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Abstract

Mitochondrial dysfunction (MD) is linked to cardiometabolic complications, such as obesity and insulin re-
sistance (IR), the frequencies of which are higher in adults living with HIV infection and receiving combination
antiretroviral therapies (ARV). ARV-treated youth living with perinatally acquired HIV infection (YLPHIV)
may be especially susceptible to IR due to long-term exposure to both factors. Medical histories, fasting blood
chemistry panels, and mitochondrial function in banked peripheral blood mononuclear cells (PBMCs) were
assessed in eligible YLPHIV from the Pediatric HIV/AIDS Cohort Study (PHACS)/Adolescent Master Protocol
(AMP) Mitochondrial Determinants Component cohort, stratified by Homeostatic Model Assessment of IR
(HOMA-IR) score: case (score ‡4, n = 39) or control (score <4, n = 105). PBMCs were sources for mito-
chondrial (mt) DNA copies/cell; mtRNA transcript levels of oxidative phosphorylation (OXPHOS) subunits
NADH dehydrogenases 1 and 6, and cytochrome B; and enzymatic activities of OXPHOS Complexes I (CI) and
IV (CIV). Logistic regression models were fit to estimate the odds of IR case diagnosis, adjusted for sex,
race/ethnicity, body mass index (BMI) z-score, and Tanner stage. IR cases were similar to controls by age, sex,
and race/ethnicity. Cases had higher median levels of peak HIV viral load, lactate, pyruvate, triglycerides, and
BMI z-scores. OXPHOS CI enzymatic activity was lower in cases (log10 1.62 vs. 1.70) and inversely correlated
with HOMA-IR score (r = -0.157, p = .061), but did not associate with IR in adjusted models. Fully adjusted
models indicated associations of nadir CD4% [odds ratio (OR) = 0.95, 95% confidence intervals (CIs) = 0.90–
1.00] or peak HIV load (OR = 3.48, 95% CIs = 1.70–10.79) with IR. IR in YLPHIV was strongly associated with
morphometrics, but early virologic and immunologic factors may also influence MD.
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Introduction

Combination antiretroviral therapy (cART) has
improved morbidity and mortality rates for individuals

with HIV infection, but is associated with an increase in long-
term cardiometabolic complications such as insulin resis-
tance (IR) and type 2 diabetes (T2Ds).1,2 Mitochondrial
dysfunction (MD) is purported to be one of the factors that
underlies these complications and has been linked to HIV
infection3–8 and/or related cART regimens.9–13 Children who
are exposed to both factors perinatally may therefore be

particularly vulnerable to developing MD and pursuant car-
diometabolic comorbidities.

Multiple recent reports have described the effects of HIV
infection upon MD in immune cells and the resulting shifts
in bioenergetic capacities of the surviving peripheral blood
mononuclear cells (PBMCs).14–17 Early HIV infectivity is
selective for CD4+ T cells with high levels of mitochon-
drial oxidative phosphorylation (OXPHOS),18 and chronic
infection may result due to alterations in immune subset-
specific differentiation potentials driven by modulation of
OXPHOS/glycolysis usage and concurrent transcriptional
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programming.19,20 Intriguingly, individuals considered that
‘‘elite HIV controllers’’ may successfully respond to HIV
infection due to their possession of CD8+ T cell subsets
displaying highly plastic metabolism, such as greater capa-
cities for both OXPHOS and glycolysis, compared to the
primarily glycolytic dependency of CD8+ T cells in non-
controllers.21 OXPHOS capacities of CD4+ T cells from
HIV-uninfected adults are negatively impacted by exposure
to certain cART drugs, specifically newer integrase strand
transfer inhibitors; and CD4+ T cells from cART-naive
adults living with HIV displayed impaired basal and maxi-
mal OXPHOS levels.22 Thus, both HIV infection itself and
cART may shape composition and bioenergetics of surviving
PBMC via induction of MD, potentially increasing the
likelihood of cardiometabolic abnormalities.

