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The mammalian preimplantation embryo is a highly tractable, self-organiz-
ing developmental system in which three cell types are consistently specified
without the need for maternal factors or external signals. Studies in the
mouse over the past decades have greatly improved our understanding of
the cues that trigger symmetry breaking in the embryo, the transcription fac-
tors that control lineage specification and commitment, and the mechanical
forces that drive morphogenesis and inform cell fate decisions. These studies
have also uncovered how these multiple inputs are integrated to allocate the
right number of cells to each lineage despite inherent biological noise, and as
a response to perturbations. In this review, we summarize our current under-
standing of how these processes are coordinated to ensure a robust and
precise developmental outcome during early mouse development.

This article is part of a discussion meeting issue ‘Contemporary
morphogenesis’.
1. Introduction
Tissue morphogenesis, patterning and growth control are fundamental processes
during the development of multicellular organisms. Both local and systemic
mechanisms ensure coordination between these processes to generate reproduci-
ble outcomes during embryonic development and to maintain homeostasis in the
adult [1–3]. Understanding this coordination of events in space and over time can
be challenging, given their dynamic nature, the complex interactions between
cells and the multitude of signalling pathways involved. The mouse preimplan-
tation embryo represents a simple and experimentally tractable system to
understand how self-organizing developmental systems solve some of these chal-
lenges. In this review, we discuss our current understanding of how patterning,
morphogenesis and growth (whereby we refer to changes in cell numbers) are
coordinated to guarantee precision and robustness during the earliest stages of
mammalian development.
2. Overview of preimplantation development
Mammalian preimplantation development encompasses the period between fer-
tilization and implantation of the embryo into thematernal uterinewall. Cleavage
of the zygote (one cell) generates a morula of eight cells (referred to as blasto-
meres) which undergo patterning and morphogenetic events to generate the
blastocyst, a universal structure across mammals, which is capable of attaching
to the uterus and eventually developing into a fetus (figure 1a). Beside the
morphological changes in the embryo, during this period, the embryonic
genome is activated andundergoes dramaticmodifications—including epigenetic
reprogramming and X chromosome inactivation in female embryos—which are
fundamental for embryonic development. These processes are reviewed in
detail elsewhere [4–6].
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Figure 1. Natural and experimental paths for preimplantation development. (a) Normal developmental progression of the preimplantation mouse embryo, from
fertilization, at embryonic day (E)0, until implantation (around E4.5) and the immediate post-implantation stage (E5.5). (b) Stem cell lines can be derived and
maintained from each of the three blastocyst populations: embryonic stem cells (ESCs) from the epiblast, trophectoderm stem cells (TSCs) from the trophectoderm
and extraembryonic endoderm (XEN) stem cells from the primitive endoderm. ESCs and XEN cells can be reintroduced into the embryo to generate chimeras. (c)
Cleavage-stage embryos (from 2- to 8-cell stage) can be disaggregated into constituent cells and these can be re-aggregated with their sister cells or with cells from
another embryo to generate viable embryos. (d ) Blastocysts can implant into the uterus to develop into a fetus, but also initiate implantation into certain synthetic
matrices. (e) Embryo-derived stem cells can be combined using different protocols to generate blastocyst-like or egg cylinder-like structures reminiscent of embryos
and capable of attaching to the uterine wall. ( f ) Whole cleavage-stage embryos can be aggregated to give rise to double or triple blastocysts, which have two or
three times as many cells as an intact blastocyst of the same age, but the same anatomy. (g) Cleavage-stage embryos can be split into clusters of cells and give rise
to half- (or even quarter-)blastocysts, which display a cyst structure and half (or quarter) the number of cells of an age-matched intact blastocyst.
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The blastocyst comprises three tissues: the embryonic
epiblast and twomainly extraembryonic epithelia, the trophec-
toderm (TE) and the primitive endoderm (PrE, or hypoblast in
non-rodents). The epiblast is the pluripotent tissue that gives
rise to most of the soma and the germ cells [7,8]. The TE devel-
ops into the embryonic part of the placenta, while the PrE gives
rise to the parietal and visceral endoderm (VE) of the yolk sac,
as well as to parts of the embryonic gut endoderm [8–12]
(reviewed in [13]). During implantation, the PrE develops
into the VE, evolving from a cuboidal to an eventually squa-
mous epithelium that is essential both for the growth of the
epiblast—as it undergoes rapid proliferation prior to gastrula-
tion—and for its patterning—to establish the future antero-
posterior axis of the embryo proper (reviewed in [14–16]). In
the mouse, these three cell types can give rise to stable stem
cell lines when embryos are cultured under the appropriate
in vitro conditions: embryonic stem cells (ESCs) arise from
and represent the epiblast [17–20], trophoblast stem (TS) cells
the TE [21] and extraembryonic endoderm (XEN) stem cells
the PrE [22] (figure 1b). For detailed reviews on these stem
cells, see [23,24].
3. The mammalian preimplantation embryo is a
self-organizing system

