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The mainstream interventions used during the 2014–2016 Ebola epidemic
were contact tracing and case isolation. The Ebola outbreak in Nigeria that
formed part of the 2014–2016 epidemic demonstrated the effectiveness of
control interventions with a 100% hospitalization rate. Here, we aim to
explicitly estimate the protective effect of case isolation, reconstructing the
time events of onset of illness and hospitalization as well as the transmission
network. We show that case isolation reduced the reproduction number and
shortened the serial interval. Employing Bayesian inference with the Markov
chain Monte Carlo method for parameter estimation and assuming that
the reproduction number exponentially declines over time, the protective
effect of case isolation was estimated to be 39.7% (95% credible interval:
2.4%–82.1%). The individual protective effect of case isolation was also esti-
mated, showing that the effectiveness was dependent on the speed, i.e. the
time from onset of illness to hospitalization.
1. Introduction
Ebola virus disease (EVD) is an acute severe human infection caused by the
Ebola virus, which was first identified in Zaire in 1976 [1–3]. Once infected,
the incubation period (i.e. the time from exposure to the onset of illness)
ranges from 2 to 21 days, with a mean of 9.1 days and standard deviation
(SD) of 7.3 days [4]. Clinical signs and symptoms include fever, headache, fati-
gue, diarrhoea, vomiting, stomach pain, unexplained bleeding or bruising and
muscle pain. Because of its zoonotic nature, EVD is transmitted to the human
population primarily from wildlife, notably fruit bats or primates [5]. Sub-
sequently, human-to-human transmission occurs via direct contact with
bodily fluids, with the handling of deceased victims (e.g. during burials)
being a particularly significant channel for transmission. The largest ever epi-
demic of EVD occurred in West Africa during 2014–2016 and generated more
than 28 600 confirmed, probable and suspected cases, with 11 325 deaths [6].
During the 2014–2016 epidemic, this highly fatal disease initially appeared in
Guinea and then spread to neighbouring countries in West Africa, most notably
Liberia and Sierra Leone. Besides the three countries most affected, small local
outbreaks were reported in Nigeria and elsewhere [4], with the Nigerian out-
break notable for being contained swiftly.

With regards to possible countermeasures against EVD, no effective vac-
cines were available during the early stage of the 2014–2016 outbreak, while
various clinical studies were conducted during the later period of the epidemic
[7–9]. Thus, the mainstream interventions employed during the 2014–2016
epidemic were non-pharmaceutical and, for instance, included interventions
at healthcare settings relying on contact tracing and case isolation, i.e. restricting
the movement of contacts of diagnosed and infectious individuals, respectively.
Including analysis of early transmission dynamics, epidemiological modelling
studies were performed to assess the effectiveness of public health interventions
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that encompass hospital admission, case isolation and contact
tracing [9–23]. Nigeria successfully contained its EVD
outbreak by using contact tracing and case isolation, and,
by means of published datasets on the outbreak in Lagos
and Port Harcourt, Nigeria documented the epidemiological
dynamics in detail [24,25].

Supporting the effectiveness of hospital admission and case
isolation, a seminal paper byKucharski et al. [17] demonstrated
that building a substantial number of EVD treatment centres
helped to curb the epidemiological dynamics of EVD, which
actually became the mainstream of strategic global support
for the control of EVD from 2014 to 2016. However, such evalu-
ation has been restricted to a population-level impact (i.e. the
effectiveness of building provisional hospitals in reducing the
incidence of EVD) [10,15,16,18,23] or to evaluations that
measured the overall transmission risk at the population
level (e.g. household secondary attack risk [14]). To fully
understand the protective effect of case isolation, it is important
to infer the effect of preventing secondary transmission at an
individual level.