We have shown in the Adolescent Master Protocol (AMP)
of the Pediatric HIV/AIDS Cohort Study (PHACS) network
that youth living with perinatally acquired HIV (YLPHIV)
have elevated biomarkers for cardiometabolic dysfunction at
early ages,23 as well as elevated prevalence of IR compared
with that reported in HIV-uninfected nonobese youth.24 Data
from a pilot study of PHACS AMP participants suggested that
mtDNA copies/cell were lower in PBMCs of YLPHIV with
IR compared to those with normal insulin sensitivity, and that
fasting glucose level was inversely proportional to OXPHOS
Complex I (CI) enzymatic activity.25 In this population, IR
was associated with obesity, higher CD4+ T cell percentages
at nadir, and amprenavir usage.26 Another recent pilot study of
YLPHIV described lower rates of basal and maximal OX-
PHOS in PBMCs from those with IR, which was associated
with higher body mass index (BMI) z-score and venous me-
tabolites: pyruvate (Pyr), lactate (Lac), and triglycerides.27 In
adults living with HIV, reductions in PBMC OXPHOS ac-
tivities are correlated with lower levels found in adipose tis-
sue,28 and a recent study indicates that activity levels
of OXPHOS CI and Complex IV (CIV) in adipose tissue
inversely correlated with IR,29 suggesting that detectable
changes in PBMC levels may be indicative of systemic MD.

Due to our observations of lowered OXPHOS capacities
being associated with IR in YLPHIV, we sought to further
assess the relationship of MD and IR by examining a broader
range of mitochondrial measures in PBMC from a larger
population of YLPHIV. We hypothesized that levels of
mtDNA per cell, mtRNA OXPHOS-related transcripts, and
OXPHOS subunit enzymatic activity within PBMC would
inversely correlate with Homeostatic Model Assessment of
IR (HOMA-IR) scores, a widely used measure of insulin
sensitivity in epidemiologic, population-based, and other
group-level assessments.30

Materials and Methods

Study design and population

The study population was enrolled from a cohort of YLPHIV
in the Mitochondrial Determinants Component (MDC), a
substudy of the multicenter U.S.-based AMP study (PHACS
network; https://phacsstudy.org/About-Us/Active-Protocols),
which is an ongoing, prospective study evaluating long-term
effects of HIV infection and cART in YLPHIV (aged 7 to <16
years at entry; n = 451). Of these 451 participants, 243 were
enrolled in MDC; children were excluded from enrollment if
they had any known mitochondrial abnormalities, Type I dia-

betes, liver dysfunction (including hepatitis B or C), or other
conditions known to alter mitochondrial function or Lac levels.
For the analyses herein, we used previously established
HOMA-IR cutoffs31 to assess a subset of 39 insulin-resistant
(IR+) cases (baseline HOMA-IR score >4) and 105 randomly
selected insulin-sensitive (IR-) controls (HOMA-IR score <4),
both at Tanner stage >1; participants were included if sufficient
aliquots of PBMC were available for assays. HOMA-IR score
was calculated as described previously32: ([fasting insulin
(lU/mL) · fasting glucose (mmol/L)]/22.5). The AMP proto-
col was approved by the Institutional Review Board (IRB) at
each participating site and by that of the Harvard T.H. Chan
School of Public Health. Written informed consent was ob-
tained from each youth’s parent or legal guardian, and assent
was obtained from youth participants according to local IRB
guidelines.

Clinical and laboratory measurements

Routine clinical measurements for both cases and con-
trols included anthropometric measures [height, weight, BMI]
and fasting blood measures of glucose, insulin, lipids, Lac, and
Pyr following PHACS AMP Protocol version 4.0, based on the
ACTG/IMPAACT Laboratory Manual, available at: https://
www.hanc.info/labs/labresources/procedures/Pages/actg
ImpaactLabManual.aspx. In brief, glucose and insulin mea-
surements were performed at the Diabetes Research Institute
Clinical Chemistry Laboratory at the University of Miami on
a Cobas 6000 analyzer (Roche Diagnostics, Indianapolis, IN)
following manufacturer’s specifications. Lipids, Lac, and
Pyr levels were determined at each clinical site following
above-mentioned, standardized protocols. Abnormal Lac
was defined as >2.0 mmol/L. If Lac was >2.0 mmol/L, but the
Lac/Pyr ratio was £20, a secondary collection was performed
to determine Lac and Pyr concentrations.

Absolute CD4+ T cell (CD4) count and percentages,
plasma HIV-1 RNA (viral load), and antiretroviral (ARV)
regimen history were abstracted from medical chart histories.
Use of individual ARV were assessed based on whether
patients were currently receiving the medication, had ever
received the medication, and cumulative duration of medi-
cation usage.