The preimplantation embryo displays the three features
associated with biological self-organizing systems: (i) self-
assembly, (ii) self-patterning and (iii) self-morphogenesis [25].
A mammalian zygote can autonomously develop into a
blastocyst on a culture dish, in minimal medium, without
the need for exogenous cytokines. Self-patterning and self-
morphogenesis are evident in this process. Moreover,
dissociated blastomeres readily aggregate when placed into
close proximity and give rise to a normal blastocyst [26–32]
(figure 1c). These self-organizing abilities are not restricted to
the preimplantation period: blastocysts can attach to a syn-
thetic matrix and grow into correctly patterned egg cylinders
without maternal input [33–36] (figure 1d ), while aggregates
of embryo-derived stem cells can assemble into structures
that resemble blastocysts and early post-implantation embryos
[37–41] (figure 1e).

The integration of patterning, morphogenesis and tissue
growth in these embryos is perhaps best manifest in two
notable phenomena: the formation of chimeras and the
ability of embryos to scale. Just as dissociated blastomeres spon-
taneously reaggregate and resume development (figure 1c),
intact embryos can incorporate foreign cells, to generate
chimeras that develop into normal mice [26,27,42–44]
(figure 1b). In extreme cases, the grafted cells can even displace
host cells to produce the entire adult body [45–48]. Chimeras
can be also produced by aggregating two or more embryos
[27,49–52] (figure 1f ), which nonetheless give rise to normal-
sized mice [27,49,53–55]. On the other hand, cleavage-stage
embryos can be separated into halves, which develop into
smaller blastocysts that can give rise to viable adults of
normal size [56–58] (figure 1g). In both double and half
embryos, the number of cells of each type in the blastocyst
scales up or down, respectively, so as to maintain consistent
lineage proportions [59,60]. These findings highlight that



royalsocietypublishing.org/journal/rstb

3
pattering and morphogenesis in the mouse embryo are very
robust and independent of embryo size.

A multitude of strategies exist to scale patterns with tissue
size across developmental systems [1,61–64]. Often, these pat-
terns are dictated by morphogen gradients that can adapt to
changes in tissue size. As we will discuss in the next sections,
patterning and morphogenesis in the mouse blastocyst occur
autonomously, without instructive signals from neighbouring
tissues or organizers. Instead, location within the embryo,
mechanical cues and short-range signalling are integrated
to establish cell fates. A fundamental emerging property of
this system is robustness, which acts to dampen the effect
of biological noise in such a small cell population.
Phil.Trans.R.Soc.B
375:20190562
4. Position precedes trophectoderm or inner cell
mass identity

The first cell fate decision that cells make during mouse devel-
opment is whether to become TE or inner cell mass (ICM)
(figure 1a). The TE is an epithelium that mediates attachment
to and invasion of the uterinewall and that eventually contrib-
utes to the placenta, the mother–embryo exchange interface
[9,65]. Its cells are bound by extensive intercellular junctions
[66–69], display apicobasal polarity [70–72] and secrete a base-
ment membrane [73,74]. Conversely, apolar ICM cells remain
bound only by adherens and GAP junctions [66] and present
a mesenchymal character.

