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In this review, we address the function of immunoglobulin superfamily cell
adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model
system in particular has revealed novel roles for calcium-independent
adhesion molecules in the morphogenesis of epithelial tissues. We review
the molecular composition of lateral junctions with a focus on their IgCAM
components and reconsider the functional roles of epithelial lateral junctions.
The epithelial IgCAMs discussed in this review have well-defined roles in the
nervous system, particularly in the process of axon guidance, suggesting func-
tional overlap and conservation in mechanism between that process and
epithelial remodelling. We expand on the hypothesis that epithelial occluding
junctions and synaptic junctions are compositionally equivalent and present a
novel hypothesis that the mechanism of epithelial cell (re)integration and
synaptic junction formation are shared.We highlight the importance of consid-
ering non-cadherin-based adhesion in our understanding of the mechanics of
epithelial tissues and raise questions to direct future work.

This article is part of the discussion meeting issue ‘Contemporary
morphogenesis’.
1. Introduction
Epithelial tissues are sheets of cells that compose organs and line animal body
compartments. Their component cells adhere to one another via interactions
in trans of cell–cell adhesion proteins. Because epithelia form mechanical and
permeability barriers, these interactions are integral to tissue function.

Epithelial cadherin (E-cad) is considered the principal cell–cell adhesion mol-
ecule (CAM) in epithelia. E-cad molecules use their extracellular domains to
form calcium-dependent homophilic adhesions and are linked to the cytoskeletal
machinery via catenin-containing complexes [1]. Anample bodyof literature docu-
ments the biology of cadherin and its role in epithelial tissue organization and
tissue dynamics [1–6]. Despite its essential role in maintaining epithelial integrity
and regulatingmorphogenetic cell behaviours, E-cad is onlyone of the intercellular
adhesion systems present in epithelia. Immunoglobulin superfamily domain cell
adhesion molecules (IgCAMs), among others, also mediate adhesion at epithelial
cell–cell contacts. The contribution of these calcium-independent adhesion mol-
ecules to the formation and maintenance of epithelial tissue architecture and
epithelial cellmorphologyhas received less attention.Recent evidence, particularly
from the Drosophila model, has revealed that IgCAMs play important roles in the
cell behaviours that drive epithelial morphogenesis. The genetic tractability of
the Drosophila model, combined with the fast developmental pace and abundant
methodologies for tissue imaging, makes it a uniquely strong animal system for
the investigation of the molecular machinery that drives tissue morphogenesis.
2. Immunoglobulin superfamily domain proteins
The immunoglobulin (Ig) superfamily proteins (IgSFs) constitute one of the largest
and most diverse protein superfamilies [7]. IgSFs function in antigen recognition,
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growth factor binding, signal transduction and adhesion. The
extracellular region of IgCAMs includes at least one Ig hom-
ology (Ig-like) domain and forms homophilic or heterophilic
interactions in trans to mediate cell–cell adhesions. These inter-
actions are mediated by Ig-like domains, which are generally
found at the most N-terminal region. The number of Ig-like
domains is proposed to correlate with the specificity of
interaction [8]. IgCAMs commonly also contain a number of
fibronectin (FN) domains in their extracellular regions. FN
domains may function as spacers to extend the position of the
Ig extracellular binding region, thereby facilitating interaction
specificity through a ‘size exclusion’ mechanism [9]; inter-
actions between IgCAMs with longer extracellular domains
may prevent trans interactions of IgCAMs with shorter extra-
cellular domains by restricting opposed cell membranes from
coming into close contact. This mechanism is hypothesized to
define interaction specificity of transmembrane proteins
(including IgCAMS) at the immune synapse [10,11]. FN
domains may also contribute to cis interactions to assist the
organization of IgCAMs at the cell membrane, affecting the
plasticity and stability of adhesion complexes [12,13].

IgCAMs are significantly better understood for their
neural roles than for their epithelial functions, in large part
because IgCAM mutants exhibit obvious and quantifiable
defects in the nervous system. Most epithelial IgCAMs have
well-defined roles in the nervous system, where they partici-
pate in axon outgrowth and fasciculation, neuronal migration
and survival, synaptic plasticity, and regeneration after
trauma (well-reviewed in [14]). IgCAMs define synaptic inter-
actions during neuronal development and are present at the
leading edge of growth cones during axon guidance [15–18].

