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Abstract

Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition 

syndromes in humans. Mutant NF1 results in dysregulated RAS allowing neoplasms throughout 

the neuroaxis. Plexiform neurofibromas (pNFs) afflict up to 50% of patients with NF1. They are 

complex tumors of the peripheral nerve that cause major morbidity via nerve dysregulation and 

mortality via conversion to malignant sarcoma. Genetically engineered mouse models (GEMMs) 

of NF1 provide valuable insights for the identification of therapies that have utility in people with 

pNF. Preclinical studies in GEMMs implicate mast cells and the c-Kit/Kit ligand pathway in pNF 

tumorigenesis. Kit ligand is a potent chemokine secreted by tumorigenic, Nf1-deficient Schwann 

cells. Ketotifen is an FDA-approved drug for the treatment of allergic conjunctivitis and asthma 

that promotes mast cell stabilization and has been used in prior case studies to treat or prevent 

pNFs. This study investigated the effect of ketotifen on mast cell infiltration and degranulation in 
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the presence and absence of Kit ligand provocation and the effect of ketotifen on shrinking or 

preventing pNF formation in the Nf1flox/flox;PostnCre+ GEMM. Ketotifen decreased mast cell 

infiltration in response to exogenous Kit ligand administration, but did not affect mast cell 

degranulation. Importantly, ketotifen did not reduce mast cells numbers or activity in pNF and did 

not prevent pNF formation or decrease the volume of established pNF despite administration of 

pharmacologically active doses. These findings suggest ketotifen has limited use as monotherapy 

to prevent or reduce pNF burden in the setting of Nf1 mutations.
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INTRODUCTION

Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome 

with a prevalence of 1 in 2,600 to 3,000 across all populations of the world (1,2). NF1 

syndrome is caused by mutations of the NF1 tumor suppressor gene encoding the protein 

neurofibromin, which functions as a GTPase activating protein for p21 Ras. Loss of both 

alleles of NF1 in the tumor-initiating cells results in constitutive activation of Ras and its 

downstream effectors, ultimately leading to tumor formation. Nf1 is the murine homologue 

of the human NF1. It is highly conserved both structurally and in biochemical and cellular 

function across species.

Plexiform neurofibromas (pNFs) are a hallmark manifestation of NF1. These multicellular 

tumors arise from peripheral nerves and afflict approximately 50% of patients with NF1 

(3,4). pNFs frequently result in debilitating disfigurement, organ dysfunction (3–6), 

neurologic dysfunction (7,8), chronic pain (9), and have a propensity for malignant 

conversion (1,2,10). Further, pNFs are resistant to many targeted and standard 

chemotherapies and, due to their intercalation within nerves, cannot be completely removed 

without sacrificing functioning nerve (11–14). pNF consist of a mixture of Schwann cells, 

fibroblasts, endothelial cells, and inflammatory mast cells (15–19). NF1 (Nf1) deficient 

Schwann cells are the established tumorigenic cell of origin for pNF formation (16,19). 

However, detailed serial dissection studies show that mast cells are the first 

microenvironment cell drawn to the tumorigenic nidus (15,17,18,20). Further, genetic and 

adoptive transfer studies in genetically engineered mice show that tumorigenic initiation is 

dependent on c-Kit/Kit ligand, the key chemokine and growth factor for all aspects of mast 

cell development and function (15,17,18). Nf1-deficient Schwann cells secrete 

pathologically elevated levels of Kit ligand (17,20,21). Thus, through Nf1-deficient 

Schwann cell-mediated Kit ligand secretion, mast cells are recruited to the site of the 

tumorigenic nidus where they release multiple cytokines and matrix metalloproteinases that 

promote neoangiogenesis, fibroblast recruitment, and collagen deposition (15,17,18,20–23).

Our group has shown that targeting c-Kit/Kit ligand with imatinib mesylate leads to 

significant reduction in pNF size in preclinical models of pNF and that imatinib had similar 

activity in humans; particularly young children with NF1 associated pNF (18,22–24).
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Ketotifen is a mast cell stabilizer and noncompetitive H1-antihistamine approved for the 

treatment of asthma and allergic conjunctivitis that is well tolerated and inexpensive. Small, 

non-randomized human trials dating to the 1980s have evaluated ketotifen in people with 

NF1 based on the rationale of mast cell stabilization (25–27). These studies reported 

subjective activity of ketotifen with the largest study being a combination of a controlled 

study and an observations study of 52 patients given 2–4 mg ketotifen per day for up to 78 

months and the endpoint being patient reports of benefit based on recall (26). No formal 

measurements of tumor growth or tumor reduction were obtained in these studies (25–27). 