As part of the post-epidemic evaluation, here we devised
a novel statistical model to assess the protective effect of case
isolation against EVD transmission. Addressing the biased
nature of observed data associated with interventions (e.g.
shortened time interval between onset of illness for primary
and secondary cases), the present study aims to quantify
the protective effect of case isolation from the transmission
network data for EVD. Specifically, we explore a well-traced
dataset on EVD from Nigeria in 2014.
2. Material and methods
2.1. Description of the EVD outbreak data from Nigeria
Two published datasets from the Nigerian EVD outbreak were
used [24,25]. The outbreak involved 20 cases in total, including
one imported case, with all cases being confirmed and reported
during 17 July 2014 to 20 October 2014. After rapid detection of
the index case, the government established an Emergency
Operations Centre with an Incident Management System to coor-
dinate a quick response and decision making using previous
experience dealing with a polio outbreak in 2012 [25]. The index
case potentially exposed 72 people and resulted in 894 traced con-
tacts, of whom 891were followed up [25]. Because of the concerted
control efforts, the proportion of cases hospitalized in Nigeria was
100%, and here we aim to estimate the protective effect of the hos-
pitalization. Based on contact tracing, the dates of onset of illness
and hospitalization were recorded, and links between infectors
and infectees were established. Throughout this article, the
source of infection (i.e. infectors) is denoted as v. Additionally,
exposure date is written as t e, date of onset of illness is t s, hospital-
ization date is th and date of death is td.

In the present study, we combined the datasets from two
independent publications [24,25]. In principle, the data we used
were taken from Folarin et al. [24], but we also referred to another
study [25] because of missing information. Electronic supplemen-
tary material, S1 describes the details of our procedure for
reconstruction of the original data. Even with the merger of the
data, the dataset was incomplete, specifically the dates t and
sources of infection v. There was only one case where the source
of infection was unknown. For the only case with an unknown
infector, we summarized a list of six possible infectors. On the
other hand, there were several cases in the outbreak for whom
datesweremissing, in particular dates of onset of illness t s andhos-
pitalization th, making it necessary to impute dates. Specifically,
there were 10 cases for whom both dates were known and 10
cases for whom either date was missing and hence dates had to
be imputed.

2.2. Definition of time events and time intervals
Here, we reconstruct the epidemic tree using the partially observed
dataset, applying similar methods to those published elsewhere
[26,27], and subsequently estimate the protective effect of case iso-
lation. For this reason, we first define several time events and
intervals that would be central for reconstruction. Let i serve as
an index of individuals. We have four different time events;
namely, dates of exposure tei , onset of illness t

s
i , hospitalization thi

and death tdi . As is usually the case, these timelines are incomplete
(figure 1), but knowing the dates of onset of illness tsi and hospital-
ization thi is essential to evaluate the protective effect of case
isolation. For each case, there was at least one observed time
event. From these time events, there are two types of time lag dis-
tributions, i.e. the incubation period τes and the time from onset of
illness to hospitalization τsh. We calculate τxy = ty− tx, where the
superscripts x and y represent e, s or h. Then, missing events are
estimated using time lag distributions fl(τ), where τ is time lag
and l is a time lag that bridges the observed and missing dates
for each individual. To impute missing dates, we prioritized the
use of the incubation period, because parameter estimates of the
distribution were derived from a published study with a large
sample size [4] (see electronic supplementary material, S2 and
figure S1A). For example, for a case i, while the date of exposure
tei is observed and the onset of illness tsi is missing, the date of
onset of illness t̂si ¼ tei þ tes is quantified from the date of exposure
tei and the estimated incubation period τes, rather than working
backwards and estimating tsi from hospitalization thi . The corre-
sponding probabilities are summarized in the electronic
supplementary material, tables. Moreover, theoretical boundaries
for quantifying missing dates are described in electronic sup-
plementary material, S3.

2.3. Model descriptions
Our modelling approach employs the so-called renewal equation,

j(t) ¼
ð1
0
A(t, t)j(t� t) dt, (2:1)

where j(t) is the incidence (or the transient number of new infec-
tions) at calendar time t and A(t, τ) is the transmission rate per
case at calendar time t and the infection age (i.e. the time since
infection) τ, which may satisfy A(t, τ) =R(t)s(τ), where R(t) is
the instantaneous reproduction number and s(τ) is the prob-
ability density function of the serial interval [28,29]. Note that
the serial interval captures the transmissibility during illness pro-
gress, including time after death or recovery, but does not differ
by individual severity, for example considering the high viral
load in the later stage of illness or between survivors and non-
survivors [19]. We supposed that cases who died were infectious
and had infected others during burials while discharged cases
would still be infectious via, for example, sexual intercourse
(however, this was not observed in this outbreak).