At the point of axon–axon interaction, diverse interactions
between the extracellular domains of CAMs presented at the
growth cone surface allow a specific ‘zip code’ to direct inter-
action specificity to construct complex and robust network
architecture [19]. IgCAM interactions bring apposed synaptic
cell membranes into contact. Following contact initiation, the
expansion of trans interactions at the contact surface and
intracellular interactions with the adaptor molecules facilitate
the formation of an intercellular signalling platform [20,21].
3. Epithelial cell junctions
Epithelia are defined by the polarized architecture of their
component cells. The lateral surfaces of epithelial cells are
characterized by multiple types of cell–cell junction, each
considered to play a distinct function: cell–cell adhesion, main-
tenance of tissue impermeability and connection between the
cytoplasm of adjacent cells. Much of the cellular machinery
that makes up these junctions, and the apical–basal cell
polarity network that establishes andmaintains their positions,
is evolutionarily conserved.

Epithelial adherens junctions (AJs) are considered the
primary junctions that mediate cell–cell adhesion andmechan-
ical coupling between cells (figure 1a). Cadherin/catenin
complexes at these junctions are mechanically linked to a
circumferential belt of actin and myosin filaments. Adherens
junctions therefore couple adhesion and contractility, mechani-
cally linking the contractile cortices of neighbouring cells and
facilitating the passage of supracellular, tissue-level force
across the tissue [4].While cadherin-based adhesion complexes
are the defining components of AJs, these junctions also
include IgCAMs (such as nectins in vertebrates, and Echinoid
and Sidekick in Drosophila) [22,23].

Occluding junctions (OJs) are thought to regulate tissue per-
meability by restricting paracellular transport across epithelia.
The ultrastructure and composition of OJs vary according to
the physiological and permeability needs of the tissue [24,25].
In vertebrates, OJs take the form of tight junctions (TJs).
TJs are the most apical cell–cell junction found in vertebrate
epithelia, meaning they are at the ‘top’ of the lateral surface.
The OJs in invertebrates are septate junctions (SJs). Two types
of SJ, pleated and smooth (pSJs and sSJs), are observed in
arthropods (reviewed in [26,27]). Their names derive from
their differential structural appearance in electron microscopy
(EM) images. pSJs are found in epithelia derived from ecto-
derm, whereas sSJs are found in endoderm-derived epithelia,
which lack AJs [28]. Unlike TJs, pSJs are found immediately
basolateral to AJs in most arthropod epithelia (a notable excep-
tion being the Drosophila midgut [29]). Despite their distinct
structure and composition, a commonality between vertebrate
TJs and invertebrate SJs is the presence of proteins from four
families: claudin/claudin-like (tetraspan transmembrane pro-
teins), MAGUKs (scaffolding proteins that contain GUK and
PSD-95/Discs large/ZO-1 (PDZ) domains), neurexins (single-
pass transmembrane proteins) and IgCAMs [30]. Although
OJs are considered to fulfil the function of regulating per-
meability, many of the transmembrane protein components
of OJs also mediate cell–cell adhesion. In Drosophila, the SJ
components Bark beetle/Anakonda, and the IgCAMs Fasciclin
2 (Fas2) and Fasciclin 3 (Fas3 named for its dynamic expres-
sion on fasciculating axons in the arthropod central nervous
system (CNS), rather than any structural similarity to other
Fas molecules) all mediate cell–cell adhesion, suggesting that
SJs are important for the mechanical coupling of cells and
remodelling during morphogenesis [31–35].