This epithelialization process begins at the 8-cell stage,
as the embryo undergoes a process of compaction, whereby
blastomeres become tightly attached and sequentially
assemble adherens and tight junctions [66–69] (figure 2a).
Intercellular junctions consequently isolate the distinct apical
domain of 8-cell stage blastomeres from basolateral membrane
domains [70,71,75–78]. The establishment of apical polarity
is in turn necessary for the development of tight junctions
[71,79,80]. Subsequent cell divisions, during the fourth
and fifth cell cycle, generate internal cells (figure 2a). Inner
cells are generated through the asymmetric division of polar-
ized blastomeres, cell internalization, as well as through
the symmetric division of existing inner cells [81–83]. The gen-
eration of inner and outer cells represents the first symmetry
breaking event in the embryo—the differential position of
these populations results in exposure to different stimuli,
which in turn results in the acquisition of different fates.

Despite this differential position, all cells in the morula
(approx. E2.5–E3.25) co-express TE and ICM-specific transcrip-
tion factors, such as CDX2 (TE), OCT4 and NANOG (ICM)
[84], and remain totipotent [29,30,32,85]. Although not essen-
tial for preimplantation development, the activity of the
Notch pathway contributes to this early expression of CDX2
[86,87]. This symmetry in gene expression is broken with the
segregation of inner and outer cells and the differential acti-
vation of the intracellular Hippo signalling pathway [88,89].
Hippo and Notch synergistically restrict gene expression and
trigger cell fate specification among inner and outer cells
[86,87,89]. Apical polarization of outer cells is fundamental
for lineage specification, as it prevents activation of the
Hippo signalling cascade through the restriction of angiomotin
(AMOT) to the apical domain [72,80,90]. Consequently, the
transcriptional coactivator YAP binds TEAD4 to maintain
expression of the transcription factor CDX2, which activates
the TE genetic programme [72,89–93], and to inhibit expression
of the ICM transcription factor SOX2 [94–96]. In addition,
Notch activity promotes an outer position and TE identity
via upregulation of CDX2 [86,87]. Conversely, in apolar
(inner) cells, AMOT and NF2 activate the LATS1/2 kinase,
which phosphorylates YAP, triggering its degradation and
thus promoting SOX2 and inhibiting CDX2 expression
[89,94–97]. Detailed reviews of these molecular interactions
can be found in [98–100].
5. Finding a balance through geometry
Given the small number of cells that compose the embryo at
these stages (8–32 cells), a small difference in cell numbers
can have a large effect in the relative size of the TE and ICM,
and so, control over cell-type proportions is necessary. This is
a fundamental decision, and errors in cell allocation can
result in developmental failure. The TE : ICM ratio has been
found to be highly consistent, with most embryos having
ratios between 17 : 15 and 22 : 10 (TE : ICM) cells at the 32-cell
stage [83,101]. The numbers of inner and outer cells generated
during the fourth and fifth cell cycles were found to be inver-
sely correlated, so as to ultimately yield a balanced ratio [83].
Accordingly, grafting supernumerary inner cells onto an
8-cell embryo (before the fourth cell cycle) shifted the relative
contribution of the host cells toward the TE to accommodate
for this perturbation and maintain the overall TE : ICM ratio
[101].

