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During tissuemorphogenesis,mechanical forces are propagated across tissues,
resulting in tissue shape changes. These forces in turn can influence cell behav-
iour, leading to a feedback process that can be described as self-organizing.
Here, I discuss cytoskeletal self-organization and point to evidence that
suggests its role in directing force during morphogenesis. During Drosophila
mesoderm invagination, the shape of the region of cells that initiates constric-
tion creates a mechanical pattern that in turn aligns the cytoskeleton with the
axis of greatest resistance to contraction. The wild-type direction of the force
controls the shape and orientation of the invaginating mesoderm. Given
the ability of the actomyosin cytoskeleton to self-organize, these types of
feedback mechanisms are likely to play important roles in a range of different
morphogenetic events.

This article is part of the discussion meeting issue ‘Contemporary
morphogenesis’.
1. Introduction
One of the most intriguing features of a developing embryo is the extent towhich
its constituent components can self-organize to form structures. For the purpose
of my argument, I define self-organize as the components composing a system
(i.e. cells or molecular motors) organizing themselves into a pattern without
a clear template or scaffold. Self-organization has fascinated and mystified
biologists for at least half a century.

In developmental biology, one of the most impressive examples of self-
organization is cell sorting, where like cells separate from non-like cells. In
embryos, this phenomenon was characterized by Townes & Holtfreter in classic
reconstitution assays [1]. In these assays, the cells of a developing embryo were
dissociated, thoroughly mixed together in a random configuration, and allowed
to reassociate. The reassociating cells sorted into layers according to their original
fate and the authors used the term ‘tissue affinity’ to explain this sorting behav-
iour. Later it was shown that different adhesive interactions between cells or
even different levels of the same adhesive interaction could explain this behaviour
[2,3]. More recently, a variety of factors, such as cell cortical tension, hydrostatic
pressure, extracellular matrix and directed migration, have been shown to
influence cell sorting [4–8].

Proteins in cells are also capable of feats of self-organization. The cytoskeleton
exhibits a remarkable degree of self-organization. For example, themitotic spindle,
composed of microtubules, does not require any template or even a plasma mem-
brane to assemble. Bipolarmitotic spindles can self-assemble, through the action of
microtubule-based motors, around DNA-coated beads in mitotic extracts [9]. The
actin cytoskeleton also exhibits striking self-organization. Indeed, different types
of actin-based structures (i.e. branched networks and bundles) dynamically
respond to the underlying cell-substrate adhesive pattern and cell shape [10].
Modelling studies have illustrated how the collective behaviour of actin filaments
and myosin II motors can give rise to behaviours like stiffness sensing [11,12].
These studies showed that ‘stiffness sensing’, in theory, is an emergent property
of cytoskeletal dynamics without the need for signalling feedback. One question
that results from these examples is, can groups of cells harness this cytoskeletal
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self-organization to work collectively, such as in a tissue
undergoing morphogenesis?

Here, I synthesize works by my laboratory and others that
suggest a role for cytoskeletal self-organization in generating
a mechanical pattern during Drosophila gastrulation. This is
not meant to be a comprehensive review of Drosophila gastru-
lation, tissue morphogenesis or tissue mechanics, but I start
with a brief overview of Drosophila mesoderm invagination
for readers to understand the possible role of cytoskeletal
self-organization. For reviews on tissue morphogenesis and
mechanics, I recommend other excellent work [13,14]. For a
comprehensive review on mechanosensing, I recommend
the work of Hannezo & Heisenberg [15].
Phil.Trans.R.Soc.B
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2. The tissue-scale mechanics of Drosophila
mesoderm invagination

Gastrulation is the process by which a single-layered embryo
is converted into multiple germ layers, which are referred to
as the ectoderm, mesoderm and endoderm. The mesoderm
and the endoderm internalize from an outer layer and then
spread on the underside of the ectoderm. In Drosophila, meso-
derm cells internalize as a coherent sheet of cells that only
lose apical–basal polarity and dissociate after the cells have
internalized [16,17]. During Drosophila gastrulation, the pre-
sumptive mesoderm is initially located on the outside of
the ventral-most part of the embryo [18].