Multiple epithelia in Drosophila exhibit ‘immature’ SJs [30].
Immature SJs appear to lack several proteins that make up the
extracellular occluding protein complex, including claudins,
but retain key SJ protein components of the MAGUK and
IgCAM families [36]. Immature SJs typically extend further
‘down’ (in the basal direction) lateral surfaces than mature SJs,
which are relatively restricted [37]. The molecular components
of immature SJs also exhibit greater mobility, suggesting that
they are more ‘plastic’ and amenable to remodelling [30,37].
The early embryonic ectoderm (prior to stage 14) and the fol-
licular epithelium that surrounds developing egg chambers in
the female ovary exhibit immature SJs for extended periods,
suggesting that this state is physiologically important for the
function of these tissues [28,38–40]. TheDrosophilaneuroepithe-
lium may also contain immature SJs, as key SJ proteins are not
restricted at lateral junctions, but the junctional composition
of this tissue remains to be characterized [41,42]. The retention
of only a subset of SJ components in immature SJs suggests
that these molecules are important for functions distinct from
occlusion. In support of this possibility, the loss of themolecular
components of SJs retained in immature SJs leads to defects in
cell signalling, cell polarity and other polarized cell processes
such as the orientation of the cell division apparatus.
For example, the loss of the MAGUK protein Discs large is
implicated in a disruption of cell proliferation [43,44].

Junctions resembling immature SJs are found in the CNS of
mammals at synapses and the nodes of Ranvier (paranodal
junctions between axons andmyelinated glial cells) and atDro-
sophila neuromuscular junctions [45–49]. It has been noted that
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Figure 1. (a) The junctional arrangement of epithelial cells in various epithelial types. The localization of specific IgCAMs discussed in this review are shown. (b) The
five cell behaviours driving epithelial morphogenesis. (c) Differential adhesion can drive patterning in epithelial morphogenesis.
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many synaptic scaffolding proteins resemble epithelial SJ com-
ponents, suggesting that neuronal synapses derived from pSJs
[30,40,47,50,51]. IgCAM family members are notably con-
served between these junctions. Harden et al. [30] proposed
the hypothesis that neuronal synaptic junction and immature
SJs in epithelia both allow the plasticity in structure that is
required for synaptic wiring and epithelial morphogenesis.
4. Looking beyond cadherin in epithelial
morphogenesis

Developing epithelial tissues undergo dramatic remodelling
events as they acquire their mature shape. Morphogenesis
involves any combination of five cell-level behaviours: (i) cell
shape changes; (ii) cell intercalation ( junctional exchange);
(iii) cell division; (iv) cell delamination/extrusion; and (v) cell
integration (figure 1b). All of these morphogenetic cell beha-
viours require changes in cell–cell adhesion and remodelling
of lateral junctions. Epithelial cells acquire and retain their
shape in the context of the tissue through a force balance
between tension, originating from the energetically favourable
binding of adhesion proteins, and contractile forces generated
by the actomyosin-rich cortex.

The contribution of non-cadherin-based adhesion to the
mechanics of epithelial morphogenesis remains largely unad-
dressed on account of technical considerations. Conventional
confocal microscopy is limited in the depth of data acquisition
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in tissues, owing to light scattering caused by the variability in
refractive index of biological tissue. Live imaging, integral to
the study of epithelial morphogenesis, has largely been
restricted to the apical tissue surface and therefore focused pri-
marily on cadherin-based adhesions. Modelling of epithelial
morphogenesis has also been historically limited to twodimen-
sions, both to limit complexity and to use and test available
in vivo data. Only recently has the challenge of understanding
the mechanical contribution of lateral epithelial cell junctions
been tackled, as advancements in imaging technology (par-
ticularly two-photon and light sheet techniques) have
allowed improvements in resolution, both over time and in
tissue depth [52–54]. Furthermore, improvements in compu-
tational power permit the acquisition and analysis of large
datasets generated by live microscopy of developing tissues,
as well as the use of in silico cell tracking and tissue modelling
tools.

A confounding factor in the study of the role of IgCAMs in
epithelial morphogenesis is the absence of obvious ‘dramatic’
tissue phenotypes, like those observed in the absence of the
E-cad/catenin AJ complex. This may be explained by func-
tional redundancy between these proteins, meaning that
obvious phenotypes may only be uncovered when more than
one IgCAM is removed. Further complicating the assessment
of the mechanical role played by IgCAMs is the question of
whether these proteins contribute cell adhesion directly, or
rather act primarily through the recruitment of other junctional
factors, such as scaffolds, signalling activators and polarity reg-
ulators. Although current evidence suggests thatmost IgCAMs
do not play an essential role in epithelial tissue integrity and
adhesion, recent studies have revealed that they do regulate
the cell behaviours of morphogenesis, and their contribution
should not be overlooked [42,55–57].

