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The relative body masses of predators and their prey strongly affect the
predators’ ecology. An accurate estimate of the mass of an extinct predator
is therefore key to revealing its biology and the structure of the ecosystem it
inhabited. Until its extinction, the thylacine was the largest extant carnivorous
marsupial, but little data exist regarding its body mass, with an average
of 29.5 kg the most commonly used estimate. According to the costs of
carnivory model, this estimate predicts that thylacines would have focused
on prey subequal to or larger than themselves; however, many studies of
their functional morphology suggest a diet of smaller animals. Here, we pre-
sent new body mass estimates for 93 adult thylacines, including two
taxidermy specimens and four complete mounted skeletons, representing 40
known-sex specimens, using three-dimensional volumetric model-informed
regressions. We demonstrate that prior estimates substantially overestimated
average adult thylacine body mass. We show mixed-sex population mean
(16.7 kg), mean male (19.7 kg), and mean female (13.7 kg) body masses well
below prior estimates, and below the 21 kg costs of carnivory threshold.
Our data show that the thylacine did not violate the costs of carnivory. The
thylacine instead occupied the 14.5–21 kg predator/prey range characterized
by small-prey predators capable of occasionally switching to relatively
large-bodied prey if necessary.
1. Introduction
Body mass is one of the most fundamentally important aspects of an organism,
strongly influencing and dictating many biological characteristics, including
metabolic rate [1,2], lifespan [3], growth and fecundity rate [4–6], diet [7,8], and
niche occupation [9–11]. One of the most striking repercussions of body mass
for carnivorous mammals is the energy budget threshold known as the costs of
carnivory [12,13]. Under this model, small carnivores (less than 14 kg) tend to
feed on prey much smaller than themselves, and large carnivores (greater than
21 kg) feed on subequal-sized prey or larger, with those in the 14–21 kg range
typically preying on small-bodied prey but may be capable of occasionally tack-
ling larger prey items if necessary. This constraint is largely a result of the
substantial energetic expense involved in locating and capturing prey, resulting
in higher metabolic rates in carnivores than their herbivorous prey. As metabolic
rate is strongly correlated with body size, larger carnivores incur higher costs per
prey item located and consumed, prompting a shift towards larger-bodied prey
[12,14]. Substantially higher energetic expenses are seen in marsupial carnivores
versus their herbivorous relatives, strongly suggesting they are not exempt from
this type of energetic constraint [15].
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Figure 1. Three-dimensional volumetric models of the thylacine. (a) Three-dimensional surface scan of mounted specimen TMAG A312; (b) convex hull generated
over the skeleton; (c) fully textured volumetric model sculpted over the skeleton. Surface scans of taxidermy specimens (d ) NMV C28744; (e) TMAG A1298; and ( f )
surface scan of preserved specimen NRM 566599. Images not to scale. (Online version in colour.)
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The most commonly cited average body mass for the
thylacine is 29.5 kg [16], placing it well above the 21 kg
threshold. However, structural analyses of the thylacine
skull and mandible have repeatedly shown that the cranial
architecture was poorly adapted to handle the stresses of pro-
curing large-bodied prey [17–19]. This noted disagreement
between the postulated energetic budget and the functional
morphology remains unresolved [19]. The 29.5 kg estimate
is seemingly based on uncritical reading of the anecdotal
source material (Le Soef in Commissioners of the Victorian
Intercolonial Exhibition, 1875, p. 261; ‘weighing sometimes
from 60 lb. to 70 lb.’). Only four reliable records of thylacine
body mass can be found in the peer-reviewed literature: 33
pounds for an ‘excessively fat’ male (approx. 15 kg, [20]); a
14.97 kg male [21], and two records from the 1914 death regis-
try of the London Zoo, a 29 lb. female (approx. 13.2 kg) and a
57.5 lb. male (approx. 26.1 kg). Beyond these four records,
reported thylacine body masses are scant, anecdotal, and pro-
blematic (electronic supplementary material, S1), leaving us
with no clear record of adult body mass.