The Hippo pathway provides an elegant link between cell
position, polarity and cell fate, but it does not explain this
balanced generation of cell fates. How is this ratio consistently
achieved? Recent studies suggest geometry and energy
minimization as the main inputs. During compaction, both
embryo surface energy and area are reduced, while cell
positions become constrained through the stabilization of
adherens junctions between blastomeres, which are primarily
composed of E-cadherin at this stage [66,67]. Accordingly,
embryos lacking E-cadherin (CDH1) form a disorganized
mass of loosely attached cells and fail to generate a blastocyst
[102,103]. Despite the need for E-cadherin for compaction and
formaintaining embryo integrity, it has been shown that, in con-
trast to previous suggestions [104], it is not the main regulator
of embryo compaction. Instead, compaction is driven by con-
tractile pulses generated by the actomyosin cortex [105]. The
intercellular junctions between blastomeres anchor the cytoske-
leton and restrict these contractile forces to the apical surfaces
[105], thus causing apical constriction, in a process reminiscent
of those taking place in the epidermis of the Drosophila embryo
and during Caenorhabditis elegans gastrulation [106,107].

The presence of intercellular junctions and this overall
increase in contractility reduce the surface area of the morula
and impose a geometric constraint on a cell’s position and
cell division. A division along the radial axis of the embryo
can readily generate an inner cell and an outer cell, while a
division orthogonal to it generates two outer cells (figure 2a).
However, the angle of division can vary between these two
extremes, thus yielding a range of intermediate positions
[108–111]. The final position of most cells is thus determined
not by the angle of division itself, but by mechanical
interactions with their neighbours so as to reduce the overall
surface energy (figure 2a) [108–110]. Let us consider two
extreme examples: (i) 12 inner cells versus 4 outer cells and
(ii) 3 inner cells versus 13 outer cells (figure 2b). A crowded
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inner population figure 2b(i) will push and flatten outer cells,
thus stretching the apical domain and facilitating divisions par-
allel to the surface, which will counter the excess of inner cells
(figure 2b). Broad apical domains are associated with
lower contractility, an outside position and ultimately a TE
fate [71,108,112,113], both in mouse and in human embryos
[113]. On the other hand, an excess of outer cells will create
competition for an outside position (figure 2b(ii)) to try and
minimize surface energy. This situation facilitates both a
radial orientation of the division spindle and the internaliz-
ation of cells with higher contractility (and a narrow apical
domain) [112]. Throughout the fourth and fifth cell cycles,
these local interactions will orient division angles and interna-
lize (or fail to) cells in intermediate positions, effectively sorting
them out to produce a stable configuration.

Therefore, geometrical constraints and energyminimization
can account for the balanced physical allocation of cells within
the morula/early blastocyst [83], which in turn determines cell
fate [88]. Low contractility facilitates an outer position and a
broad apical domain, which inhibits the Hippo pathway and
promotes TE identity. Accordingly, mechanically forcing more
cells into an outer position expands their apical surface and
leads to an increase in YAP nuclear localization and CDX2
expression [113]. Conversely, cells with a narrow or no apical
domain adopt an internal position and eventually an ICM
fate [72,90,94–96,111–115]. The stabilization of a TE genetic
programme causes commitment of most outer cells to a TE
fate by the 32-cell stage [29,30,32,84]. By contrast, ICM cells
have been shown to remain plastic for a wider developmental
window [30,32,116–118]. This may, in turn, reflect an unstable
state, one that rapidly transitions towards epiblast or PrE [32].
6. PrE or epiblast identity precedes position
ICMcells are generated during the fourth and fifth cell cycles of
mouse development (as the embryo goes from comprising 8 to
comprising 32 cells). During the following two cycles (32 to 128
cells), ICMcells further segregate into twopopulations: the epi-
blast and the PrE. Cells in the ICM of the early blastocyst
(approx. 32 cells) show no overt differences, whereas at the
time of implantation (embryonic day (E)4.5, approx. 128–256
cells), PrE cells form a morphologically distinct epithelial
layeron the surface of the ICM, covering the epiblast (figure 3a).
Since there is no influx of outer cells to the ICM after the fifth
cell cycle [30,32], ICM cells in the early blastocyst give rise to
both cell types. All ICM cells may therefore be equivalent in
potency and capable of becoming either epiblast or PrE. This
bipotency is supported by the co-expression ofmarkers specific
to both lineages, such as NANOG, SOX2, OCT4, KLF5 and
GATA6 [12,84,120–128] (figure 3b). The transcription factors
such as NANOG, SOX2, OCT4 and KLF5 are essential for epi-
blast specification [128–135]. Expression of NANOG, SOX2
and OCT4 is restricted to the epiblast in the peri-implantation
blastocyst (E4.5) [121,136–138], coinciding with epiblast fate
restriction [8,137]. Conversely, the transcription factor GATA6
is required for PrE specification [138,139] and identifies PrE
cells at E4.5, alongside KLF5 and later PrE markers, such as
PDGFRα, SOX17, GATA4 and SOX7 [12,120,121,125,128,140–
143] (figure 3a,b).