In the following sections, we will review what is currently
known about the role of IgCAMs inmorphogenetic behaviours
from the Drosophila model system.
5. Pattern formation in epithelia is driven by the
differential expression of immunoglobulin
superfamily cell adhesion molecules

An important aspect of epithelial morphogenesis is patterning
and compartment definition (figure 1c). This is driven by
differences in cell identity, which in part is defined by each
cell’s expression complement of CAMs. Morphogenetic cell
behaviours are triggered in response to the interaction of
CAMs at cell–cell boundaries, leading to changes in tissue
shape and pattern formation. In many cases, CAM-driven
epithelial patterning can be explained by the concept of
differential adhesion. The differential adhesion hypothesis,
presented in the 1960s by Malcolm Steinberg after the exper-
imental work of Townes and Holtfreter, states that cells of
similar adhesive strength rearrange to be adjacent in order to
maximize the bonding strength between cells to produce a
more energetically favourable architecture [58,59]. Our current
understanding of the differential adhesion hypothesis takes a
broad interpretation of ‘adhesiveness’, taking into account
several aspects of material association [60]. It is now under-
stood that not only protein–protein adhesion as measured by
dimerization dissociation constant (KD), but many biophysical
properties—including cell–cell tensile adhesion, cortical
tension and elasticity—co-operate and feed back to generate
the forces required for morphogenetic cell behaviours driving
tissue shape and patterning [61].

CAM interactions can lead to complex tissue structures,
such as the insect compound eye [62]. One patterning mechan-
ism is the segregation of cells into homotypic compartments,
via the preferential adhesion of cells expressing the same comp-
lement of CAMs (figure 1c). However, CAM interaction
strength is not necessarily higher upon homotypic binding.
Heterotypic binding can drive complex pattern formation
through cells of distinct types rearranging and changing
shape to maximize energetic favourability (figure 1c). Com-
partment boundaries between CAM-defined compartments
in epithelial tissues are commonly defined and maintained
by supracellular actomyosin cables [63]. One example of this
is the Drosophila embryonic germband, where differential
transmembrane protein expression between cells leads to cell-
level asymmetric myosin II enrichment and thus supracellular
tissue-level actomyosin cables [63–65].
(a) Echinoid
TheDrosophila IgCAMEchinoid (Ed) is required for cell sorting
that drives the morphogenesis of several epithelial tissues
[66,67]. Ed is required for the morphogenetic processes of
dorsal closure and head involution during embryogenesis
and appendage tube morphogenesis during oogenesis
[66,67]. Ed can mediate cell–cell adhesion, either through
homotypic binding or by interacting heterotypically with Neu-
roglian (Nrg), another IgCAM [68,69]. However, the molecular
mechanism by which Ed functions to regulate epithelial mor-
phogenesis in vivo remains unclear; current evidence suggests
that Ed homophilic binding serves a recognition function,
rather than a role in directly mediating cell–cell adhesion, to
induce planar polarized actomyosin localization and activity
[66,67,70,71].

edmutant cells sort and segregate fromwild-type (wt) cells
in clonal experiments via differential adhesion [22,66,71]. Ed
also associates with the unconventional myosin VI motor
Jaguar (Jar), and it is suggested that Jar may act as an anchor
molecule to link homophilic CAMs like Ed and E-cad of AJs
to actin filaments [67]. Planar polarized expression of Ed
induces actomyosin assembly and contraction at the boundary
between cells defined by differential levels of ed expression
[22,66,67]. The recruitment of supracellular actomyosin cable
at the boundary of ed mutant cell clone boundaries leads to a
straightening of the compartment boundary [71].

Dorsal closure is a well-characterized morphogenetic event
in the embryo; the two lateral epidermal cell sheets on either
side of the embryo close a dorsal hole filled with extra-embryo-
nic amnioserosa cells by circumferentially elongating [72]. ed
mutants exhibit defects in two actin-based structures that are
responsible for dorsal closure and segmental alignment of
the two sides of the epidermis: (i) edmutants fail to form supra-
cellular actomyosin cables at the leading edge of the two lateral
epidermal cell sheets [67,70]. These cables form a so-called
‘purse string’ which is important to generate tension to pro-
mote closure. ed mutants exhibit defects in the recruitment of
actin regulators at the leading edge [70]. (ii) edmutants exhibit
defects in the formation of actin-rich filopodia, which are
important to align the epidermal sheets during closure [67].