Case isolation was performed during the course of the Niger-
ian epidemic. Throughout this study, we took the time of
hospitalization as the time of case isolation, as the two occurred
simultaneously in Nigeria. Let ϵ denote the relative reduction in
the rate of secondary transmission in an isolated individual, quan-
tified as a fixed parameter between 0 and 1, mirroring the
protective effect of case isolation, where ϵ = 1 represents perfect
isolation during the entire outbreak (i.e. no infection since the
onset of isolation). Only during case isolation is the transmission
rate assumed to be reduced to (1− ϵ)A(τ, t) per isolated case, i.e.

Â(t, t) ¼ A(t, t) without isolation,
(1� e)A(t, t) with isolation.

�
(2:2)
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Figure 1. The reconstructed timelines consisting of observed time events and the probability of reconstructed (missing) time events (n = 20 cases). The observed
time events are denoted by open circles. The probabilities of reconstructed time events are measured by cross size. The grey, red, blue and black symbols denote the
dates of exposure, onset of illness, hospitalization and death, respectively. The numbers shown on the y-axis represent case identity numbers (and associated
infectors, where NA means that the infector is missing).
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The time lag from onset of illness to hospitalization tshi ¼ thi � tsi
varies by individual, and thus the reduction in the number of
secondary transmissions at an individual level is described as

ei ¼
�
1� S(tshi )

�
e, (2:3)

where S(τ) is the cumulative distribution function of the serial
interval. We specifically consider ϵi for an individual i because
secondary transmissions averted by case isolation vary with the
time delay tshi from onset of illness for the primary case. If a case
was isolated immediately after the onset of illness, tshi ¼ 0, then
the individual effect is maximized, i.e. ϵi = ϵ (ϵi < ϵ otherwise).

Case isolation results in two different consequences for the
transmission dynamics that are governed by the renewal equation.
First, case isolation reduces secondary transmissions, i.e.

R̂(ti) ¼ R(ti)(1� ei) (2:4)

¼ R(ti)
�ðtshi

0
s(t) dtþ (1� e)

ð1
tshi

s(t) dt
�
, (2:5)

where tshi represents the disease age (i.e. the time since onset of ill-
ness) at which the primary case i was isolated. Second, isolation
shortens the serial interval distribution, i.e.

ŝ(ti) ¼
1

1�evi
s(ti) without isolation

1�e
1�evi

s(ti) with isolation

(
(2:6)

¼

s(ti)Ð tshvi
0

s(t)dtþ(1�e)
Ð 1
tshvi

s(t)dt

without isolation

(1�e)s(ti)Ð tshvi
0

s(t)dtþ(1�e)
Ð 1
tshvi

s(t)dt

with isolation,

8>>><
>>>:

(2:7)

where evi is the reduction effect of the primary case vi. Hereafter, we
refer to s(τ) in the absence of case isolation as the unbiased serial
interval, while the observed time interval ŝ(t) in the presence of
case isolation is referred to as the biased serial interval. Using the
reduced reproduction number R̂(t) and the distribution of shor-
tened serial interval ŝ(t), we intend to estimate the protective
effect of case isolation ϵ.
2.4. Source of infection
In terms of the transmission tree, the source of infection was
unknown for one case, while for all other cases it was known.
For the case with an unknown source of infection (case 20), six
possible candidates for the primary case existed, and a probabil-
istic reconstruction was conducted [30,31] (see electronic
supplementary material, S4).

2.5. Likelihood functions
We first suppose that all data D are observed. In this model, the
likelihood function denoted as L(θ|D) consists of two parts: the
number of observed secondary transmissions Lr(θ|D) and the
length of observed serial intervals Ls(θ|D),

L(ujD) ¼ Lr(ujD)Ls(ujD): (2:8)

The former consists of all reported cases, while the latter consists
of only non-imported cases. Only successful contacts are
included as we focus on the impact of case isolation instead of
quarantine. In practice, unsuccessful contacts are not available
because of lacking contact tracing information over time.

The observed secondary case number ri produced by each case
i is assumed to follow a distribution pwith the samemean value as
the reproduction number R̂(tsi ) at onset of illness. Three alternative
distributions exist: geometric, Poisson and negative binomial. The
likelihood of observing secondary case numbers is written as

Lr(ujD) ¼
Y
i[D

p(ri; u): (2:9)

We assume an exponential decreasingdynamic in the calendar time
as R(t) =R0 e

−δt, where R0 is the reproduction number at time zero
and δ is the exponential rate. The simple exponential decline in R(t)
has been empirically shown to fit better than the constant reproduc-
tion number in other outbreak case studies [32,33]. In this study,
we assume all cases in both locations (Lagos and Port Harcourt)
share the same R(t) universally in the country.