For extinct organisms such as the thylacine where we
cannot directly measure mass, there has traditionally been
reliance on regression equations based on craniodental
[22–24] or postcranial [25–29] metrics from extant comparative
taxa (see [30]). Recently, various volumetric techniques have
been shown to be highly accurate and increasingly feasible
(see [31]), including graphic double integration (GDI; [32,33]),
convex hull volumetrics [34,35], and digital volumetric model-
ling [32,36,37]. Here,we use a combination of linear regressions
and volumetric methods to address the question of whether
the thylacine was a striking outlier to the costs of carnivory
by re-examining the average body mass and size sexual
dimorphism of this popular icon of convergent evolution and
human-mediated extinction.
2. Methods
(a) Specimen data
A total of 93 adult thylacine specimens were studied (18 female, 23
male, 52 unknown sex), represented by one whole preserved body,
two whole body taxidermies, three mounted skeletons, and a total
of 82 crania, 74mandibles, and 26 humerus/femur pairs (electronic
supplementary material, S2). We three-dimensional surface
scanned 88 of the most complete/undamaged specimens with an
Artec Spider/Space Spider or Artec Leo structured light scanner,
and five specimens were computed tomography (CT) scanned.
Specimens were classified as adult where the M4 is fully erupted
and in occlusion (in/nearly in contact with the M3 metastylar
wing) or, in the case of mandible-only specimens, m4 erupted and
clear of the ascending ramus. We classified the postcrania-only
specimens as adult if metaphyses were ossified or partially ossified
such that epiphyseal caps were not separable from the metaphysis.
All analyses were conducted in R v. 3.6.1 [38], with all data
presented in electronic supplementary material, S3.
(b) Body mass
We estimated thylacine bodymasses by four methods: Myers’ [23]
dental regressions (upper molar row length and lower molar row
length [MRL regressions]), Campione & Evans’ [29] stylopodial
regression (humeral and femoral least circumference [HcFc
regression]), minimum convex hull estimations [35], and volu-
metric model estimation (e.g. [36,37]). Both MRL regressions and
HcFc regression estimates were made for 22 specimens (seven
female, nine male, six unknown), and the masses of four of those
specimens were also calculated via both convex hull and volu-
metric models (two female, one male, one unknown). Body mass
and prey body mass values for comparative taxa were sourced
from the literature (electronic supplementary material, S4).

Convex hulls were generated in MeshLab v. 2016.12 (Visual
Computing Lab, Italy) following standard procedures [35], using
'three-dimensional surface meshes of three mounted articulated
skeletons (NMV C28178, TMAG A312, TMAG A315) and the digi-
tally extracted skeleton from a CT scan of whole preserved body
NRM 566599 (figure 1a,b). The volumes of the convex hulls were
then multiplied by standard density values of water (1000 kg m−1)
and that of a horse (893.36 kg m−1) as a bracketing method [39,40].

Digital volumetric models were sculpted by one of us (DGM) in
ZBrush v.2020 (Pixelogic, USA) around the scanned meshes of the
three mounted skeletons (figure 1c). Both an underweight and
ideal body conditionmodel followingLaflamme [41]were generated
as a bracketingmethod. Surface scanswere also used tomake digital
three-dimensional meshes of the two taxidermy specimens (NMV
C28744, TMAG A1298; figure 1d,e). The curled position and com-
pression of the preserved specimen NRM 566599 was deemed to
require too much retrodeformation to allow for a similar sculpting,
so we relied on a direct three-dimensional surface scan of the speci-
men (figure 1f). These six digital models were then imported into
MeshLab and their mass estimated as described above, with the
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Figure 2. Body mass of the thylacine. (a) Regression and volumetric body mass range estimates for six whole-body specimens. Values for UMRL, LMRL [23], and
HcFc [29] regressions are upper and lower bounds of the respective prediction errors. Values for the convex hull and volumetric estimates are mass at
ρ = 893.36 kg m−3 and ρ = 1000 kg m−3. Note that the volumetric estimate of NRM 566599 is from the surface scan of the emaciated ethanol-preserved speci-
men, not a model reconstruction, and so is not represented by an underweight/ideal weight condition. (b) Total sample body mass estimate (n = 91). Dashed line is
mean value (16.7 kg). (c) Sexed specimen body mass estimate (female = 17, male = 21). Dashed lines are mean values (female = 13.7 kg, male = 19.7 kg).
(Online version in colour.)
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taxidermyspecimens’ surface area reduced to account for an average
of 5 mmand 10 mmpelage thickness projecting above the true body
surface, as a conservative bracketed estimate.