Vertebrate nectins drive mosaic patterning in auditory and
olfactory epithelia by differential adhesion [73,74]. Drosophila
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Ed has been described as a nectin orthologue, but this identi-
fication is based on its ability to drive patterning via
differential adhesion, its subcellular localization at adherens
junctions, and the identification of intracellular binding part-
ners shared with vertebrate nectins, namely afadin/Canoe
and Par-3/Bazooka (vertebrate/fly), rather than sequence or
structural similarity; Ed has seven Ig domains and a fibronec-
tin domain in its C-terminal cytoplasmic region whereas the
nectin family of IgCAMs are defined by an extracellular
region containing three extracellular Ig domains (figure 2;
[6,22,71]). One possibility is that intracellular functions in
IgCAMs have rearranged over evolutionary time.
(b) Fasciclin 3
Drosophila Fas3 is an IgCAM with an extracellular domain
containing three Ig domains, suggesting it is a member of
the nectin family (figure 2; [32]). The asymmetric distribution
of Fas3 adhesion is important for shaping the Drosophila gut
(33). Cells making up the inside of the hindgut localize Fas3
along their full lateral cell–cell contact lengths. In the absence
of JAK/STAT signalling-activated Fas3 lateralization, the gut
fails to form the correct curvature. The mechanism of action
for Fas3-driven fold/curve formation is thought to be
increased preferential adhesion between Fas3-expressing
cells causing changes to local tissue tension (33).

Fas3 is also implicated in mediating differential adhesion
during Drosophila cardiogenesis [101]. Cardioblasts of distinct
identities express a unique expression set of CAMs on pioneer
filopodial protrusions. TheDrosophila heart is composed of two
contralateral rows of cardioblasts that collectively migrate and
meet with their partners to form a tube structure [102]. The
differential expression of Fas3 in cardioblasts regulates filopo-
dia binding affinity and hence cell identity ‘matching’ and
organ patterning [101].

(c) Irre cell-recognition module family immunoglobulin
superfamily cell adhesion molecules

Four IgCAMs of the Drosophila Irre cell-recognition module
(IRM) family regulate pattern formation epithelia via differen-
tial adhesion [103]. These are the nephrin-like proteins Sticks
and stones (Sns) and Hibris (Hbs) and the Neph-like proteins
Roughest (Rst, also known as Irregular chiasm C) and Kin of
irre (Kirre, also called Dumbfounded). The nephrin-like pro-
teins (Sns and Hbs) interact with Neph-like proteins (Rst and
Kirre) hetero- and homophilically in trans to generate complex
cell patterns (figure 2; [78,103,104]). IRM proteins localize to
cell–cell junctions inmultipleDrosophila epithelia, with specific
AJ localization in the wing and eye imaginal discs [105,106].

Differential adhesion between IRM proteins drives the for-
mation of repeating patterns in the Drosophila wing and eye
[79,103,105,107–111]. In both tissues, preferential adhesion
between cells expressing different IRMproteins drives the regu-
lar spacing of specialized cells to form complex, repeating tissue
patterns. Loss of any one IRM protein has little phenotypic
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effect on adhesion or patterning in these tissues as their func-
tions are partially redundant [79,105,108]. The role of IRM
proteins in patterning the ommatidial units of the eye is not lim-
ited to adhesion alone. Rst regulates signalling pathways
including the Decapentaplegic/BMP pathway, which leads to
downstream regulation of transcription and junctional organiz-
ation, and may regulate apoptotic pathways to ensure the
proper elimination of excess inter-ommatidial cells [112,113].