Mitochondrial assays

PBMCs were obtained using EDTA vacutainers within 8 h
of phlebotomy and processed according to AIDS Clinical Trials
Group protocols (https://www.hanc.info/labs/labresources/
procedures/Pages/actgImpaactLabManual.aspx). PBMCs
were isolated using the Ficoll-Hypaque Overlay Method and
cells (5.0 · 10^6 cells/0.5 mL) were cryopreserved (-140�C)
and shipped quarterly to the University of Hawaii on dry ice.

PBMCs mtRNA and mtDNA levels were calculated as
done previously using relative and absolute quantitative
PCR, respectively.33 In brief, transcript levels of nuclear-
encoded, mitochondrial ribosomal protein L13 RNA were
used for normalization of mitochondrial-encoded genes as-
sociated with OXPHOS: cytochrome b (CYTB) and NADH
dehydrogenase (ND) subunits 1 (ND1) and 6 (ND6). Tran-
script levels were calculated as ratios of each of the OXPHOS
mtRNA targets cycle threshold to the cycle threshold value of
L13 mRNA, and all samples were run in duplicate. Copy
number of mtDNA per cell was assayed by comparing qPCR
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amplification thresholds of the mitochondrial DNA target,
ND subunit 2, to those of the nuclear target, Fas Ligand, and
across each sample; all samples and standards were run in
duplicate. A control DNA plasmid containing both target
regions was serially diluted and used to generate a standard
curve of cycle thresholds, against which absolute values were
derived for samples. Results were analyzed with Version
1.5.0 LightCycler 480 software.25

Measurement of OXPHOS CI and CIV enzymatic activi-
ties was performed in duplicate by thin-layer chromatogra-
phy and immunoassays as described previously.25 Activity
was measured as optical density/lg of protein · 103.

Data analyses

Characteristics of cases and controls, including socio-
demographic data, metabolic measures, and HIV-specific
characteristics, were summarized by the frequency for cate-
gorical variables or median [interquartile ranges (IQRs)] for
continuous variables, and comparisons between the two
groups were performed in using Fisher’s exact test for cate-
gorical variables and Wilcoxon Rank Sum test for continuous

variables. Mitochondrial measures (mtDNA, ND1/L13, ND6/
L13, CYTB/L13, CI activity, and CIV activity) were log10

transformed before analysis. Associations between the mi-
tochondrial and clinical measures were evaluated by Spear-
man correlations. Logistic regression models were fit to
evaluate the odds of being a case compared to a control with
each one unit increase in each mitochondrial measure, CD4
value, and viral load, unadjusted and adjusted for sex,
race/ethnicity, BMI z-score, and Tanner stage group (2–3 vs.
4–5). We report herein odds ratios (ORs) and 95% confidence
intervals (CIs) for variables with p-values below .10.

Results

Demographic and clinical characteristics of IR+ cases
(n = 39) and IR- controls (n = 105) are presented in Tables 1
and 2. There were no differences observed between cases and
controls by age, sex, race/ethnicity, Tanner stage, current
CD4 values, or current HIV viral load (Table 1). Cases
demonstrated a higher peak log10 HIV viral RNA load (me-
dian 5.78 vs. 5.50, p = .002), and lower values for CD4 at
nadir compared to controls. Median values of the body

Table 1. Characteristics of Participants by Insulin Resistance Status

Characteristic N (IR+/IR-) IR+ IR- pa

Age (year), median [IQR] 39/105 16.37 [14.52, 17.99] 16.08 [13.99, 17.65] .30
Sex [Female, n (%] 39/105 22 (56) 53 (50) .58
Race/Ethnicity, n (%) 39/105 .62

Hispanic 10 (26) 25 (33)
Black non-Hispanic 27 (69) 66 (63)
White/other non-Hispanic 2 (5) 4 (4)

Tanner stage, n (%) 39/105 .12
2–3 5 (13) 28 (27)
4–5 34 (87) 77 (73)

Current CD4 (cells/mm3), median [IQR] 38/94 563.50 [426.00, 864.00] 620.50 [461.00, 777.00] .90
Current CD4 (cells/mm3), n (%) 38/94 .23

<200 5 (13) 5 (5)
201–500 7 (18) 25 (24)
>500 26 (67) 64 (61)

Current CD4 (%), median [IQR] 38/94 31.35 [25.00, 36.00] 32.40 [25.10, 38.00] .41
Nadir CD4 (cells/mm3), median [IQR] 39/105 268 [70, 443] 328 [204, 454] .068
Nadir CD4 (cells/mm3), n (%) 39/105 .090