The observed serial intervals are assumed to follow a distri-
bution ŝ, in which the unbiased distribution s(τ) follows two



Table 1. Model comparison employing different distributions. Six possible models are compared using three different criterion values. AIC and BIC were
calculated using the maximum values of log-likelihood ln (̂L) among MCMC samples. Model posteriors were calculated using marginal likelihoods.

secondary cases serial interval ln (̂L) AIC BIC posterior (%)

geometric gamma −65.3 142.6 148.6 52.0

geometric Weibull −67.3 146.6 152.6 19.7

Poisson gamma −67.9 147.9 153.9 4.5

Poisson Weibull −70.1 152.1 158.1 0.8

negative binomial gamma −64.4 142.8 149.8 20.7

negative binomial Weibull −66.4 146.8 153.7 2.5
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alternative distributions, gamma and Weibull (see electronic
supplementary material, S5). The likelihood is written as

Ls(ujD) ¼
Y

i[DnD1

ŝ(tssi ; u), (2:10)

where tssi ¼ tsi � tsvi is the serial interval from the onset of illness
in the primary case vi to that in the secondary case i. Owing to
the assumption of a closed population, all cases except imported
cases D1 are included in calculating the serial intervals.

None of the time events were fully observed, but instead
were estimated using maximum-likelihood estimation. See the
electronic supplementary material for further details on the
reconstruction of time events.

2.6. Bayesian parameter estimation
Bayesian inference with Markov chain Monte Carlo (MCMC) was
adopted to obtain parameter estimates. This approach resembles
the data augmentation strategy used elsewhere to estimate the
source of infection during MERS-CoV transmission [32]. The
prior distribution was assumed to be non-informative and flat.
Because of the difficulties in simultaneous direct sampling of the
posterior distribution of parameters and the source of infection,
the distribution was approximated using theMetropolis–Hastings
Markov chain Monte Carlo (MH-MCMC) algorithm. In each
MH-MCMC iteration step, parameters were updated and then
the source of infection was sampled given the proposed
parameters. To improve mixing, the proposed distribution of the
infector was not flat, as assumed for the prior distribution of
other parameters, but was weighted according to the transmission
probability of each of the six listed possible infectors (see electronic
supplementary material, S1 and S4).

The simulation using the MH-MCMC algorithm was
performed by 1 000 000 iterations with thinning of every 500th
sample to reduce autocorrelation. Despite visually converged
chains suggesting that the samples are well mixed, the sampling
was replicated in four independent chains with a burn-in length
of half in each chain [34]. A total of 4000 samples represented the
posterior distribution. The algorithm was implemented in R
v. 3.4.3 (Kite-Eating Tree) on Mac OSX and R v. 3.4.4 (Someone to
Lean On) on Linux (available from: https://github.com/
imlouischan/ebola-ng).

2.7. Model selection and alternative time-dependent
assumption

Regarding the combinations of alternative distributions used in
observing the number of secondary cases (i.e. Poisson, geometric
or negative binomial) and unbiased serial interval (i.e. gamma
and Weibull), six possible combinations existed. The best combi-
nation was selected according to three criteria, namely the Akaike
information criterion (AIC), the Bayesian information criterion
(BIC) and model posterior distribution. We obtain a better
model when AIC or BIC are lower. AIC and BIC are point estima-
tors that take the best sample among 4000. By contrast, we obtain
a better model with a higher model posterior. Determining
the model posterior given a uniform prior is as simple as calculat-
ing the weight of marginal likelihoods. The marginal likelihoods
are calculated using the posterior harmonic mean (PHM)
estimator [35].