Although the data reported are limited in nature, they suggest that pharmacologic mast cell 

stabilization with ketotifen may have therapeutic benefit for people with NF1 associated 

neurofibromas. Given the safety profile of ketotifen in patients treated for asthma, validation 

of its efficacy in tumor reduction or prevention is of great value to the NF1 patient 

community.

A limitation in the use of effective therapies for many pediatric orphan disease cancers is the 

availability of adequate patient populations to formally test drug efficacy. The development 

of genetically engineered mouse models (GEMM) that closely recapitulate the 

developmental pathogenesis of human tumors provides an opportunity to test therapies in 

preclinical models in a way that was not available previously (28). There are now multiple 

instances where preclinical studies in Nf1 GEMMs have led to the identification of drugs 

that are active in patients (24,28,29). Importantly, studying GEMMs provides the 

opportunity to critically examine the mechanism of action of small molecules and ensure 

adequate pharmacokinetics (PK) are achieved before assessing efficacy endpoints.

The aim of this study was to investigate the efficacy and mechanism of action of ketotifen in 

the treatment of NF1-associated pNF. The primary objective was to determine whether 

ketotifen monotherapy is sufficient to reduce or prevent pNF formation in a highly validated 

GEMM of pN (18,24). In addition, given ketotifen’s hypothesized role in ameliorating or 

preventing pNF formation via stabilization of the mast cell, we conducted a series of 

experiments to test whether ketotifen effectively prevents mast cell recruitment and 

degranulation in response to Kit ligand stimulation in this model (30,31).

METHODS AND MATERIALS

Study approval

The animal protocol #10932 was approved by the Institutional Animal Care and Use 

Committee of Indiana University School of Medicine and all studies were carried out 

accordingly.

Animals, kit ligand, and ketotifen administration

The Nf1flox/flox;PostnCre+ mice were developed and bred by the Clapp Laboratory utilizing 

tools reported previously (18). Tumor formation is driven by the early embryonic conditional 

deletion of Nf1 in Schwann cell progenitors via the Periostin (Postn) promoter and Cre 

recombinase enzyme (32,33). Nf1flox/flox;PostnCre+ mice develop neurofibromas with 

complete penetrance that are measureable at roughly four months of age. Ketotifen fumarate 
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was purchased from Sigma-Aldrich. In the prevention and intervention therapeutic studies, 

ketotifen 1 mg/mL was prepared in ddH2O and administered via oral gavage at 10 mg/kg 

once daily seven days/week. Vehicle-treated Nf1flox/flox;PostnCre+ mice were administered 

0.1 mg/day water via oral gavage. The control and treatment cohorts of mice were weighed 

daily to determine the safety and tolerability of ketotifen throughout the duration of the 

treatment period. Following 12 weeks of treatment, mice in the prevention study (water/

vehicle-treated n = 6, ketotifen-treated n = 6) were sacrificed at four months of age (Figure 

1A) and mice in the tumor treatment study (water/vehicle-treated n = 15, ketotifen-treated n 

= 14) were sacrificed at seven months of age (Figure 2A).

To determine if ketotifen had an in vivo effect on mast cell infiltration and degranulation, 

four-month old Nf1+/− mice were administered subcutaneous Kit Ligand as previously 

described (34). Briefly, Nf1+/− mice were pre-treated with 10 mg/kg/d of ketotifen or 10 

mg/kg/d of water administered via oral gavage from days zero-seven. On day seven, a mid-

dorsum micro-osmotic pump was implanted and the mice received a continuous infusion of 

20 μg/kg/d Kit ligand or control PBS, as previously described (34). Oral ketotifen treatment 

or water was continued throughout days 7–14. On day 14, skin biopsies near the site of the 

micro-osmotic pump were harvested and stained with toluidine blue for quantification of 

mast cell infiltration and degranulation (Figure 3A).