Differences between the mass estimates from the MRL and
HcFc regressions were assessed via a Wilcoxon ranked sum test.
This preliminary analysis showed that the HcFc regression differs
significantly from the MRL regression estimates ( p < 0.001; elec-
tronic supplementary material, S5) and that these HcFc estimates
are largely congruent with both the convex hull and volumetric
model mass estimates (figure 2a; electronic supplementary
material, S6). As such, we chose to proceed with the HcFc body
mass estimates as a best proxy in further analyses.

As the HcFc regression is the most accurate mass proxy—but
postcrania making up only a fraction of thylacine museum
specimens—we used ordinary least-squares (OLS) regression of
the UMRL, LMRL, and condylobasal length of the skull (CBL)
on the HcFc mass proxies to generate a ‘corrected’ set of regression
equations (cUMRL, cLMRL, and cCBL) applicable to thylacine cra-
nial specimens. Skull length (as estimated by condylobasal length)
is a commonmetric to base bodymass regressions, because it is not
affected by dental reduction in carnivorous mammals [22], and
due to the potential for indeterminate growth of the marsupial
skeleton to poorly correlate with the dental metrics. These three
OLS regression estimates were adjusted for transformation bias
and ranked by the R2 and per cent prediction error (PPE).
(c) Sexual dimorphism
To assess potential sexual dimorphism in cranial shape, 12 linear
metrics were taken using digital calipers from the 64 complete
crania (14 female, 16 male, 34 unknown sex; electronic supplemen-
tarymaterial, S7). Allmetrics are the average of threemeasurements
to the nearest 0.1 mm, and were natural log-transformed for all
subsequent analyses.

Sex-based differences between the individual metrics were
explored using a multivariate analysis of variance (MANOVA).
To test for deviation from isometric scaling, we used major axis
(MA) regression of the traits of the sexed group against body
size proxies (CBL and the above-estimated body mass) in the R
package smatr [42]. We then performed a principal component
analysis (PCA) of the total linearmetrics sample (n = 64) anddiffer-
ences within the Principal Components (PCs) between the sexes
were tested using MANOVA. The magnitude of sexual size
dimorphism was calculated using the Lovich & Gibbons [43]
Sexual Dimorphism Index (SDI), with estimated body mass as
the trait of interest. To assign sex information to the 34 unknown
specimens, a linear discriminant analysis (LDA) was carried out
in the packageMASS [44] with the resulting discriminant function
then used to predict the sex of the unknown individuals.

Surface scans of 14 of the most complete specimens (seven
female, seven male) were landmarked by one of us (DSR) using
Viewbox 4 (dHAL software, Greece). Specimens with small
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amounts of unilateral damage were restored using mesh editing
tools in Geomagic Studio 14. As shape differences between the
sexes may not be captured with Type I suture-based landmarks
sensu Bookstein [45], a fixed point, patch, and curve-based set of
381 landmarks was implemented (electronic supplementary
material, S8).

The resultant three-dimensional Geometric Morphometrics
(GM) coordinate data were analysed using the package geo-
morph [46]. A PCA was performed on the Procrustes
coordinates as a data transformation and reduction technique,
and a MANOVA performed on the resultant PC values holding
sex as the factor. Additionally, we performed a Procrustes
ANOVA (pANOVA) on the Procrustes coordinates to investigate
the effect of sex, size (as natural log-transformed Centroid Size
[lnCS]), and the interaction of sex and lnCS on shape.

Significance results for all analyses using multiple compari-
sons (e.g. MANOVAs) were adjusted to reduce Type I errors
using the Benjamini-Hochberg procedure [47]. The false discovery
rate (FDR) allowed for the procedure was set at 0.10 as a relatively
conservative value that neverthelesswould not overly penalize the
small sample sizes in the study.
:20201537
3. Results
(a) Body mass
The OLS regression of condylobasal skull length on the
HcFc-generated body masses is the best-fit equation (adjusted
R2 = 0.819, PPE = 0.0474), with cUMRL (adjusted R2 = 0.724,
PPE = 0.0861) and cLMRL (adjusted R2 = 0.703, PPE = 0.0838)
approximately subequal to each other (electronic supplemen-
tary material, S9). We chose this cCBL equation as a best
proxy to calculate the body mass for the 74 applicable
thylacines (i.e. those with CBL metrics) followed by HcFc,
cUMRL, and cLMRL regressions in descending order based
on metric availability and goodness of fit, totalling in 91
massed thylacines. All of the following results and discussion
of body mass below refer to this ‘best estimate’ set.