IRM proteins function in a number of other cell identity
matchingprocesses thatdriveorganogenesis inDrosophila, includ-
ing renal tubule and muscle development [85,104,114–117]. As
with most of the IgCAMs discussed in this review, theDrosophila
IRM proteins also drive cell matching in axon guidance during
neurogenesis [118–120].
il.Trans.R.Soc.B
375:20190553
6. Intercalation and mechanosensing
(a) Irre cell-recognition module family
As discussed, the differential expression of IRMproteins drives
the sorting of cells in ommatidial morphogenesis. Cell sorting
to achieve the mature ommatidial pattern requires the direc-
tional intercalation of inter-ommatidial precursor cells, a
process that relies on actin-based cellular extension [110]. It
has been proposed that the Rst–Hbs interaction regulates the
activity of the GTPase activating protein Arf6 through the
adaptor protein Cindr to inhibit cellular extensions at
Rst–Hbs defined cell–cell junctions. Intercalation of these
cells is independent of myosin II activity in intercalating cells
[100]. Computational modelling predicts that tissue-contractile
forces are required for intercalation.

(b) Sidekick
Sidekick proteins are highly conserved throughout Metazoa
and best known for their role in specifying synaptic inter-
actions in the retina [121–124]. Three parallel studies have
recently identified the Drosophila Sidekick (Sdk) as a mechan-
osensitive protein and a regulator of junctional
rearrangements in the embryonic ectoderm during germband
extension, during tracheal branching in the embryo and male
genitalia, and during retinal development in the pupa
[56,57,125]. Proteins of the Sidekick family possess large
extracellular domains composed of six Ig-like domains and
13 FN domains and can mediate homotypic cell aggregation
in cell culture experiments (figure 2) [13,99].

Sdk exhibits a unique localization in Drosophila epithelial
tissues, concentrating at epithelial vertices—points where
three or more cells meet—at the level of AJs in most epithelia
[56,57,125,126]. Sdk is unique in its localization to vertices at
AJs, as all other known vertex-specific proteins localize at
specialized OJs at vertices known as tricellular junctions
(TCJs). Drosophila Sdk is the first protein found in any species
to localize at tricellular adherens junctions (tAJs). This
includes epithelia of diverse origins and morphologies and
epithelia with both immature and mature SJs [125].
Epithelial vertices have widely been suggested to be impor-
tant for regulating and sensing epithelial tension [127,128].
Drosophila Sdk vertex enrichment is modified when tissue
tension is experimentally perturbed, becoming less enriched
at vertices when tension is reduced, and more enriched
when it is increased [56]. This finding suggests that Sdk
localization is mechanosensitive.
sdk mutants exhibit abnormal epithelial cell shapes
[56,57,125]. The dynamics of junction remodelling are abnor-
mal in the absence of Sdk [56,57,125]. The molecular
mechanism of Sdk’s role in junction remodelling is difficult
to decipher owing to the complex relationship between
adhesion and contractility in this process. Disruption of one
causes compensatory changes to the other [129]. Furthermore,
the phenotypes are subtle, implying that othermachinery com-
pensates in the absence of sdk. Immunoprecipitation of Sdk
pulls down the AJ component β-catenin and the myosin regu-
latory light chain, demonstrating a link to the cadherin/catenin
AJ machinery and the actomyosin cytoskeleton [57].

Four observations hint at the molecular role of Sdk in
epithelia: (i) Sdk and E-cad exhibit a mostly non-overlapping
localization at AJs, suggesting an inhibitory relationship
between them [23,57]; (ii) persistent holes in adhesion appear
at AJs in the embryonic ectoderm in sdk mutants, which
could mean that adhesion is compromised, or that tension is
abnormal at apical junctions in the absence of Sdk [125]; (iii)
Sdk is necessary for the accumulation of myosin, Canoe
(Cno), Polychaetoid (Pyd) and actin at tAJs, but Cno and Pyd
are not required for Sdk localization at tAJs; (iv) strikingly simi-
lar phenotypes are observed in Cno and Pyd mutant embryos
[130]. An attractive hypothesis is that Sdk is a ‘hub’ that
organizes a tAJ-specific protein complex that maintains
adhesion and modulates the actomyosin cytoskeleton at these
vertex junctions, which are important sites for the anchoring
of the cytoskeleton and experience high tension. This work
demonstrates an important, but previously overlooked, role
for IgCAMs in regulating the cell behaviours that drive
well-understood epithelial morphogenetic behaviours.
7. Reintegration
(a) Neuroglian and Fasciclin 2
Cell reintegration is a relatively recently identified morpho-
genetic cell behaviour that appears to be a fundamental,
conserved morphogenetic process [42]. Through live imaging
and genetic studies in Drosophila epithelial tissues, it was
shown that daughter cells born apically or basally displaced
from a tissue layer are able to (re)integrate back into the
layer [42,131]. The IgCAMs Nrg and Fas2 are regulators of
cell reintegration in Drosophila epithelia [42]. Genetic disrup-
tion of Nrg or Fas2 cause reintegration to fail, resulting in
the appearance of ‘popped out’ cells situated apically to the
tissue layer [42,132].