Quantification of ketotifen

Ketotifen was quantified in plasma and nerve tissue samples from ketotifen-treated 

Nf1flox/flox;PostnCre+ mice (n = 3) by HPLC-MS/MS (Agilent 1200 HPLC and ABI 3200 

MS/MS) (35). The animals received a single dose of 10 mg/kg ketotifen. Plasma samples 

were obtained at one, two, four, eight and 24 hours post-ketotifen dose. Tissue samples from 

sciatic, brachial and trigeminal nerve were obtained at four and 24 hours post-ketotifen dose. 

A method to quantify ketotifen in plasma was developed using temazepam as the internal 

standard, liquid- liquid extraction, and HPLC-MS/MS. Variability was minimized in the 

method by using methyl tert-butyl ether instead of ethyl acetate, dichloroethane, or 

hexane:ethyl acetate as the solvent and polypropylene tubes instead of glass tubes. The 

mobile phase uses formic acid instead of ammonium acetate. The lower limit of 

quantification is one ng/mL using 20 μL of plasma. A set of eight standards were run for 

each batch of plasma or tissue samples.

Nerve/Tumor volume quantitation

Following microscopic dissection of the spinal proximal nerves, nerve volume was measured 

by calipers and calculated by the established approximation for the volume of a spheroid, 

0.52 × (width)2 × length. Four proximal nerves per mouse were measured as previously 

described (18).

Histology and immunohistochemistry

To examine tumor morphology and the extent of mast cell infiltration, spinal proximal 

nerves and peripheral nerves were dissected from 4–7 month old Nf1flox/flox;PostnCre+ 
mice, fixed in 10% formalin, processed through graded alcohols, xylenes and molten 

paraffin, embedded in paraffin, and subsequently sectioned and stained with hematoxylin 
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and eosin (H&E), toluidine blue (to identify mast cells) and Masson’s trichrome stain for 

collagen and tumor quantification.

DATA ANALYSIS

Statistical methods

GraphPad Prism 5.0 and 6.0 was used to perform all statistical analyses. Comparison of the 

means for nerve root volume, tumor number, KI-67 proliferation index, number of 

infiltrating mast cells, number of degranulating mast cells, and percentage of degranulating 

mast cells was performed using the two-tailed, unpaired Student’s t test and one-way 

analysis of variance (ANOVA) with Tukey’s test post-hoc analysis. P-values of < 0.05 were 

considered statistically significant for all tests.

Pharmacokinetic data analysis

Pharmacokinetic parameters for ketotifen including area under the curve (AUC) and t½ were 

estimated using noncompartmental methods with add-ins in Excel®. The maximum plasma 

concentration (Cmax) was obtained from the data. The AUC from zero to infinity (AUC0−∞) 

was estimated from the AUC0-t (time zero to the last quantifiable concentration Clast) and the 

AUC from Clast to infinity, Clast/kel, where kel is the rate constant of elimination.

IMAGE ANALYSIS

Toluidine blue is a histological stain specific for mast cells. To avoid user bias, toluidine 

blue-stained histological images were scanned in on a Leica ScanScope and HALO software 

v2.0.1038 was used for image analysis in scoring total and degranulating mast cells. The 

Cytonuclear algorithm was used to quantify mast cells in the skin. Using a toluidine blue 

stain, the Cytonuclear algorithm uses a dark blue positive stain (0.992, 0.65558, 0.219 RGB 

OD) against a light blue (1.176, 1.260, 0.621 RGB OD) background. The intensity threshold 

was narrowed from the standard immunostain algorithm of 0.112, 0.287, 0.445 (weak, 

moderate, strong) to 0.300, 0.340, 0.355 (weak, moderate, strong). Two sets of analyses 

were run, only altering the minimum nuclear roundness parameter between the two analyses. 

The first run is a minimum nuclear roundness of 0.0 to include all mast cells. Then the 

minimum nuclear roundness was raised to 0.6 and reanalyzed to quantify mast cells that 

were not degranulating. The difference between the total and the non-degranulating 

population was determined to be the total degranulating population.