<200 16 (41) 24 (23)
201–500 18 (46) 60 (57)
‡500 5 (13) 21 (20)

Nadir CD4 (%), median [IQR] 39/105 15.00 [4.80, 21.70] 17.15 [10.00, 24.00] .058
Current log HIV RNA (copies/mL),

median [IQR]
35/96 1.73 [1.60, 3.13] 2.30 [1.60, 3.53] .49

Peak log HIV RNA (copies/mL),
median [IQR]

39/105 5.78 [5.49, 5.88] 5.50 [4.95, 5.87] .002

Cumulative duration of ARVs, (years),
median [IQR]

39/105

ZDV 3.47 [0.92, 6.49] 3.31 [0.61, 7.85] .77
D4T 5.22 [1.46, 7.13] 5.64 [0.00, 8.62] .83
3TC 7.21 [3.98, 10.66] 6.32 [3.29, 9.89] .36
TDF 1.38 [0.00, 3.56] 0.00 [0.00, 1.83] .061

BMI z-score, median [IQR] 38/105 1.12 [0.57, 1.70] 0.09 [-0.57, 0.73] <.001
Waist-to-hip ratio, median [IQR] 35/101 0.90 [0.87, 0.97] 0.86 [0.83, 0.91] .002

aWilcoxon rank-sum test for continuous variables and Fisher’s exact test for categorical variables.
3TC, lamivudine; ARV, antiretrovirals; BMI, body mass index; D4T, stavudine; IQR, interquartile range; IR+, insulin-resistant case; IR-,

insulin-sensitive control; TDF, tenofovir disoproxil fumarate; ZDV, zidovudine.
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composition measures BMI z-score (1.12 vs. 0.09, p < .001)
and waist-to-hip ratio (0.90 vs. 0.86, p = .002) were higher in
cases than controls. The groups were similar on current use
and duration of ARVs with the exception of greater cumu-
lative duration of tenofovir disoproxil fumarate (TDF) use in
IR+ cases (median of 1.38 vs. 0.00 years, p = .061). Median
levels of Lac, Pyr, low-density lipoprotein (LDL), triglycer-
ides, cholesterol, glucose, and insulin were higher in IR+
cases than controls (Table 2).

In comparing the mitochondrial measures between cases
and controls (Table 3), there were no significant differences in
mtDNA copies/cell or any of the selected OXPHOS-related
mtRNA levels. However, enzymatic OXPHOS activity levels
of CI were lower in IR+ cases compared to IR- controls, but no
difference was noted in CIV enzyme activity

Across all samples, positive Spearman correlation coeffi-
cients were observed between levels of Lac and log10-
transformed values of the following: mtDNA (r = 0.18,
p = .037), CYTB (r = 0.22, p = .009), ND6 (r = 0.23, p = .008),
and ND1 (r = 0.25, p = .004). Lac/Pyr ratios positively cor-
related with log10 mtDNA copies/cell (r = 0.23, p = .007),
log10 ND1/L13 (r = 0.20, p = .018), and weakly with log10

ND6/L13 (r = 0.16, p = .070). HOMA-IR score was signifi-
cantly correlated with waist-to-hip ratio (r = 0.37, p < .001)
and BMI z-score (r = 0.47, p < .001). HOMA-IR also posi-
tively associated with fasting triglycerides (r = 0.31,
p < .001), and weakly with fasting total cholesterol (r = 0.16,
p = .06), and LDL (r = 0.15, p = .069). There was a weak in-
verse correlation of HOMA-IR score with log10 CI activity
(r = -0.16, p = .061), but a significant positive correlation
with peak HIV RNA load (r = 0.24, p = .003).

Further associations of early immunological and virolog-
ical indicators with MD measures are shown in Table 4. In
cases and controls combined, levels of both mtDNA cop-
ies/cell and ND1/L13 negatively correlated with both nadir
CD4 count and percentage (Table 4). No associations be-
tween current and peak HIV viral loads were observed with
any of the mitochondrial measures. Current CD4 counts did
not correlate with mitochondrial measures, but current CD4
percentage was negatively associated with log10 ND6/L13
(r = -0.18, p = .037) and positively associated with log10 CI
activity (r = 0.17, p = .048). Yet, no correlations were ob-
served between activity levels of either of the OXPHOS
complexes with mtRNA or mtDNA levels.