Neuroglian (Nrg) is a member of the L1 family of IgCAMs
and is essential for paracellular barrier formation [91].Members
of the L1 family of IgCAMs are characterized byan extracellular
regionwith six Igdomains, between three and five FNdomains,
a single transmembrane segment and an intracellular domain
containing an ankyrin-binding region (figure 2; [133–136]).
The vertebrate homologue of Nrg, L1-CAM, is functionally
conserved in the developing nervous system [19]. Nrg is
considered a central component of pSJs [91].

Fas2 is a member of the N-CAM family of proteins based
on its extracellular domain structure of five Ig domains and
two FN domains. Fas2 is implicated in epithelial polarity
organization and cell motility [137,138]. It has been exten-
sively studied for its role in axon guidance and neuronal
development [76,139–142]. Fas2 is considered to be an exclu-
sively homophilic adhesion molecule and mediates
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homophilic cell aggregation in an in vitro S2 cell assay
(figure 2; [32]).

Nrg and Fas2 are highly enriched along lateral cell–cell
contacts in mitotically active epithelia with immature SJs
that exhibit reintegration behaviour [42]. Reintegration is not
prevented by disruption of AJs [42]. Reintegration has only
been described in Drosophila epithelia tissues that possess
immature SJs. Together, this suggests reintegration specifically
requires lateral adhesion of immature SJ components [42].

Cell reintegration is proposed to be driven by the energy-
favourable tendency to maximize cell–cell adhesion along the
lateral surface [42,131]. This model to explain reintegration
can be pictured as ‘zipping up’, where the rapid expansion
of cell–cell contact is driven by the formation of homophilic
adhesions between IgCAM molecules, acting as the teeth of
a zipper. Biochemical analysis of the structure of the ver-
tebrate homologue of Fas2, N-CAM, lends evidence to the
‘zipping up’ hypothesis of cell (re)integration. N-CAM homo-
philic binding is proposed to occur via the formation of
‘zippers’. The two N-terminal-most Ig domains are proposed
to mediate dimerization of N-CAM molecules situated on the
same cell surface (in cis), whereas the third Ig domain me-
diates interactions between N-CAM molecules expressed on
the surface of opposing cells (in trans) through simultaneous
binding to the first two Ig domains [143]. This arrangement
results in two perpendicular zippers forming a double
zipper-like adhesion complex. This demonstrates the impor-
tance of cis interactions between IgCAMs in the formation
of cell–cell interactions and suggests that trans interactions
catalyse the formation of expansion of cell–cell contact areas.

Several lines of evidence suggest that the vertebrate homol-
ogue of Nrg L1-CAM might likewise mediate reintegration.
L1-CAM is expressed in monolayered epithelia in the intestine
and kidney, where it localizes to lateral cell–cell contacts
[144–146]. Though its function in these tissues is unclear, L1-
CAM has been functionally characterized in antigen-present-
ing dendritic cells, in which it promotes transmigration
through endothelial walls [147]. Transmigration is mediated
by L1-CAM expressed both at endothelial cell–cell contacts
and on the dendritic cell surface, akin to ‘zipping up’ [147].
(b) Axon guidance and reintegration: a common
molecular mechanism driving distinct processes?

IgCAM interactions facilitate adhesion between axons and
the motility of axons along neural pathways. IgCAM inter-
actions also lead to cytoskeletal remodelling, which is
required for axonal pathfinding and connection maturation
[19]. Synaptic junctions and immature SJs are orthologous
in structure and composition [30,40,47,50,51]. We suggest
that the molecular mechanism of IgCAM-mediated axon gui-
dance/synaptic connection and cell reintegration may be
conserved (figure 3).