Given the final arrangement of epiblast and PrE cells at the
time of implantation (E4.5), it was originally proposed that, as
for the TE, the position played a key role in symmetry breaking
within the ICM [144]. However, it was later discovered
that these two cell types emerge scattered throughout the
ICM, with a salt-and-pepper distribution [145,146]. These
cells express either NANOG or GATA6, indicating that they
have adopted epiblast or PrE identity, respectively [146].
Further analyses have shown that cells specified as either epi-
blast or PrE coexist with uncommitted ICM cells, which still
co-express NANOG and GATA6 [60,121] (figure 3b). These
NANOG, GATA6 double-positive (DP) progenitor cells adopt
epiblast or PrE identity asynchronously as the blastocyst devel-
ops [60,137,147]. This lack of spatial pattern is progressively
resolved, concomitantly with cell fate acquisition, through
the segregation of epiblast and PrE cells into distinct layers
[121]. ICM cells are motile and undergo extensive neighbour
exchange over the course of blastocyst development [148]. As
nascent PrE cells reach the ICM surface, they stabilize their
position and their fate, resulting in the gradual coalescence of
PrE cells and the eventual separation of both compartments
[121]. PrE cells initiate an epithelial programme when they
become specified and develop apicobasal polarity as
they come into contact with the blastocyst cavity [73,149,150].
This ability to polarize is critical for PrE survival and posi-
tioning [150] and consequently for correct cell sorting and
epithelialization in the embryo.

If not differential position, what triggers symmetry break-
ing within the ICM? And why do epiblast and PrE cells
emerge with no evident spatial pattern? In recent years, it has
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become clear that the answer to these questions is intercellular
signalling. Beside the cell-autonomous need for GATA6
[138,139], PrE specification in the mouse embryo requires acti-
vation of the receptor tyrosine kinase (RTK)–mitogen-activated
protein kinase (MAPK) pathway by a non-cell-autonomous
signal: fibroblast growth factor (FGF)4 [125,136,146,151–157].
Fgf4 is expressed primarily in emerging epiblast cells, as well
as in unspecified ICM cells [12,120,125,133,158] downstream
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of NANOG, SOX2, OCT4 and KLF5 [94,128,132–135,159,160].
Activation of the RTK–MAPK pathway by FGF4 is required
to maintain GATA6 expression in ICM cells, and without it
the PrE fails to form [136,146,152,153,157]. However, while
PrE specification requires the presence of FGF4 produced
by epiblast cells, the maturation of the epiblast lineage also
requires FGF4 and the presence of PrE cells [125]. Although
uncommitted ICM cells default to a functional, naive epiblast
state when the RTK–MAPK pathway is inactive [136], FGF4
is necessary directly to downregulate NANOG levels as cells
transition from a naive to a primed epiblast state [60,152,154],
and indirectly, since extracellularmatrix components produced
by PrE cells are required for epiblast maturation (and poten-
tially for the commitment of cells to an epiblast fate) [20,141].
Therefore, the formation of these two cell types is intimately
linked via FGF4.
s.R.Soc.B
375:20190562
7. Finding a balance through communication
Activationof theRTK–MAPKpathwaybyFGF4 is necessary for
the specificationof bothPrEand epiblast in themouse and in the
rat [161] blastocyst, although this does not seem to be the case in
all mammals [162,163]. Despite the evidence available for the
mouse, one may ask why is this pathway necessary in rodents?
The answer may lie in the need for a robust outcome in a small
population of cells. The ICM of the mouse blastocyst has a very
conserved composition [60]. Genotypes in which the ICM con-
tains 40–60% of either lineage are viable past implantation
and into fertile adults (figure 3c) [60,138,143,152,154,164]. How-
ever, a lack of PrE invariably results in peri-implantation
lethality [138,139,146,152–155,165,166], presumably due to the
underdevelopment of the epiblast. It is therefore likely that com-
parable amounts of epiblast and PrE cells are necessary for
successful developmental progression and that this outcome
needs to be precisely controlled—although the underlying
reasons are unknown and could be manifold: too few PrE
cells could impose a mechanical constraint on epiblast growth
or fail to synthesize sufficient extracellular membrane com-
ponents, whereas an epiblast that is too small may not be able
to reach the appropriate size to acquire an anterior–posterior
pattern, consequently initiate gastrulation and eventually
produce a viable fetus [167].

