0:2 and a2 = 0:8) has a lower value of the logarithm of probability than the rest

versions. For the other versions, the value of - log p is higher, and on a similar level to each other.

4.6. The Viterbi algorithm

The Viterbi algorithm was used in machine learning—first our data were split into two sets: set for

training (100 spines) and for the test (200 spines). We use the transition and emission probability matrices

calculated by MARHMM (Supplementary Data S3). Results of our test were verified by the Viterbi

algorithm. Figure 5 shows the percentage of situations in which the algorithm found all three or two/one/

none of the classifications of dendritic spines (our aim was not to construct a predictive model, but to show

how on time-dependent data after using MARHMM, we can use results in machine learning).

4.7. Relationship between spine shape and synaptic strength

We know that the synaptic strength is correlated with the area of the dendritic spine—from 2D de-

scriptors, we have a parameter that is called area. In 3D descriptors instead of the area we have volume

A

B

FIG. 3. (A) Results for different dependence matrices for the same data, initial probability vector, and transition

probability matrix. (B) Difference between choosing the best matrices and vectors than choosing it randomly. We used

the same data for both lines.
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A

B

FIG. 4. (A) Results for different a values for the same data, transition probability matrix, initial probability vector,

and dependence matrix. (B) Logarithm of the probability for different descriptors 2D and 3D for segmentation and

classification of dendritic spines into one of the classes. 2D, two-dimensional; 3D, three-dimensional.

Table 4. a1Values Used in Sensitivity Analysis

in Mixture Autoregressive Hidden Markov Model

Version no. a Values

Version 1 a1 = 0.5, a2 = 0.5

Version 2 a1 = 0.4, a2 = 0.6

Version 3 a1 = 0.3, a2 = 0.7

Version 4 a1 = 0.2, a2 = 0.8

Version 5 a1 = 0.1, a2 = 0.9

Version 6 a1 = 0.6, a2 = 0.4

Version 7 a1 = 0.8, a2 = 0.2

Version 8 a1 = 0.9, a2 = 0.1
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parameter that will also help us in showing changes in synaptic strength. For each dendritic spine that exists

in all three timestamps, we check how the area or volume changes. We focus on five situations:

In time the area/volume is growing.

In time the area/volume is decreasing.

In time the area/volume is not changing.

In time the area/volume is growing and then decreasing.

In time the area/volume is decreasing and then growing.

Table 5 gives results for two 2D descriptors (for area parameter) and for one 3D descriptor (for volume

parameter). We check what kind of classes exist in different situations, and unfortunately we did not find

here any correlation (e.g., in all five situations, we could find few [two or three] dendritic spines that in all

three timestamps were classified as stubby).

4.8. Probabilistic model

Figure 6A shows the results for 2D and 3D descriptors with the different number of classes (details about

the matrices and vectors used to plot the curves are described with details given in Supplementary Data S2

and also results for estimated emission and transition probability matrix are given in Supplementary Data S3).

FIG. 5. Results for machine learning for the most probable path.

Table 5. Changing of the Dendritic Spines Synaptic Strength in Time, Calculated

by Different Descriptors

Synaptic strength situation 2dSpAn (%) Spinetools (%) 3dSpAn (%)

Growing 14.65 12.72 27.86

Decreasing 23.13 22.54 4.96

Not changing 0 0 0

Growing and decreasing 34.52 31.63 44.65

Decreasing and growing 27.68 33.1 22.52
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Based on the information that classification in 3D of the dendritic spines with four classes is better than

other 3D classifications, we calculate transition matrix [it was calculated the same way as by Urban et al.

(2019)] in section ‘‘Transition matrix.’’ Figure 6 shows results for transition matrices for three situations

(transitions between t0 and t10, t0 and t40, and t10 and t40) for 3D (based on 3dSpAn classification) and 2D

classifications from Urban et al. (2019). The first difference is that in 3D, we do not have thin class (in

3dSpAn there are equations for each dendritic spine that can be classified as thin, but in our data, we did not

match it). Second difference is in probabilities between classes, we can observe that some probabilities

from 2D and 3D are the same or very close, especially in transition from time stamp t0 to time stamp t10

(e.g., transition probability for dendritic spine classified as stubby changes to mushroom will be in 3D 0.09

and in 2D it will be 0.07). In transitions between time t0 and t40 and between t10 and t40, we could not find

probabilities that will be very similar/close. This probability values between dendritic spine classes can be

used in building network [e.g., our probabilities can be used in model from Barrett et al. (2009)].