Distribution of this total sample bodymass is slightly bimo-
dal, with a mean mixed-sex species estimate of 16.7 kg
(figure 2b; electronic supplementary material, S10). The body
mass estimates of the known-sexed specimens show a strong
separation between the sexes (Welch’s two-sample t-test: p <
0.001), with a female mean of 13.7 kg (s.d.: 1.51) and that of
males at 19.7 kg (s.d.: 2.48; figure 2c). Mass distribution
within the male sample is uneven, with a potentially bimodal
pattern. The total range estimate across all three corrected
equations indicates a potential minimum adult size of 9.8 kg
(NMV C5750.1, female) and a maximum of 28.1 kg (LEEDM
C.1869.46.2.4088; sex unknown). These mass averages place
the thylacine under the 21 kg large-prey specialist threshold,
contrary to the previous estimate of 29.5 kg (figure 3).

(b) Sexual dimorphism
The sexes are significantly different in size across all metrics
(electronic supplementary material, S11). Results of the MA
regressions on CBL are ambiguous, but suggestive of negative
allometry in width of the palate at the carnassial and, with
very poor fit, width of the skull at the postorbital constriction
(electronic supplementary material, S12). Positive allometry is
suggested in the width of the rostrum across the canines. The
elevation of the regression against the M3 length is shown to
be significantly different between the sexes, though again with
very poor fit. The MA regressions on estimated body mass are
broadly similar, suggestingnegative allometry in the postorbital
constriction, and positive allometry in palate length, rostral
width, and bizygomatic width (electronic supplementary
material, S12). In neither analyses, however, are the effects
seen sharedbetween the sexes, norare the slopes found tobe sig-
nificantly different, suggesting that either small sample size or
large trait variance are obscuring any trends.

The PCA of the linear metrics shows a separation in PC1
(86.7% of variance) but no pattern beyond this first PC,
which is heavily loaded by size (figure 4a). The MANOVA
on the PCs corroborates the separation on PC1 ( p < 0.001) but
does not find a significant difference between the sexes in
any other PC. A clear discrimination between the sexes is
also seen in the LDA, which correctly identifies 96.7% of the
known-sex individuals (figure 4b).

The PCA of the three-dimensional GM data also shows a
separation along PC1 (27.3% of variance) between the sexes,
with no separation along PC2 (17.0% of variance) (figure 4c).
A MANOVA of the PCs finds a significant difference ( p <
0.001) only in PC1 (electronic supplementary material, S13).
Regression of the Procrustes coordinates on the natural log-
transformed centroid size and sex both returned significant
differences ( p < 0.001), with the interaction of sex and lnCS
not significant (electronic supplementary material, S13).

Thylacines show a mass-based SDI of 44.19, similar to the
range expressed by the dasyurid comparatives (range SDI:
46.91–93.41; electronic supplementary material, S14). The
dasyuromorphs tested here display a far higher SDI than the
placental canid comparatives (range SDI: 4.85–37.39). With
such a relatively large degree of sexual dimorphism, we then
used body mass (as size proxy) as an additional post hoc discri-
minant for sexing the unknown thylacines. Thylacines with
body mass less than two standard deviations from the male
mean (mass < 14.8 kg) were labelled as ‘female’, and with a
body mass greater than two standard deviations from the
female mean (mass > 16.7 kg) as ‘male’. If these labels matched
the prediction classification from the LDA, the unknown speci-
men was then ascribed to that sex (electronic supplementary
material, S15).