To test whether there is control over the ratio of epiblast to
PrE, we experimentally altered ICM composition by either
(i) introducing ESCs into embryos to increase the number of
epiblast cells or (ii) eliminating epiblast or PrE cells using
laser ablation [119]. Both perturbations triggered a compensa-
tory differentiation pattern in uncommitted ICM progenitors
to restore the normal lineage composition: increased PrE differ-
entiation when the epiblast was experimentally expanded
and differentiation towards the reduced lineage in ablation
experiments [119]. Predictably, the ability of the system to
fully recover from these perturbations depended on both
the available number of uncommitted ICM cells and the
magnitude of the perturbation.

But how might this population-level control of cell-type
proportions be achieved? Gene regulatory networks that
involve only cell-autonomous interactions between transcrip-
tion factors generate two stable fates (figure 3d(i,ii)) [168,169]
and can yield reproducible cell-type proportions irrespective
of population size. Such a network, centred around direct
mutual inhibition between NANOG and GATA6, has been
proposed to underpin multilineage priming in ESCs
[170–172], although no evidence currently exists for this
direct interaction taking place in vivo in the embryo. More
importantly, such a cell-autonomous system cannot account
for the regulatory behaviour observed in the ICM of the
mouse embryo [119]. This behaviour and the need for non-
cell-autonomous activation of the RTK–MAPK cascade in
this process suggest that the role of FGF4 may be to ensure
robustness in this cell fate decision.

Several models of cell fate specification in the ICM have
combined (i) direct mutual inhibition between NANOG and
GATA6, (ii) auto-activation of each transcription factor and
(iii) feedback through the FGF4 signalling (figure 3d(iii))
[139,173–175]. These models (reviewed in [176,177]) elegantly
recapitulate many experimental observations and have certain
predictive power. However, their complexity precludes dissec-
tion of the contribution of each regulatory module to the
behaviour of the system or testing for sufficiency of any of its
individual elements. To better understand the regulative
nature of this system, we recently built a model in which the
mutual repression between NANOG and GATA6 is mediated
indirectly by a growth factor, instead of directly through
mutual inhibition (figure 3d(iv)) [119]. Like previous models,
our growth factor-mediated lineage specificationmodel recapi-
tulates the progressive emergence of lineages observed in
embryos, as well as the ability of lineage size (as defined by
the number of cells) to scale with absolute embryo size [119].
However, in this simpler model, the contribution and suffi-
ciency of the single variable (growth factor feedback) is
evident (figure 3d(iv)). Moreover, this minimal model predicts
that the uncommitted progenitor state is unstable and it rapidly
evolves towards one of two stable states—epiblast or PrE—in
line with the available experimental evidence (i.e. a stable,
DP-equivalent stem cell state has not yet been readily captured
in vitro).