RESULTS

Ketotifen does not prevent neurofibroma genesis in Nf1flox/flox;PostnCre+ mice

A major goal for genetic tumor predisposition syndromes like NF1 is the prevention of 

tumor formation. Given the high therapeutic index of ketotifen and the mechanistic link 

between mast cells, c-Kit/Kit ligand, and pNF formation we hypothesized ketotifen may 

prevent or alter the latency of tumorigenesis. Nf1flox/flox;PostnCre+ mice begin to acquire 

Schwann cell hyperplasia at approximately 4–6 weeks of age prior to the formation of 

multiple pNFs. To test our hypothesis, we employed the experimental design outlined in 
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Figure 1A. Nf1flox/flox;PostnCre+ mice (n = 6) were treated with 10 mg/kg of ketotifen from 

5–6 weeks post-natal, prior to the genesis of pNFs, until four months of age when they were 

sacrificed. At necropsy, there was no difference in nerve hyperplasia between the treatment 

and water/vehicle-treated Nf1flox/flox;PostnCre+ mice (Figure 1B, ns). Further, microscopic 

evaluation revealed that ketotifen treatment did not reduce the number of mast cells 

infiltrating nerve tissue (Figure 1C and 1D, ns) nor did it reduce the percentage of 

degranulating mast cells (Figure 1C and 1E, ns).

Ketotifen does not reduce proximal nerve root volume or tumor number in 
Nf1flox/flox;PostnCre+ mice

Nf1flox/flox;PostnCre+ mice uniformly acquire multiple pNFs by four months of age. To 

model the treatment of human pNF-harboring NF1, we followed the experimental design 

outlined in Figure 2A. Nf1flox/flox;PostnCre+ mice were treated from four to seven months 

of age to assess the impact of ketotifen on established tumors. There was no statistical 

difference in proximal nerve root volume (Figure 2B, ns) or tumor number (Figure 2C, ns) 

between ketotifen (n = 14) and water/vehicle-treated (n = 14) Nf1flox/flox;PostnCre+ groups. 

Tumor number ranged from 0–22 in water/vehicle-treated Nf1flox/flox;PostnCre+ mice and 

0–20 in the ketotifen-treated Nf1flox/flox;PostnCre+ mice at seven months. Both ketotifen 

and water/vehicle-treated Nf1flox/flox;PostnCre+ mice demonstrated a significantly greater 

proximal nerve root volume compared to historic age, sex and strain-related 

Nf1flox/flox;PostnCre- WT mice that did not develop tumors (Figure 2B and 2C). Further, 

microscopic evidence revealed no significant difference in the quantity of mast cells 

infiltrating peripheral nerve tumor tissue in ketotifen-treated mice compared to mice 

receiving water vehicle (Figure 2D and 2E). Finally, ketotifen treatment failed to reduce the 

percentage of degranulating mast cells when compared to water/vehicle-treated mice (Figure 

2D and 2F).

Effect of Kit ligand and ketotifen, alone or in combination, on mast cell infiltration and 
degranulation in skin

Prior work in genetically engineered mice established that the c-Kit/Kit ligand pathway is 

central in pNF tumor initiation (18,20–22). This work has been replicated using a variety of 

Cre drivers with similar results (unpublished data, WC, SC and WB ). Given that c-Kit 

impacts the development, migration, proliferation, and degranulation of mast cells in vitro 
and in vivo we assessed the impact of ketotifen on preventing mast cell infiltration and 

degranulation following a Kit ligand infusion using an established protocol (17,20,34–37). 

Consistent with the previous studies, Kit ligand infusion revealed a statistically significant 

increase in mast cell infiltrate (Figure 3C and 3D, P < 0.0001). Kit ligand infusion had no 

impact on the percentage of degranulating mast cells relative to PBS infusion (Figure 3E, P 
> 0.05). We then evaluated the effect of ketotifen on mast cell infiltration and degranulation 

in the presence and absence of Kit ligand infusion. In mice receiving Kit ligand infusion, 

ketotifen treatment decreased the number of infiltrating mast cells when compared with 

water treatment (Figure 3D, P < 0.0001). However, ketotifen treatment failed to induce a 

significant decrease in the percentage of degranulating mast cells (Figure 3E, ns) in mice 

receiving the Kit ligand infusion. These results indicate that ketotifen is not effective in 

inhibiting all Kit ligand-mediated mast cell functions in Nf1+/− mice, including the 
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inhibition of Kit-mediated mast cell degranulation, at least at pharmacologic concentrations 

utilized in these experiments.