Besides comparing six possible combinations for Lr and Ls,
we also evaluated the impact of time dependence in the repro-
duction number on our estimate of the protective effect of case
isolation. That is, identifying the best-fitted combination,
we have additionally compared the reproduction number with
and without exponential decline as a function of time. In the
time-independent model, we set δ = 0.
3. Results
The time from onset of illness to hospitalization was fitted
better by Weibull than by gamma distribution (electronic
supplementary material, figure S1B), yielding estimates of
the mean (and s.d.) at 4.0 (2.3) days that we used to recon-
struct the timeline. Figure 1 shows the reconstructed
timelines consisting of both the observed time events and
the probabilistically reconstructed (missing) time events.

Employing Bayesian inference with MCMC, all three cri-
teria (i.e. AIC, BIC and model posterior) indicated that the
best model matches our assumptions, namely that in which
the number of secondary cases per primary cases is geometri-
cally distributed and the unbiased serial interval is gamma-
distributed (table 1). The corresponding model posterior is
52.0%. The second-best model is the one with alternative
assumptions employing negative binomial and gamma distri-
bution. Although this runner-up was estimated with the
lowest log-likelihood of −64.4, it is not favoured according to
the selection criteria because of a higher number of estimated
parameters. There was one unobserved branch of the trans-
mission tree, and the possible primary case associated with
this branch was probabilistically identified and statistically
ranked by the posterior distribution (figure 2a). The most
likely primary case of case 20 was case 11 with probability
53.1%, followed by case 7 with 26.3% and case 10 with 6.3%.

The individual protective effect of case isolation ϵi and the
protective effect without delay in case isolation ϵ are summar-
ized in figure 2b. The mean of ϵ was estimated as 39.7% (95%
credible interval (CI): 2.4%–82.1%). Smaller estimates of the
individual protective effect were observed in cases 5, 6 and
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Figure 2. (a) The posterior distribution of the primary case of case 20. Case 11 was considered the most likely primary case with a probability of 53.1%, followed by
case 7 with 26.3% and case 10 with 6.3%. (b) The posterior distribution of the individual protective effect of case isolation, ϵi, for each case. The green, yellow, blue
and brown boxes show four observed patterns. O represents observed, M indicates missing and - indicates unused (i.e. observed or missing); the order of events
follows the dates of exposure, onset of illness, hospitalization and death. The third pattern in yellow showed significantly lower individual protective effect than the
other three patterns. The red solid, dashed and dotted lines show, respectively, the mean, interquartile range, and minimum and maximum of the protective effect
of case isolation without delay, ϵ. (c) The posterior distribution of unbiased serial intervals s(τ) with mean at 15.3 (95% CI: 14.2–16.6) and s.d. at 2.3 (95% CI: 1.6–
3.5) days. The unbiased distribution represents the situation in the absence of case isolation. The shape and scale parameters of the gamma distribution were
estimated as 45.0 (95% CI: 19.6–92.0) and s.d. at 0.3 (95% CI: 0.2–0.8), respectively. (d ) The posterior distribution of the secondary case number per primary
case p(r), given the mean as the reproduction number at time zero, which was estimated to be 10.0 (95% CI: 3.0–18.5). The distributions shown in the figure were
derived from the best-fit model that employs geometric and gamma distributions, respectively, to describe the distributions of the observed number of secondary
cases per primary case and the unbiased serial interval. The posterior distributions are shown using black boxes, ranging from the lower to the upper quartiles along
with the median.
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12, for whom the date of onset of illness was reconstructed
using the incubation period distribution (figure 2b), while the
individual effect was similarly distributed to ϵ (i.e. without
time delay). Given the posterior shape and scale parameters of
the gamma distribution, figure 2c shows the unbiased serial
interval distribution (i.e. in the absence of case isolation). The
mean and s.d. were 15.3 (95% CI: 14.2–16.6) and 2.3 (95% CI:
1.6–3.5) days. The distribution of the secondary case number
per primary case, the mean of which is the reproduction
number at time zero, is shown in figure 2d. Assuming that the
reproduction number declined over time, the mean at time
zero and the rate of exponential decline were estimated to be
10.0 (95%CI: 3.0–18.5) and 0.14 (95%CI: 0.07–0.23), respectively.