Using the expanded dataset of the post hoc sexed thylacines
(24 female, 28 male), we repeated the above analyses with the
exception of the LDA and three-dimensional GM. All results
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are similar with the exception of the MA regressions on body
mass. Strong support for positive allometry in width of the ros-
trum at the canine was found (female: R2 = 0.786, p = 0.003;
male: R2 = 0.843, p < 0.001), though no evidence was found for
a difference between the sexes in slope (p = 0.507) or elevation
(p = 0.868). Tentative support for shared positive allometry
was found in the occipital width (female: R2 = 0.799, p =
0.0502; male: R2 = 0.830, p = 0.021). Similarly, tentative support
for shared positive allometry was found in the interorbital
width (female: R2 = 0.473, p = 0.047; male: R2 = 0.714, p =
0.010) and negative allometry in postorbital constriction
(female: R2 = 0.160, p = 0.087; male: R2 = 0.412, p = 0.017),
though with markedly poorer fit.
4. Discussion
Previous mass estimates had placed the thylacine well over the
21.0 kg costs of carnivory threshold [12], suggesting a predation
strategy focusing on large-bodied prey around or above the size
of the predator. This feeding ecology conflicts with functional
studies suggesting that the thylacine was poorly adapted to
handle large-bodied prey [17–19,48]. Our data show that the
mean bodymass (approx. 16.7 kg) was likely to have been sub-
stantially lower than both the 29.5 kgvalue given byPaddle [16]
and the 26.5 kg value calculated by Wroe [49]. When the pred-
ator-to-prey body mass ratio is considered, the thylacine is not
seen to violate the costs of carnivory, indicating that the same or
similar budget threshold applies across terrestrial mammalian
carnivores (figure 3; [15]). This mass revision strongly suggests
that the thylacine was not an outlier in the costs of carnivory,
and has profound implications for interpretations of thylacine
ecology and predatory behaviour. The thylacine falls within
the transitional threshold similar to mesopredators that
mostly target small-bodied prey but are capable of tackling
larger prey if necessary, such as the coyote (Canis latrans), and
unlike large-prey specialists the thylacine is often considered
convergent with, e.g. the grey wolf (Canis lupus; figure 3).
This is in line with several previous assessments of the
thylacine’s predatory ecology [17–19,48,50,51].

The mass of the female thylacine (mean 13.7 kg) overlaps
with that of large Tasmanian devil (Sarcophilus harrisii) males,
which average approximately 8.8 kg and occasionally reach
weights of > 12 kg [51–53]. A similar overlap in mass
is observed between the sympatric eastern quolls (Dasyurus
viverrinus) and female spotted-tailed quolls (Dasyurus macula-
tus), and between male D. maculatus and female S. harrisii
[51,54]. This overlap is not seen between quolls and devils
in other functional characters, such as canine strength or tem-
poralis muscle area [51]. Substantial overlap in these
characters has been noted between Tasmanian devils and thy-
lacines, with female thylacines having substantially weaker
canines than devils of both sexes, and a smaller area for the
temporalis than male devils [51]. While there is no reliable
data for the feeding ecology of the thylacine, it may be that
this overlap in mass and functional characters prompted
niche separation in areas of sympatry, or that this mass overlap
continued to allow devils to dominate carcass access and util-
ization over the entire range of marsupial carnivores, from
quolls through thylacines.

The strong sexual size dimorphism (SDI: 44.19) is not
reflected by a significant dimorphism in shape (figure 4d ).
Whilewe do find evidence of positive allometry in the cranium
in both sexes, especially in rostral and facial width, we find no
evidence of differing allometric trajectories or non-allometric
difference in shape between the sexes. This also suggests that
the two ‘kinds’ or ‘types’ of thylacine sometimes noted in
the literature—a short-nosed ‘bull-dog’ thylacine, and a
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‘greyhound’ thylacine [55–58]—were simply observations of
the strong size dimorphism coupled with the positive allo-
metric trends in cranial measurements, as postulated by
Allport [56] and Moeller [57].

The discordance between the estimates produced by the
molar row length regressions and the estimates produced
by both the volumetric methods and the stylopodial
regressions could be due to the use of the 29.5 kg mass
estimate in the generation of Myers’ regressions. Addition-
ally, the dental proportions of the hypercarnivorous
thylacine may be sufficiently different enough to render the
MRL regressions inaccurate. The overestimation of cranioden-
tally distinct taxa was noted by Myers [23], e.g. their
estimation of the mass of a Sarcophilus harrisii specimen
produced a value of 14.1 kg, substantially larger than the
species (approx. 7.2 kg) or male (approx. 8.8 kg) average
[51,52]. This overestimation of S. harrisii body mass has
been replicated and noted elsewhere [18]. We note that the
MRL regressions are accurate for the smaller dasyurids, and
we only urge caution regarding their use with the larger
carnivorous marsupials.