The Drosophila mesoderm is specified by transcription
factors (Twist, Snail and Dorsal), which are expressed or
most active in the presumptive mesoderm [19]. The nuclear
localization and activity of Dorsal (NF-κB) forms a gradient
with highest nuclear Dorsal in the ventral-most cells [20–22].
Dorsal in turn activates the expression of two other genes,
twist and snail, which regulate the expression of additional
genes [23]. It is this transcriptional patterning process that
specifies the mesoderm and sets the stage for subsequent
coordinated cell and tissue shape changes.

The mesoderm invaginates by folding to form a tube-like
structure [24,25]. Mesoderm invagination and other tissue
folding events are associated with a cell shape change called
apical constriction, which involves epithelial cells constricting
their apical (in this case outer) surface [26]. Apical constriction
initially results in a furrow that extends along the anterior–
posterior axis of the embryo, called the ventral furrow
[24,25]. However, when cells shorten along their apical–basal
axis to adopt a wedge-shaped morphology, the presumptive
mesoderm invaginates, resulting in an epithelial tube [27,28].
Several pieces of evidence argue that apical constriction is
important to drive furrow formation and invagination. First,
most of the mutants that disrupt mesoderm invagination
have at least some effect on apical constriction [29–33]. In
addition, optogenetic activation of apical myosin contractility
in an ectopic location can result in invagination, though the
shape does not necessarily resemble that of the invaginating
mesoderm [34].

In addition to apical constriction, it is clear that other
physical factors are important for Drosophila mesoderm
invagination. Apical constriction is initially associated with
basal-ward hydrodynamic flow and cell lengthening in the
apical–basal axis [35,36]. In silicomodels of invagination require
a force (i.e. stiffness) shortening the height between apical
and basal surfaces (i.e. lateral cell cortex tension) [28,37].
Experimentally, it has been shown that there is lateral cortex ten-
sion and that this is important for folding [38]. Apical–basal cell
shortening coincides with when myosin accumulation at the
basal ends of the mesoderm cells is reduced [28]. In addition,
experiments directed at misregulating basal myosin II showed
that basal relaxation is important for the final invagination [27].

During mesoderm invagination, there is a pattern of apical
constriction. Cells closest to the ventral midline constrict their
apices the most and there is a gradient of constriction along
the ventral–lateral axis [39] (figure 1b). This pattern of apical
constriction has been shown to result from a gradient in the
activity of transcription factors that specify the mesoderm
[40–42]. Live imaging of the transcriptional response of meso-
derm cells demonstrated that the transcription of a Twist target
gene (T48) starts at the ventral midline and progresses dorsally,
which leads to a gradient in accumulated T48 transcripts [42]
(figure 1a).

Because the T48 protein recruits a positive regulator of
contractility to the apical surface [33], graded T48 expression
leads to a gradient in apical myosin II levels [39–41]. This
apical recruitment of myosin II generates epithelial tension
across the tissue [43]. Tension is predominantly directed along
the anterior–posterior axis of the embryo (figure 1b). Because
tension is not equal in all directions, it is called anisotropic.
Anisotropic tension is associated with the formation of a supra-
cellular actomyosin network, which is integrated between cells
[43,44]. The resulting anisotropic tension influences cell and
tissue shape, apparently by limiting or constraining constriction
[45]. Higher anterior–posterior tension makes it harder for cells
to constrict (i.e. less compliant) along this axis. Thus, despite
their preference to constrict isotropically when separated from
the surrounding tissue,mesoderm cells in the intact embryo con-
strict anisotropically along the ventral–lateral axis [25,40]. This
directional constriction results in greater curvature along the
ventral–lateral axis rather than the anterior–posterior axis,
which results in a long, narrow furrow (figure 1b).
3. Cytoskeletal dynamics as an example of
self-organization at the cell level

Apical constriction of Drosophila mesoderm cells is driven by
discrete contractile events called actin and myosin II pulses
[46]. Actin and myosin II pulses were previously observed
in other organisms, such as the Caenorhabditis elegans zygote
[47]. The myosin II motor is a hexamer of two identical
heavy chains, two essential light chains and two regulatory
light chains that polymerizes into a bipolar filament in a
manner that depends on phosphorylation [48]. Actomyosin
pulses require turnover of themyosin IImotor (i.e. phosphoryl-
ation and dephosphorylation), suggesting that actomyosin
pulses involve cycles of activation and inactivation [49,50].
Indeed, quantitative imaging with single molecule resolution
revealed that myosin pulses in C. elegans exhibit net myosin
II assembly and then disassembly [51].