Siegenthaler et al. [20] dissected the molecular mechanism
of Nrg in guiding neuronal paths via the mediation of axon–
axon interactions in the Drosophilamushroom body. The inter-
action of Nrg with the membrane–cytoskeleton linker proteins
Ankyrin 2 (which binds to spectrin) and Moesin (which binds
Actin) are required for axon guidance [20]. This strongly impli-
cates spectrin and actin-based cytoskeletons as important to
stabilize axonal interactions.

It is currently unclear if intracellular factors are required
for cell reintegration. The molecules that drive axon guidance
and cell reintegration are shared and we therefore propose
that a shared molecular mechanism is likely to drive these
two processes (figure 3). When cells of the same ‘type’
come into contact, homophilic adhesion can occur in trans
between IgCAMs on different cells. Following contact
initiation, initial contact sites enlarge via a ‘zippering’ mech-
anism, whereby the contact area between cells is expanded by
the rapid expansion of trans interactions at the contact sur-
face, facilitating the formation of an intercellular signalling
platform. Cell lipid membranes exhibit domains of specializ-
ation in composition—so-called ‘microdomains’—which can
lead to localized clustering of transmembrane proteins
owing to changes in their ability to laterally diffuse
[148,149]. Microdomain formation may be a result of FN
interactions with the lipid membrane, interactions between
the extracellular domains of the IgCAMs, and changes to
the juxtaposed intracellular actin- or spectrin-based
cytoskeletons.
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(c) Lachesin: a candidate for future study
Drosophila Lachesin (Lac) localizes to SJs and is required for
the late stages of tracheal epithelial morphogenesis [88].
Defects are present in the shape, width and path of tracheal
branches [88]. Lac is expressed in early embryos prior to
the formation of mature SJs, suggesting that similarly to
Fas2, Fas3 and Nrg, its function is not restricted to OJ func-
tion and organization. Lac promotes homophilic binding in
bead and cell-culture aggregation assays [88,89]. The compo-
sition of the extracellular domain of Lac, which contains three
Ig domains, suggests that it is a nectin orthologue (figure 2).
Little is known about the molecular function of Lac and it is
an exciting candidate for further exploration.
Phil.Trans.R.Soc.B
375:20190553
8. Conclusion and perspectives
IgCAMs shape and pattern animal tissues through develop-
ment. A commonality in IgCAM-mediated processes is
the importance of cell–cell identity recognition. Although
IgCAMs are thought of as adhesion molecules, the mechanical
contribution of IgCAMs in adhering cells together remains to
be quantitatively addressed in most cases. The Drosophila
model in particular has revealed that IgCAMs regulate
morphogenetic cell behaviours in diverse epithelial tissues.

Recent imaging-based studies of epithelial morphogenesis
in Drosophila have revealed three novel observations: (i) epi-
thelial cells can exhibit significantly different junctional
arrangements along their lateral junctions, with cell confor-
mations being drastically different at apical versus basal
junctions [52,125,150]; (ii) the tension that drives
morphogenetic cell shape change can originate from lateral
cell–cell junctions that are distinct from AJs [52,54]; (iii) cell
reintegration, a morphogenetic cell behaviour, is mediated by
lateral junctions [42]. These novel insights raise several funda-
mental questions: What are the adhesion proteins maintaining
adhesion and facilitating mechanical coupling along lateral
cell–cell junctions? How are changes in adhesion and cell–cell
contact remodelling mechanically transmitted apico-basally
along lateral cell surfaces? While AJs have long been thought
to be the driving force of morphogenetic cell behaviours, emer-
ging evidence shows that SJ components are also important to
modulate morphogenesis [33,34,151–158]. IgCAMs in particu-
lar are intriguing candidates as proteins that could regulate
lateral junction-driven behaviours. Consistent with this, it has
been proposed that immature SJs, which retain IgCAM SJ
components, are plastic and may be kept in the immature
state to facilitate the dynamic cell behaviours of epithelial
morphogenesis [30].

Moving forward, IgCAM-based adhesion should no longer
be ignored in our consideration of the mechanics of epithelial
morphogenesis. The substantial body of work elucidating the
mechanical role of IgCAMs in epithelia in Drosophila provides
numerous candidates to direct future investigations in
vertebrates for IgCAMs that regulate epithelial morphogenesis.
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