These results reveal an intrinsic mechanism for active con-
trol of cell-type composition in the ICM mediated non-cell
autonomously by FGF4. This control relies on the presence of
uncommitted ICM progenitors [119], the cells whose fate
depends on activity of the FGF–MAPK pathway [60,136].
Accordingly, when FGF4 is provided to Fgf4-null ICM cells
by grafting FGF4-producing ESCs onto mutant embryos, PrE
fate is induced among mutant uncommitted host cells in a
manner that recapitulates cell fate specification in wild-type
embryos [119].
8. An autonomous, scalable way to robustly
generate cell-type diversity

The proposed growth factor-mediated switch [119] makes
two important predictions: (i) the system is robust to changes
in the relative proportions of each lineage, as demonstrated
experimentally [119], and (ii) the lateral inhibition of fates
leads to the scattered emergence of cell types first described
by Chazaud, Rossant and co-workers [145,146]. Multiple
explanations have been put forward for the salt-and-pepper
distribution of epiblast and PrE cells. These include endogen-
ous differences in RTK–MAPK activity [137,151–153,158],
lineage history [142,178] and reaction–diffusion mechanisms
[174]. In all of these scenarios, however, FGF4 maintains
Gata6 expression [152,153] and is primarily produced by cells
with high NANOG levels [12,125,158]. While acknowledging
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the existence of two receptors for FGF4 (FGFR1 and FGFR2)
and multiple feedback regulatory interactions taking place
between receptor activation and transcription of their target
genes [12,125,154–157], if the pathway is distilled to its net
output, as proposed (figure 3d(iv)), it results in a lateral inhi-
bition mechanism, in which cells producing FGF4 generate a
local high concentration of ligand that induces PrE fate
among their neighbours (and consequently inhibits epiblast
fate). In this scenario, FGF4 is assumed to be bound to the extra-
cellular matrix, rather than to diffuse throughout the ICM
[179,180]. This model does not explain how (and if) FGF4 pro-
ducers are less sensitive to the ligand than their neighbours, so
as to ensure alternative fates. Perhaps, a higher number of
receptor molecules, or FGFR1–R2 heterodimers, are necessary
to fully transduce the signal; perhaps, FGFR1 becomes quickly
desensitized, or putative epiblast cells become locked in their
fate early on [137]. At this point, we can only speculate.
Nevertheless, this behaviour is compatible with the existing
experimental evidence and agnostic to both the origin of the
differences in NANOG/FGF4 levels and the nature of the
signalling pathway.