Pulsing in many systems also requires the dynamic regu-
lation of the small GTPase RhoA, which regulates myosin II
phosphorylation through its effector, Rho-kinase [52]. In the
Drosophila mesoderm, the RhoGAP, Cumberland-GAP (also
known as RhoGAP71E) is required for actomyosin pulsing
[53]. Cumberland-GAP is also required for actomyosin
dynamics associated with secretory vesicle release in the Droso-
phila salivary glands [54]. In the C. elegans zygote, the Rho
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Figure 1. The mechanical pattern and pattern of apical constriction during mesoderm invagination. (a) The gradient in the expression of the transcription factor
Twist and its target T48 before apical constriction and furrow formation. Expression is highest at the ventral midline and drops towards the sides of the embryo.
(b) Apical constriction is coordinated so that 4–6 cells at the ventral midline constrict the most and there is a gradient of constriction extending towards the sides of
the embryo. Red arrows indicate tension. Eyes indicate different views of the furrow, a dorsal–ventral cross section (left) and mid-sagittal section (bottom).
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GAPs RGA-3/4 are required for the observed actomyosin
pulsing [51]. Thus, actomyosin pulses appear to result from
dynamic regulation of actin and myosin II by RhoA.

A common observation in many of these systems is that
disrupting myosin II activation interferes with the dynamics of
the signalling system. For example, actin inhibitors decrease the
amount of Rho-kinase associated with a pulse [49]. In Drosophila
mesoderm cells, acute administration of Rho-kinase inhibitor
or actin drugs results in the rapid disruption of Rho-kinase
localization, suggesting a feedback loop [44]. In addition, the opto-
genetic activation of Rho can induce pulsing, evenwhen the input
is continuous light [34]. Thus, myosin II contractility involves a
complicated feedback loop where the activity of the actomyosin
cortex influences the organization of its regulators. One important
question iswhat the importanceof thesedynamics is in the context
of an organism or howwe can test this given that interrupting the
feedback will clearly interfere with myosin II.
4. Self-organization promoting cytoskeletal
alignment in an embryo

Here, I speculate that one role for these apical actomyosin
cytoskeleton dynamics is to enable collective behaviour, such
as self-organization in response to mechanical cues in the
tissue. A feature of the supracellular actomyosin network in
the Drosophila mesoderm is that apical actomyosin cables
preferentially orient with the anterior–posterior axis of the
embryo, which is the axis of highest tension [45] (figure 2a,
left). This cytoskeletal orientation can be quantified by analys-
ing the supracellular actomyosin network structure, which
reveals both a higher proportion of anterior–posterior (versus
ventral–lateral) connections and straighter anterior–posterior
connections [55]. In sum, this argues that there is an embryonic
polarity to the apical actomyosin meshwork during Drosophila
mesoderm invagination.