FIG. 6. (A,C,E) Probabilistic model from Urban et al. (2019); (B,D,F) Probabilistic model built on MARHMM results

where (A) and (B) are time stamp t0, (C) and (D) are time stamp t10, and (E) and (F) are time stamp t40. MARHMM,

mixture ARHMM.
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As we expected, the classification that comes from 3D descriptor is closer to the truth than a 2D

descriptor. In 3D, we have more information about dendritic spine location: we know the location on the

neuron (x- and y-axis) and also we have a third axis (z-axis) that shows us how the spines change depending

on depth. In 2D, we do not have z-axis and because of this, we do not know exactly how the spine looks

like. For example, in 2D we could see spine that looks like one big mushroom spine, but in 3D it was not

one big dendritic spine, but two or three spines and depend on z-axis depth (Fig. 7). Table 6 gives the

example of classification, using all the descriptors (mentioned and described in Supplementary Data S1),

for the same dendritic spine. In this case, 2D descriptor gives us wrong classification and occasionally

designates artifacts as dendritic spines (which are not dendritic spines—when we check it in 3D, or on

another program [such as ImageJ] in which we can change point of view by changing the z-axis, thanks to it

we can see how dendritic spines change during the depth on the neuron).

After showing results of the sensitivity analysis (Sections 4.1–4.3 and 4.5), it should be more clear and

also how important it is to choose property matrices and/or vectors and what kind of curves to avoid. This

knowledge is very important because it depends on what we put to the program will have different values of

the estimated transition and dependence probability matrices as output. Figure 3B shows the difference

between using all the best matrices and vectors than using random values.

FIG. 7. Example of neuron with dendritic spines. (A) 2D view but without z-axis. (B–D) 2D view with z-axis (for

each subplot z-axis has different value).

Table 6. Classification for the Same Dendritic Spine

After Using Different Programs in Three Timestamps

t0 t10 t40

2dSpAn M T F

Spinetools M M M

dSpAn S S S

Neurolucida 360 M M M

F, filipodia; M, mushroom; S, stubby; T, thin.
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As given in Table 5, results from 3D descriptors are different than those from 2D descriptors. One of the

explanations of this is that the structure of the dendritic spines is tightly correlated with their function and

reflects the synapse properties. At the cellular level, the most extensively studied aspect of this phenomenon

is related to dendritic spine enlargement in response to stimulation (Kasai et al., 2003; Rangamani et al.,

2016). Synapse strengthening or weakening along with dendritic spine formation and elimination assures

correct processing and storage of the incoming information in the neuronal network.

Based on the results from estimated transition probability matrix and dependence probability matrix from

3dSpAn classification with four classes (Supplementary Data S3), we can multiply each probability from

estimated dependence probability matrix by a number of spines—thanks to it we have a number of

dendritic spines from each class from each timestamp. About changes, dendritic spines from one class to

another MARHMM is unfortunately not good. This is because the estimated transition probability matrix is

our hidden states (they are responsible for timestamps in our experiment), in estimated dependence matrix

we have only information about the class (column) and timestamp (row). To build a probability model

based on classification changes in time, we need, for example, some graph models (Stefanini, 2014). Of

course, based on the estimated transition probability matrices, we can observe that the probabilities are the

biggest between timestamps t0 and t10 and between t10 and t40, which is equivalent to changes in the dendritic

spines dynamics after activation of the molecular mechanisms (Kasai et al., 2003; Szepesi et al., 2014).

Based on our results, we can support the hypothesis of Bokota et al. (2016), that the biological infor-

mation is not stored in the spine shapes or sizes depending on their classes but is rather related to the

dynamic changes at the spine population level.

5. CONCLUSION

The structure of the dendritic spines is tightly correlated with their function and reflects the synapse

properties. Synapse strengthening or weakening along with dendritic spine formation and elimination

assures correct processing and storage of the incoming information in the neuronal network. This plastic

nature of the dendritic spines allows them to undergo activity-dependent structural modifications, which are

thought to underlie learning and memory formation. At the cellular level, the most extensively studied

aspect of this phenomenon is related to dendritic spine enlargement in response to stimulation (Bokota

et al., 2016). The presented methods can be used not only in dendritic spines for neurobiological experi-

ments but also in other biological branches [genetics (Kröger et al., 2017), molecular biology (Qing, 2017),

immunology (Hill et al., 2017), hematology (Efficace et al., 2017)], or even in other science problems such

as in medicine (diagnostic, epidemiologic) (Porcelli and Guidi, 2015; DasMahapatra et al., 2017), psy-

chology (psychology diagnostic) (Porcelli and Guidi, 2015), or sociology (relationships between people)

(Wong et al, 2017). In each instance in which we want to know about the next step, we can use the forward-

directed ARHMM, if we want to know about the previous step, we can use backward-directed ARHMM,

and finally the MARHMM can be used for considering both previous and next steps. Also results from

MARHMM used in machine learning can be used in developing a new spice classification descriptor. Also

based on results from MARHMM, we can choose the best descriptor, and by using other tools we try to

build probabilistic models.
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