Univariable logistic regression analyses noted no effects of
specific ARV usage, age, sex, or race/ethnicity and were not
associated with IR status; however, there was 2.47 times
higher odds of IR (95% CIs = 0.88–6.95, p = .086) for Tanner
stage 4–5 group versus 2–3 group, and 2.66 times higher odds
of IR (95% CIs = 1.69–4.19, p < .001) with each one unit in-
crease in BMI z-score. With each one unit increase in ND6/
L13 ratio, the OR of being IR+ versus IR- was 1.22 times
higher (95% CIs = 0.96–1.54, p = .099), and for log10 CI ac-
tivity it was 0.16 times lower (95% CIs = 0.02–1.31, p = .087),
both before adjusting models for sex, race/ethnicity, BMI
z-score, and Tanner stage. When log10 mtDNA copies/cell
count was divided into quartiles, the odds of being a case was
0.20 times lower in quartile 2 compared with quartile 1 (95%
CIs = 0.05–0.79; p = .022), before full adjustment. All these
relationships persisted after full adjustment, but p-values were
above p = .10 and thus did not reach threshold for reporting,
nor did other mitochondrial markers assessed herein. Current

Table 2. Metabolic Characteristics by Insulin Resistance Status

Characteristic N (IR+/IR-) IR+ IR- pa

Venous Lac (mmol/L), median [IQR] 37/103 1.25 [0.80, 1.70] 1.04 [0.78, 1.22] .021
Venous Pyr (mmol/L), median [IQR] 35/102 0.10 [0.07, 0.15] 0.08 [0.02, 0.11] .015
Lac to Pyr ratios, median [IQR] 34/103 11.43 [9.22, 17.33] 14.04 [9.60, 32.25] .36
Fasting LDL, median [IQR] (mg/dL) 38/101 89.50 [69.00, 123.00] 85.00 [66.00, 106.00] .088
Fasting HDL, median [IQR] 38/101 44.50 [41.00, 56.00] 48.00 [41.00, 58.00] .47
Fasting triglycerides, median [IQR] (mg/dL) 38/102 105.50 [82.00, 139.00] 81.00 [58.00, 103.00] <.001
Fasting total cholesterol, median [IQR] (mg/dL) 38/102 165.50 [142.00, 193.00] 150.50 [129.00, 179.00] .035
Fasting glucose (mg/dL) 39/105 89.00 [84.00, 93.00] 84.00 [81.00, 89.00] .002
Fasting insulin (pU/mL) 39/105 25.20 [22.40, 33.50] 10.90 [8.00, 14.50] <.001
HOMA-IR 39/105 5.55 [4.77, 7.69] 2.36 [1.58, 304] <.001

aWilcoxon Rank Sum test.
HDL, high-density lipoprotein; HOMA-IR, Homeostatic Model Assessment of insulin resistance; Lac, lactate; LDL, low-density

lipoprotein; Pyr, pyruvate.

Table 3. Mitochondrial Characteristics by Insulin Resistance Status

Characteristic N (IR+/IR-) IR+ IR- pa

Log10 mtDNA (copies/cell), median [IQR] 39/105 2.16 [1.98, 2.27] 2.11 [2.01, 2.24] .67
Log10 ND1/L13, median [IQR] 36/105 0.64 [0.56, 0.79] 0.66 [0.52, 0.87] .98
Log10 ND6/L13, median [IQR] 36/105 0.25 [0.15, 0.40] 0.24 [0.12, 0.41] .66
Log10 CYTB/L13, median [IQR] 36/105 0.57 [0.46, 0.71] 0.60 [0.46, 0.78] .86
Log10 CI activity, median [IQR] 39/104 1.62 [1.48, 1.72] 1.70 [1.55, 1.79] .057
Log10 CIV activity, median [IQR] 39/104 1.90 [1.60, 2.09] 1.88 [1.76, 1.94] .32

aWilcoxon Rank Sum test.
CI, Complex I; CIV, Complex IV; CYTB, cytochrome B; L13, large ribosomal subunit 13; mtDNA, mitochondrial DNA; ND, NADH

dehydrogenase.
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values for CD4 and HIV viral load were not asFsociated with a
higher OR of IR before or after adjustment, but nadir CD4
count/percentage and peak HIV RNA load were associated
with lower and higher odds of IR, respectively, both in un-
adjusted and adjusted models (Table 5).