Figure 3 shows pairwise distributions of the parameter pos-
terior and the marginals. There are two interesting pairs of
parameters. First, the shape and scale parameters of the
unbiased serial interval distribution are strongly negatively
correlated and exhibit a banana-shaped distribution. Second,
a positive correlation was observed between the reproduction
number at time zero R0 and the protective effect without time
delay ϵ, with the correlation coefficient being 0.418.
Sensitivity analysis was performed to examine the depen-
dence of the estimated protective effect of case isolation
without time delay ϵ to variable assumption on the reproduc-
tion number. Specifically, we compared two scenarios,
involving time-dependent and constant reproduction num-
bers, using R(t) ¼ R0 e�dt, where we assumed δ > 0 for the
time-dependent model and δ = 0 for the constant model.
Table 2 and figure 4 show the comparison of the posterior
parameter distribution between these two model scenarios.
Using two models, the shape and scale parameters of the
unbiased serial interval and the identified primary case of
case 20 were similarly distributed, but exert a strong negative
effect on the distributions of the reproduction number R0 and
protective effect of case isolation without time delay ϵ. With
δ = 0, the constant reproduction number was estimated as 3.2
(95% CI: 0.8–16.4), and the mean protective effect of case iso-
lation was 67.2% (95% CI: 3.7%–94.2%). Nevertheless, all
three model comparison criteria indicated that δ > 0 fits
better than δ = 0. The lower panel of figure 4 illustrates the
estimated reproduction number over time, of which the
declining mean crosses the criticality of 1 on day 16.
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Table 2. The parameters estimated in two scenarios. Scenarios 1 and 2
represent that the reproduction number decreased exponentially and
remained constant over time, respectively. The parameters include the
protective effect of case isolation without time delay (epsilon), the
reproduction number at time zero (R0), the exponentially decreasing rate of
secondary transmission (delta) and the shape (thetaSS1) and scale
(thetaSS2) of the unbiased serial interval. The corresponding mean and s.d
of the unbiased serial interval s(τ) are included.

scenario 1 scenario 2

parameters mean (95% CI) mean (95% CI)

epsilon (%) 39.7 (2.4–82.1) 67.2 (3.7–94.2)

R0 10.0 (3.0–18.5) 3.2 (0.8–16.4)

delta (day− 1) 0.14 (0.07-0.23) 0

thetaSS1 45.0 (19.5–92.0) 44.6 (18.2-88.2)

thetaSS2 0.3 (0.2–0.8) 0.3 (0.2–0.9)

s(τ) mean (day) 15.3 (14.2–16.6) 15.3 (14.2, 16.6)

s(τ) s.d. (day) 2.3 (1.6–3.5) 2.3 (1.6, 3.6)
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4. Discussion
The present study estimated the protective effect of case
isolation during the 2014 EVD outbreak in Nigeria, using
partially observed contact tracing data for a total of 20 cases.
We developed a statistical model that features the time interval
between onset of illness for the primary case and the secondary
case and also the number of secondary transmissions per pri-
mary case, while addressing problems of missing data for
time events (e.g. date of hospitalization) and partially recon-
structing the transmission dynamics. We have shown that the
observed serial intervals are likely to be shorter than the
unbiased serial intervals, and also that case isolation probably
resulted in the observed number of secondary cases per single
primary case being smaller than it would otherwise have been.
Assuming that the effective reproduction number exponen-
tially declines over time, the protective effect of case isolation
in reducing secondary transmission was estimated at 39.7%
(95% CI: 2.4%–82.1%), successfully quantifying the contri-
bution of case isolation to the transmission dynamics in
Nigeria during 2014. While the theoretical aspects of study
designs for determining vaccine effect have been broadly dis-
cussed [36], to our knowledge, the present study is the first
to apply the proposed model to EVD data with reconstruction
of both time events and transmission network.