The poor fit of the dental-based mass estimation methods
has potential implications for understanding the palaeo-
ecology of earlier members of Thylacinidae. Most of the
family were small-bodied and likely to have varied little
from the general bauplan of predatory dasyuromorphs, and
we feel that the previous mass estimates, using dental
regressions, are probably valid [59]. However, the members
of the genus Thylacinus were significantly larger, culminating
with Thylacinus potens and Thylacinus megiriani, both esti-
mated at greater than approximately 30 kg via dental
regressions [59,60]. While there are no suitably complete
specimens of T. megiriani to explore via our corrected
regressions, two specimens of T. potens (NTM P4326 &
P4327) are complete enough to tentatively mass with the
appropriate cUMRL and cLMRL regressions. The body
mass of T. potens NTM P4326 is calculated here at 22.2 kg
(versus 41.0 kg; [59]) and that of NTM P4327 at 27.9 kg
(versus 52.3 kg; [59]). However, the same caveats mentioned
above regarding the extrapolation from a smaller species to
a larger, potentially differently proportioned one should be
noted here as well (see discussion in [59]). Interestingly,
while there are no stylopodial elements in the published
literature, an unpublished humerus putatively referred to
T. potens has been noted to be much smaller than expected
from the cranial remains [60].

The poor accuracy of the dental regressions in mass esti-
mation across dissimilar morphologies or magnitudes of
size (e.g. extrapolating from the relatively short-faced,
approximately 3 kg D. maculatus to the relatively long-faced,
much larger T. cynocephalus) has implications beyond recon-
structing the body mass of Thylacinus. Dental regressions
have been widely used to reconstruct the mass of extinct mar-
supials [61–65], non-marsupial metatherian sparassodonts
[66–71], and stem metatherians [72]. Many of these taxa are
well within the sizes and/or morphologies included in the
base data of the regressions, though many—such as the spar-
assodonts—are not. Overestimations of mass for these taxa
could affect interpretations of metatherian ecology, compe-
tition, and extinction [67,70,73,74] as all of these are
strongly affected by body mass.

These results highlight the general difficulties in extrapo-
lating body mass for species with no close living relatives, or
with living relatives that are drastically different in shape or
size [22,30,60,75–80]. The advantages of using ‘conventional’
(linear metric-based regression) techniques—their simplicity,
objectivity, and applicability to often-incomplete fossil
remains—should not be ignored. However, their associated
caveats and potential drawbacks also need to be kept in
mind, particularly when applying them to wildly disparate
taxa [30,31,80,81]. Where possible, it may be highly beneficial
to use multiple methods, including those (such as volumetric
methods, GDI, etc.) that are not constrained to single-element
regressions, to provide a method of cross-validation and to
avoid the ‘one bone effect’ often seen in such estimations.
5. Conclusion
Our data show that the thylacine did not violate the costs of
carnivory, but demonstrate that prior body mass estimates
were too high. The strongly sexually size dimorphic thylacine
(female mean: 13.7 kg; male mean: 16.7 kg) instead occupied
the entirety of the 14.5–21 kg threshold characterized by
small-prey predators that are capable of switching to rela-
tively large-bodied prey if the situation presents itself.
Relatively confident sex assignment of thylacines is possible
based on mass (female: < 14.8 kg; male > 16.7 kg) and cranial
size via linear metric LDA (a rough simple metric is: female
CBL < 203 mm; male CBL > 214 mm), and we post hoc
sexed an additional 23 specimens. Regarding body mass
estimations of the thylacine, we find that stylopodial circum-
ference regressions and volumetric methods agree relatively
well with each other to the exclusion of commonly used
dental-based regressions.

Data accessibility. Three-dimensional surface meshes for volumetric mass
estimation can be found at www.morphosource.org (Project: P1055),
R code and data at https://figshare.com/projects/project/86588. All
other data are included in the electronic supplementary material.
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