Pharmacokinetics of ketotifen in Nf1-deficient mice

After a single dose of ketotifen at 10 mg/kg in Nf1flox/flox;PostnCre+ tumor-bearing mice, 

the maximum plasma concentration was 40 ng/mL, AUC0−∞ 119 ng/mL·h, and t½ 29.9 

hours (Figure 4A, n = 3 at each time point). These data are slightly greater than the values 

estimated in humans (35).The concentration of ketotifen in sciatic, brachial, and trigeminal 

nerve tissue was also measured at four and 24 hours after a single dose of ketotifen 10 

mg/kg (n = 6) to confirm that the drug reached the site of tumor initiation. At four hours, the 

mean concentration of ketotifen in all nerves measured was 14.56 ng/g of nerve tissue 

(Figure 4B), while at 24 hours the concentration of ketotifen in all nerve tissue samples was 

below the level of quantification (data not shown).

Safety and Tolerability

The tolerability of ketotifen in Nf1flox/flox;PostnCre+ mice was measured with daily weights 

throughout the 12-week treatment period of established tumors. There was no significant 

difference between the vehicle-treated (n = 15) versus ketotifen-treated (n = 14) cohorts in 

weight.

DISCUSSION

Neurofibromas are the hallmark tumor of the NF1 syndrome. pNFs start very early in life 

(many are thought to be congenital) and grow rapidly through early childhood resulting in 

nerve sheath tumors that cause pain, neurologic dysfunction, disfigurement and roughly 10% 

of the time convert to the highly aggressive sarcoma, malignant peripheral nerve sheath 

tumor (1–3,5–10). Given their prevalence and the lack of effective therapies to prevent or 

reduce the impact of these tumors, major efforts from multiple laboratories are being 

pursued to reduce the size and morbidity associated with these tumors (28). The drugs being 

utilized currently in preclinical models and in clinical trials are overwhelmingly small-

molecule targeted therapies (28). While some of these therapies show significant promise, 

there are common, on-target adverse effects that limit their use. For example, though overall 

largely well-tolerated, both imatinib mesylate and selumetinib caused a variety of symptoms 

including gastrointestinal reactions, edema, muscle cramps, fatigue and acneiform rash that 

limit their long term tolerability (24,29,38,39). Further, the cost of these novel drugs could 

be substantial and long-term safety is unknown. Thus, the hypothesis that a drug like 

ketotifen which has a high therapeutic index, is low cost and shown to be safe for long term 

use with a hint of clinical activity in prior studies provided the rationale for formal testing in 

a preclinical model of NF1 pNF.

Specifically, the clinical studies using ketotifen in patients with NF1 conducted in the 1980s 

and 1990s preceded the current understanding of the cellular and molecular pathways 

underlying the genesis of pNFs and hence, mechanism was not examined. In addition, the 

prior clinical studies with ketotifen used efficacy evaluations that are outside of the 

recommended endpoints for pNF in the modern era (40–42). Hence, the community is left 
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with reports of symptomatic improvement with non-validated measures and an interesting 

hypothesis about the biologic effect of ketotifen on pNF without evidence of mechanism. 

Given this conundrum, we conducted a formal preclinical study to evaluate the PK, 

mechanism of action and efficacy of ketotifen in a manner similar to preclinical studies 

pursued with imatinib mesylate and selumetinib prior to clinical use (17,29).

We found that maximum drug concentrations in both plasma (40 ng/mL) and target tissue 

sites (14.56 ng/g) including sciatic, brachial and trigeminal nerve with 10 mg/kg ketotifen 

were significantly greater than the levels achieved in published human plasma PK studies (2 

mg/kg, Cmax 449 pg/mL) even after adjusting for the dose administered, and had a t½ (29.9 

hrs) significantly longer than that previously reported in the plasma of human patients (4.4 

hrs) (Figure 4A–B) (35). There is no published human tissue PK for ketotifen. Thus, we 

conclude that both systemic and tissue-specific drug concentrations were sufficient to 

achieve biologic effects.

Regrettably, we found ketotifen did not alter tumor burden when treatment was started after 

tumor formation in Nf1flox/flox;PostnCre+ mice (Figure 2B and 2C). This is consistent with 

case series reporting that ketotifen had no effect on established tumors in adults with NF1 

(43).