Growth factor-mediated control of lineage size is a
common strategy employed in developmental systems.
Neuron-produced GDF11, a TGF-β superfamily ligand,
inhibits neuronal differentiation in the mouse olfactory epi-
thelium [181], while epidermal growth factor receptor
(EGFR) stimulation by Spitz is necessary to coordinate the
size of anterior and posterior compartments of Drosophila epi-
dermal segments [182]. However, in the case of the blastocyst,
the lateral inhibition of fates is remarkably similar to that
observed in Dictyostelium discoideum [183]. In Dictyostelium, a
facultative social amoeba, aggregation of individual cells
upon starvation is followed by the specification of two broad
fates—prespore and prestalk—through a differential response
to the factor DIF-1, secreted by prespore cells, which activates
a GATA-family transcription factor [184–186]. These two cell
types emerge interspersed and eventually sort out and con-
tribute to different regions of the fruiting body (the parallels
between spore versus stalk and embryonic versus extraem-
bryonic fates are immediate) [183,187]. In the mouse
blastocyst, the differential response to FGF4 spontaneously
generates a salt-and-pepper distribution of cell identities that
are resolved (and stabilized) through cell sorting [121]. A
system of this type inevitably yields a consistent ratio of cell
types and is independent of both population size (scaling be-
haviour) and an external source of growth factor. Therefore, it
is suited for patterning autonomous, self-organizing systems,
such as the preimplantation embryo or the social amoeba.
9. What triggers the decision?
Despite our current understanding of the transcription factors
and signals mediating cell fate specification in the ICM of the
mouse blastocyst, perhaps the biggest open question concerns
how is this process initiated? Many (but not all) ICM cells in
the early blastocyst express Fgf4 [12,125,154]. These include
emerging epiblast cells, but certainly also many (if not all)
uncommitted progenitors. All these cells express high levels
of NANOG, which has been shown to, directly or indirectly,
promote Fgf4 expression [133,139,173]. Different explanations
have been proposed for the differential production of FGF4.
It could be the result of noisy gene expression: bursts in
NANOG levels or some other coactivator of Fgf4 could result
in stochastic foci of high ligand concentration that would trig-
ger symmetry breaking. It has also been postulated that
certain ICM cells are biased towards epiblast or PrE as a
result of their lineage history and/or differential inheritance
of FGFR2 [142,167]. FGFR2 has since been shown to be dispen-
sable for PrE specification [154,155], and correlations always
call for cautious interpretation. Nevertheless, differences due
to metabolic status or a number of other internal checkpoints
can arise within a population of otherwise equipotent cells
and bias their behaviour. For instance, nutritional status has
been shown to affect DIF-1 sensitivity and cell fate choice in
Dictyostelium (reviewed in [188]), providing another potential
parallel for the mammalian ICM. Moreover, epiblast cells
undergo an active selection process through cell competition
in the early post-implantation embryo, prior to gastrulation
[189,190], which might be the result of metabolic differences
[191,192]. Accordingly, the Hippo pathway component YAP
and TEAD1 have been proposed to mediate the elimination
of unspecified epiblast cells through cell competition in the pre-
implantation embryo [193]. It is therefore easy to envision how
either differential production or sensitivity to FGF4 could arise
from intrinsic differences between ICM cells. These differences
need not determine ultimate cell fate but can destabilize the
progenitor state to initiate lineage divergence.

Another key element to consider is the cell cycle. Cell div-
isions during preimplantation development become
progressively asynchronous as embryos grow, providing yet
another source of heterogeneity among blastomeres. For
instance, all ICM cells could conceivably have the same poten-
tial to produce FGF4 but do so only duringG1. In this scenario,
faster-cycling cells will always initiate symmetry breaking and
might end up in the epiblast as a result, in agreement with pre-
vious observations [142]. Another possibility is that the
sensitivity of ICM cells to differentiation cues changes in
different phases of the cell cycle, as shown in ESCs [194].
This could be due to varying expression levels of signal trans-
ducers along the cell cycle. In this case, asynchrony in the cell
cycle phase would create a buffer against sudden changes in
FGF4 levels, by ensuring only a subset of cells are competent
to respond to the growth factor signal at any given time
[119]. This has been shown to be the case in Dictyostelium
[195], where asynchrony ensures correct cell-type proportion-
ing in themulticellular slug. Therefore, cell cycle asynchrony in
the mouse blastocyst may underlie both the asynchrony in cell
fate specification within the ICM and the robustness observed
in this process [60], while also providing an explanation for
seemingly disparate observations.
10. Conclusion
The preimplantation mouse embryo is a highly tractable
system and an example of in vivo self-organization. Classic
studies during the second half of the twentieth century estab-
lished the mouse blastocyst as a truly fascinating biological
system. Over the past two decades, the combination of
those classic experimental techniques with mathematical
modelling and novel genomic and microscopy tools has
shed new light on how signalling, mechanical forces and pos-
itional information drive patterning and morphogenesis in
this system. Perhaps not surprisingly, we have learned that
it is the integration of these multiple cues that ensures a
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precise and reproducible developmental outcome. The appli-
cation of these tools to study the preimplantation stages of
other mammalian species has begun to reveal differences
between the early development of rodents and that of
larger mammals, including ourselves. The continued use of
novel technologies on a diversity of biological models will
paint a clearer picture of the strategies used by mammalian
embryos to overcome challenges and ensure developmental
success. These principles not only will improve our under-
standing of human development but will help us engineer
better self-organizing developmental systems and models.
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