Discussion

Our study lends further support to past observations sug-
gesting traditional morphometric measures, that is, BMI
z-scores and waist-to-hip ratios, and venous Lac and Pyr
concentrations as indicators of IR incidence. We interpret our
data to suggest that there may be links between initial im-
munovirologic responses, current mitochondrial function,
and IR in youth living with perinatally acquired HIV, beyond
the standard associations of body composition and metabolite
presentations. Specifically, we observed odds risk elevation
for IR with higher mitochondrial RNA transcripts, with lower
OXPHOS enzymatic activity, and with lower mitochondrial
DNA copy numbers. Furthermore, measures of mitochondrial
RNA and DNA correlated with nadir CD4 values, which
themselves impacted odds risk for IR case diagnosis. Finally,
peak HIV RNA load was itself linked to elevated odds risk
for IR case diagnosis. Taken together, we suggest that ear-
lier interventions may assist in alleviating cardiometabolic
complications.

Understanding how obesity, IR, T2D, and cardiovascular
disease progression evolves is still poorly understood in
YLPHIV. This cardiometabolic cascade has, however, been
consistently linked to inflammatory processes in the general
population,34,35 as well as in adults living with HIV.36,37 The

influence of immune cell cross talk with adipocytes is known
to impact obesity and metabolic dysfunction,38–42 with in-
creasing evidence that immune cell mitochondrial function
determines both the inflammatory properties14,17,19 and the
composition of surviving PBMC subsets in adults living with
HIV.20,21,43 Recent studies by our group, of adults living with
HIV, highlight that there is a positive correlation between
PBMC levels of OXPHOS subunit proteins with those in
adipose tissue28; that intracellular ATP levels strongly cor-
relate between the adipocyte and the immune cell-containing
preadipocyte fractions of subcutaneous fat, that these ATP
levels change after initial HIV infection and after develop-
ment of lipoatrophy33; and that activity levels of OXPHOS CI
and CIV in adipose tissue inversely correlate with HOMA-IR
score.29 Thus, changes in the metabolic function of PBMCs,
such as those measured here, may act as systemic indicators
of MD and inflammation, which are involved in adipose
tissue homeostasis.

In our study, a trend toward lower OXPHOS CI activity
was found in PBMCs of YLPHIV displaying IR, and IR
moderately associated with lower CI activity in logistic re-
gression models before full adjustment. Intriguingly, CI ac-
tivity weakly, but positively, correlated with current CD4
percentage, while ND6 mtRNA levels inversely associated
with current CD4 percentage. Slight associations of ND6
mtRNA measures and quartile ranges of mtDNA with IR risk
were observed in regression models, but lost significance
after full adjustment. Combined, these observations may lend
support to the hypothesis of a compensatory response by CI
activity to higher sustained insulin levels put forth previ-
ously.25 However, a more likely alternative is that these ob-
servations simply reflect the compositional changes that
activated and/or Glut1+ CD4+ T cell subsets comprise in
total PBMCs,44 indicative of the glycolytic shifts observed
following HIV infection18 and in HIV noncontrollers.21

Thus, possessing OXPHOS-centric CD4+ T cells may relate
to euglycemia after HIV infection.

Nadir CD4 values inversely correlated with mtDNA and
ND1 mtRNA levels in our study, and had significant, al-
though minimal, associations with IR status. One recent study
of the AMP cohort found an increased mean incidence of IR
compared to a past study of AMP participants, with no as-
sociations found with CD4 or viral load measures, but there
was concern for drawing comparisons due to confounding
effects of Tanner stage upon metabolism.24 A separate study
of AMP participants also found associations of nadir CD4
percentages with IR,26 although in an opposite direction to
our observation, thus highlighting the need for longitudinal
assessments. Interestingly, a loss of CD4+ T cells that home

Table 4. Spearman Correlations of Nadir CD4
Values or Peak HIV RNA Load with Markers

of Mitochondrial Function

Nadir CD4
count

Nadir CD4
percent

Peak
log HIV

RNA load

q p q p q p

Log10 mtDNA
copies

-0.234 .005 -0.261 .002 0.027 .75

Log10 ND1/L13 -0.167 .048 -0.159 .060 0.058 .50
Log10 ND6/L13 -0.129 .13 -0.104 .22 -0.028 .73
Log10 CYTB/L13 -0.092 .28 -0.056 .51 0.006 .95
Log10 CI activity 0.044 .58 0.061 .47 0.042 .62
Log10 CIV

activity
0.073 .38 0.114 .18 0.018 .83

Table 5. Unadjusted and Adjusted Odds Ratios Assessing the Associations of Nadir CD4
Values or Peak HIV RNA Load with Insulin Resistance Status (n = 143)