NF1 is characterized by rapid growth of pNFs beginning in infancy and throughout 

childhood (8,44,45). Therefore, the identification of a drug that prevents early tumor 

initiation and progression would have great therapeutic value. Based on prior unpublished 

studies in our laboratory, we have demonstrated that Nf1flox/flox;PostnCre+ mice acquire 

Schwann cell hyperplasia at approximately four to six weeks of age and acquire multiple 

pNFs by four months of age (S.D. Rhodes, unpublished data). In order to model a pNF 

prevention therapeutic strategy in mice, Nf1flox/flox;PostnCre+ mice were treated from five 

or six weeks of age until four months of age with ketotifen (Figure 1A). Again, at the 

conclusion of the 12-week treatment period, there was no difference in proximal nerve root 

volume or mast cell infiltration between vehicle and ketotifen-treated cohorts of 

Nf1flox/flox;PostnCre+ mice (Figure 1B–E).

The interaction between Schwann cells, the established tumorigenic cell in pNF, and the 

tumor microenvironment has been demonstrated in multiple GEMMs (17,18,20,21). Kit 

ligand is one key mediator of tumor initiation and progression (17,20–23). The exact 

mechanism by which c-Kit+ positive cells, such as mast cells, function to induce tumor 

development in response to Kit stimulation remains incompletely understood. However, 

prior work by our laboratory established that Kit ligand secreted at pathologically elevated 

levels by Nf1-deficient Schwann cells promotes multiple aspects of mast cell development 

and function including migration, proliferation, survival, degranulation, and secretion of de 
novo synthesized cytokines independent of pre-stored granules (17,20–23). The pre-stored 

and de novo synthesized biologically active products released by mast cells (matrix 

metalloproteinases, angiogenin, βFGF, MCP-1, VEGF and IL-8) play essential roles in 

tumor biology by promoting angiogenesis, monocyte recruitment, and tissue remodeling 

(37,46). The present studies demonstrate that ketotifen fails to exert a meaningful impact in 
vivo on mast cell infiltration, degranulation, or on tumor development in both established 
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tumors and in a prevention model. Interestingly, a recent genetic study demonstrated that 

significant declines in Kit ligand and mast cell numbers in existing plexiform neurofibromas 

have minimal impact on tumor growth (47). It is possible that other infiltrating immune 

lineages, including macrophages, which are abundant constituents of the plexiform 

neurofibroma microenvironment may play a critical role in tumor progression. This concept 

warrants further investigation. Though we cannot exclude the potential of species-specific 

differences in pharmacologic activity, there has been high fidelity of this preclinical model 

and subsequent clinical trials using other targeted therapeutics, including with the 

modulation of the c-Kit pathway (18,24,28). Collectively, our data suggests that ketotifen 

fails to modulate mast cell infiltration or degranulation in pNF and is insufficient as 

monotherapy for the treatment and prevention of these tumors.
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Abbreviations key

NF1 Neurofibromatosis Type 1 (disease)

pNF plexiform neurofibroma

Nf1 Nf1 murine gene

GEMM genetically engineered mouse model

NF1 NF1 human gene

Postn Periostin

HPLC MS/MS High Performance Liquid Chromatograph Tandem Mass 

Spectrometry

N number (i.e. of animals)

Mg Milligram

Kg Kilogram

Ng Nanogram
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PBS phosphate buffered saline

AUC area under the curve

AUC0−∞, area under the curve from zero to infinity

RGB OD Red Green Blue Optical Density

mL Milliliter

H Hour

G Gram

Ns not significant

P p value

βFGF beta fibroblast growth factor

MCP monocyte chemoattractant protein

VEGF vascular endothelial growth factor

IL Interleukin

ddH2O sterile ultra pure water

μg Microgram

D Day

μL Microliter

t½ half-life

WT wild-type
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Figure 1. Ketotifen Treatment Fails to Prevent Neurofibroma Genesis in Nf1-deficient pups.
(A) Schematic of experimental design of tumor prevention study. (B) Proximal nerve 

volume in vehicle and ketotifen-treated Nf1flox/flox;PostnCre+ mice (P = 0.9012, ns). (C) 

Histological analysis of toluidine blue-stained nerve tissue from water/vehicle and ketotifen-

treated Nf1flox/flox;PostnCre+ mice. Images were obtained using a 40X objective lens. Black 

arrows point to representative infiltrating mast cells. Red arrows point to representative 

degranulating mast cells. (D) Quantitation of mast cell infiltration in water/vehicle- and 

ketotifen-treated Nf1flox/flox;PostnCre+ mice (P = 0.8295, ns). (E) Quantitation of the 
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percentage of degranulating mast cells in water/vehicle- and ketotifen-treated 