As opposed to signalling mechanisms that establish the
planar cell polarity of cytoskeletal cables in theDrosophila germ-
band [56], the cytoskeletal orientation in themesoderm appears
to result from a combination of cytoskeletal self-organization
and an existing mechanical anisotropy. The mechanical con-
straints that influence tissue contraction appear to result from
the shape of the contractile domain and the pattern of contrac-
tility. For example, modelling studies showed that having an
anisotropic domain of contracting cells exhibiting a ventral–
lateral contractility gradient will lead to anisotropy in apical
cell shape [39]. Experiments have also shown that the shape
of the contractile domain affects cell shape [45,57]. Thus, in prin-
ciple, the shape of the contractile domain leads to mechanical
constraints to how cells constrict their apices. Other effects,
such as the curvature of the embryo around the poles, have
yet to be determined.
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Figure 2. Tissue tension and surrounding constraints to contraction influence cytoskeletal organization. (a) Differing constraints that influence cytoskeletal organization
in normally shaped embryos. Red arrows indicate tension. Green illustrates the organization of apical myosin II. (b) The effect of changing embryo shape. Round embryos
have different constraints to contraction resulting in cells having a different cytoarchitecture. Images are embryos stained for eve expression, from [45].
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The self-organization of this system arises from the fact
that the mechanical constraints on contraction affect the
organization of the machine that is trying to contract. Changing
the mechanical constraints from anisotropic resistance to
isotropic resistance changes actomyosin organization. Aniso-
tropic resistance to contraction results in an alignment of
actomyosin cables with the axis of highest resistance (i.e. the
anterior–posterior axis) and a Rho-kinase spot in the middle of
the apical surface (figure 2a, left). By contrast, isotropic
resistance to contraction results in individual cells exhibiting
actomyosin rings across the apical surface and a loss in the orien-
tation bias of myosin II cables in the supracellular meshwork
[45,55]. Actomyosin rings result in tissues that normally exhibit
isotropic resistance to contraction, such as the posterior midgut
invagination, or when tissues that exhibit anisotropic tension
are cut, to reduce the anisotropy [45] (figure 2a,middle). Further-
more, uncoupling actomyosin networks between mesoderm
cells by disrupting adherens junctions results in contraction
into a ring-like structure, suggesting that in the absence of
restraining forces a ring is the default cytoskeletal organization
[43] (figure 2a, right). Because adherens junctions are required
formyosin II-driven forces to bepropagated, the failure to exhibit
a proper organization in the absence of adherens junctions
suggests that this process is self-organized.

All of these results suggest that the orientation of apical
actomyosin meshworks is the result of mechanical constraints
in the tissue that cause the cytoskeleton to self-organize with
a directional bias. Modelling actomyosin contraction has
shown that two- to fivefold anisotropy in compliance is suffi-
cient to orient force generation by the cytoskeleton along
the least compliant axis [45]. Consistent with cytoskeletal
orientation resulting from global constraints to constriction,
changing the shape of the embryo from ellipsoidal to spherical
causes defective actomyosin organization (i.e. myosin II and
Rho-kinase rings) [45] (figure 2b).
5. Outstanding questions
In summary, the pattern of Twist transcriptional activity
appears to create an anisotropy in the resistance to constriction.
This anisotropy leads to anisotropic cell constriction such that
the long axes of cell apices are aligned with the axis of most
resistance. There is also alignment of actomyosin fibres with
this axis, which modelling suggests might reflect greater actin
and myosin II filament translation and rotation towards the
axis of most resistance [45]. The consequence of this system
is that tension and possibly stiffness are greatest along the
anterior–posterior axis, which prevents incorrectly oriented
furrows [55].

There are two aspects to the transcriptional pattern
that could cause the anisotropy in compliance. First, is that
the shape of the Twist expression domain, regardless of
Twist levels, is asymmetric, being rectangular (ca 18 cells in
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d–v x 70 cells in a–p). Second, is that the graded expression of
Twist and its target genes results in a ventral–lateral gradient in
apical constriction. So is it the shape or the gradient? Exper-
imental perturbations using laser ablation or optogenetics
suggest that shape is, at least, important [45,57]. Furthermore,
changing embryo shape from ellipsoidal to spherical, which
would not a priori be expected to affect the gradient, also
reduces the anisotropy [45] (figure 2b). However, the relative
contributions of shape versus the gradient have not been
explored, which would be an area of productive study.

Another critical question is how the dynamics of the cyto-
skeleton play a role in this process. This is a tricky question to
address given that the process is self-organized and disrupt-
ing cytoskeletal dynamics is likely to affect the ability of the
cytoskeleton to produce force. One interesting possibility is
to compare morphogenetic processes that have different
extents of self-organization. I predict that processes requiring
cytoskeletal self-organization would need to be dynamic
and exhibit feedback, whereas processes that have a more
directed, signalling-based mechanism for establishing
polarity would require less dynamics and feedback. There-
fore, it will be important to more extensively characterize
variations in morphogenetic mechanisms across different
processes and species.
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