Predictor of interest

Unadjusted Adjusteda

OR 95% CIs p OR 95% CIs p

Nadir CD4 (100 cells/mm3) 0.84 0.70–1.00 .056 0.81 0.65–1.00 .055
Nadir CD4 percent (%) 0.96 0.92–1.00 .058 0.95 0.90–1.00 .043
Peak log HIV RNA (copies/mL) 3.45 1.53–7.78 .003 4.28 1.70–10.79 .002

aAll models adjusted for sex, race/ethnicity, BMI z-score, and Tanner stage.
CIs, confidence intervals; OR, odds ratio.
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to the gut and provide protection against microbial translo-
cation has been shown in those living with HIV,45 and low
nadir CD4 values in youth and adults living with HIV asso-
ciate with higher levels of gut dysbiosis,46,47 which is further
linked to circulating inflammatory markers,48,49 obesity, IR,
and T2D.50–52 Ugandan YLPHIV showed higher incidence
rates of IR while on certain therapy regimens after 48 weeks,
and HOMA-IR score associated with soluble CD163,53

which itself has been shown to be released by adipose tissue
in response to microbial products54 and to be related to in-
sulin sensitivity.55,56 Together, these studies indicate that
maintenance of immune cells responsible for controlling both
HIV and microbial infections may be linked to IR incidence.

HIV viral load is associated with greater endothelial dys-
function and inflammatory markers in PHACS participants,23

with the extent of immunological and microbiological dys-
biosis in the gut of adults living with HIV,57,58 and, in gen-
eral, has been a good indicator of disease progression.59,60

Our data showed no difference in current HIV RNA loads;
however, peak detected values, taken from medical histories,
were significantly linked with IR in both unadjusted and
adjusted models. Viral load has been further associated with
metabolic syndrome,61 hypertriglyceridemia,62 and glyco-
sylated hemoglobin A1c level,63 an indicator of blood glu-
cose control; however, not all studies show a relationship
between viral load and HOMA scores,64 indicating that future
studies are needed in this arena.

A notable strength of our study was the ability to include
data from a large number of YLPHIV from multiple centers.
Although IR is prevalent in our population, very few YL-
PHIV have developed frank T2D and, therefore, the ability to
evaluate MD in this setting has been limited. Due to the cross-
sectional nature of our study here, directionality of associa-
tions is uncertain. Longitudinal follow-up of the participants
in this cohort with serial evaluation of mitochondrial mea-
sures will reveal the relationships between trajectories of
such changes and the progression to T2D. These studies will
also help to correct for the effects of Tanner stage, which may
have had some contribution here, but were adjusted for in our
models. Future longitudinal studies would also benefit by
closely monitoring immunologic responses to both HIV and
microbial translocation to assess gut dysbiosis, with pro-
phylactic prevention of inflammation via antibiotic admin-
istration becoming a thought-provoking intervention strategy
in those at higher risk.65 Finally, ARV usages and durations
did not have an effect on IR and MD in YLPHIV. There was a
trend of increased duration of TDF usage in the IR+ com-
pared to IR-. TDF has been associated with renal or adipose
MD in adults living with HIV.66–68 Future studies are needed
to evaluate TDF in YLPHIV and IR.

While our hypothesis that measures associated with MD
would be different in PBMCs from YLPHIV displaying IR
was not fully corroborated, novel observations in this study
add to our understanding of IR progression in these youth at
high risk of cardiometabolic dysfunction. Specifically, we
observed trends in PBMC CI activity and nadir CD4 values to
be inversely associated with IR; and for venous metabolite,
ND6 mtRNA, and peak HIV RNA levels to be positively
associated with IR in YLPHIV. Furthermore, Lac levels
significantly correlated to mtDNA and mtRNA copy num-
bers, while current CD4 percentage inversely associated with
ND6 mtRNA, but positively with CI activity. Together, we

interpret these data to suggest that IR in YLPHIV is linked to
mitochondrial, immunologic, and virologic factors, and
warrant further studies to assess importance of changes in
mitochondrial function in PBMCs as predictors for IR and
T2D susceptibility.
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