Nf1flox/flox;PostnCre+ mice (P = 0.5495, ns).
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Figure 2. Ketotifen Fails to Inhibit Established Neurofibroma Progression in Nf1-deficient Mice.
(A) Schematic of experimental design of established tumor regression study. (B) Proximal 

nerve root volume in water/vehicle and ketotifen-treated Nf1flox/flox;PostnCre+ mice (P > 

0.05, ns) and in WT Nf1flox/flox;PostnCre- mice (water/vehicle-treated vs WT P < 

0.0001****; ketotifen-treated vs. WT P < 0.0001****). (C) Quantitation of tumors in water/

vehicle and ketotifen-treated Nf1flox/flox;PostnCre+ mice (P > 0.05, ns) and in WT 

Nf1flox/flox;PostnCre- mice (water/vehicle-treated vs WT P = 0.0010**; ketotifen-treated vs. 

WT P = 0.0004***). (D) Histological analysis of toluidine blue-stained tumor tissue from 
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water/vehicle- and ketotifen-treated Nf1flox/flox;PostnCre+ mice. Images were obtained 

using a 40X objective lens. Black arrows point to representative infiltrating mast cells. Red 

arrows point to representative degranulating mast cells. (E) Quantitation of mast cell 

infiltration in water/vehicle- and ketotifen-treated Nf1flox/flox;PostnCre+ mice (P = 0.0821, 

ns). (F) Quantitation of the percentage of degranulating mast cells in water/vehicle and 

ketotifen-treated Nf1flox/flox;PostnCre+ mice (P = 0.5686, ns).
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Figure 3. Effect of Ketotifen on Kit-mediated Mast Cell Infiltration and Degranulation In Vivo.
(A) Schematic of experimental design in ketotifen-pretreated/treated Nf1+/− mice with 

continuous Kit ligand or PBS subcutaneous infusion. (B) Histological analysis 

demonstrating toluidine blue- stained intact versus degranulating mast cells in the skin 

following a 7 day Kit or PBS infusion. Image obtained using a 100X objective lens with oil. 

(C) Histological analysis of toluidine blue-stained skin biopsy of 20 μg/kg/d Kit ligand 

infusion-mediated and PBS infusion-mediated mast cell infiltration in ketotifen-treated and 

water/vehicle-treated 4-month old Nf1+/− mice. Images were obtained using a 40X objective 
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lens. Black arrows point to representative infiltrating mast cells. Red arrows point to 

representative degranulating mast cells. (D) Quantification of toluidine blue-stained skin 

biopsy of 20 μg/kg/d Kit ligand infusion-mediated and PBS infusion-mediated mast cell 

infiltration per high-powered field in ketotifen-treated and water vehicle 4-month old Nf1+/− 

mice (for PBS pump vs. Kit ligand pump, P < 0.0001****; for PBS pump vs. ketotifen-

treated PBS pump, P > 0.05, ns; for Kit ligand pump vs. ketotifen-treated Kit ligand pump, P 
<0.0001****). (E) Quantitation of toluidine blue-stained skin biopsy of 20 μg/kg/d Kit 

ligand infusion-mediated and PBS infusion-mediated absolute number degranulating mast 

cells per high-powered field (for PBS pump vs. Kit ligand pump, P > 0.05, ns; for PBS 

pump vs. ketotifen-treated PBS pump, P > 0.05, ns; for Kit ligand pump vs. ketotifen-treated 

Kit ligand pump, P > 0.05, ns).

Burks et al. Page 19

Mol Cancer Ther. Author manuscript; available in PMC 2020 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Pharmacokinetics, Safety and Tolerability of Ketotifen in Nf1-deficient Mice.
(A) HPLC-MS/MS analysis of drug concentration in the plasma of 3-month old 

Nf1flox/flox;PostnCre+ mice following a single dose of 10 mg/kg ketotifen. The plasma 

ketotifen concentration values over time are represented graphically. The error bars represent 

standard error of the mean. Key values from the pharmacokinetic data analysis are listed in 

in the table (n=3 mice per timepoint)(B). Tissue concentration was assessed at four and 24 

hours in sciatic brachial and trigeminal nerve tissue (N=6).
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