The most important take-home message from the present
study is that the effectiveness of case isolation could be explicitly
estimated from observational data, provided that the trans-
mission network is known (at least partially) as are the dates
of onset of illness and/or hospitalization. The estimated protec-
tive effect ϵ is interpreted asa relative reductionof the secondary
transmission rate, representing the transient reduction in the fre-
quency of secondary transmission. Since the delay fromonset of
illness to case isolationvaries bycase,wehave also estimated the
protective effect of each individual ϵi, where itsmaximumvalue
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ϵ is considered as the protective effect without time delay. From
the formulationused for this estimation,wehave shown that the
individual protective effect depends on the rapidityof case find-
ing and public health response, as well as the individual
observed patterns of data in ourmodel. However, the estimated
ϵ varied greatly according to model assumptions regarding the
time dependence of the reproduction number. While the mean
value of ϵwas 39.7%,with an exponentially declining reproduc-
tion number, the valuewith a stationary (i.e. time-independent)
reproduction number reached 67.2%. This refers to the relatively
lower ϵ due to naturally decreasing secondary cases in the first
assumption, while the protect effect is required to be higher in
order to eliminate the disease given the constant R0 higher
than 1 in the second assumption. In both assumptions, the
uncertainty bound was very broad. Although all three model
selection criteria favoured the exponentiallydeclining reproduc-
tion number (potentially due to a super-spreading event by the
index case), the discrepancy here is caused by the existence
of assumptions that are not fully supported, and, thus, the
protective effect of case isolation still involves a degree of uncer-
tainty. In Nigeria, contact tracing and case isolation were the
mainstream interventions in 2014, and in hospitals standard
precautions were practised by healthcare professionals [24,25].
The present study indicates that, although the uncertainty
bound remains wide, the practice of case isolation has
successfully reduced secondary transmissions by 40–67%.
Additionally, it should be noted that the proposed model
also estimated the unbiased reproduction number, i.e. the
reproduction number without case isolation. Assuming an
exponential decline, the reproduction number at time zero
was estimated at 10.0 (95% CI: 3.0–18.5), while under an
assumption of stationary transmissibility the reproduction
number at time zero was estimated to be about one-third of
this level, i.e. 3.2 (95% CI: 0.8–16.4). The sample mean of
observed (and biased) number of secondary transmissions
was 0.9 (s.d. 3.0). These cannot be directly compared against
the basic reproduction number estimates, i.e. ranging from
about 1.3 to 2.6, from a larger scale epidemic [11,23,37,38], but
at least our estimates demonstrate that the unbiased reproduc-
tion number that adjusts the protective effect of case isolation
can exceed the series of estimates derived from models that
did not explicitly take into account the impact of case isolation.

We have also estimated the unbiased length of the serial
interval, with the estimated mean at 15.3 (95% CI: 14.2–16.6)
days and s.d. at 2.3 (95% CI: 1.6–3.5) days. The sample mean
and s.d. of the serial interval in the presence of case isolation
were 14.8 and 2.5 days, respectively, indicating that although
the mean was not greatly shortened it was at least shortened
by half a day (electronic supplementary material, figure S2).
The two-week interval resembled the published estimates
[37,38]. Two technical points should be further discussed.
First, as mentioned in the electronic supplementary material,
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we adopted published estimates of the incubation period dis-
tribution from a larger epidemic [4]. Their use has led to
some differences among individuals in protective effects (i.e.
figure 2b) that reflect their observation patterns. The recon-
struction of dates of the onset of illness using the incubation
period (type 3 in electronic supplementary material, table S1)
and the reconstruction using the time from onset of illness to
hospitalization (types 2 and 4 in electronic supplementary
material, table S1) have different characteristics because of
the distributions from different samples and outbreaks. How-
ever, we believe that the way we addressed those
distributions might be the best practice, simultaneously
addressing issues of limited sample size and effectively using
the available dataset. Second, individual variations existed in
the number of secondary transmissions. In fact, the index
case was the main patient who infected 13 individuals and
became a super-spreader. The above-mentioned large differ-
ence between time-dependent and time-independent
reproduction numbers can be partially explained by the exist-
ence of this index case (figure 4, lower panel). It has also
contributed to forming a heavy tail in the distribution of sec-
ondary transmissions. However, dealing with the trade-off
between the goodness of fit and simplicity, geometric distri-
bution is more favoured than negative binomial distribution.

The present study has various limitations that must be dis-
cussed. First, ourmodel assumed that infectiousness starts from
the date of onset of illness, which is not broadly applicable, e.g.
HIV/AIDS. Second, strictly speaking, serial interval and gener-
ation time are used interchangeably in many studies, but the
present study explicitly handled the time of onset of illness
and strictly used the serial interval. Third, the serial interval dis-
tribution was assumed to be stationary, which means it is
independent of calendar time throughout the outbreak. On
the other hand, the reproduction number was allowed to vary
with calendar time to capture the transmission dynamics.
Strictly speaking, both would vary with time and infection
age. Fourth, the application of the model to this dataset from
Nigeria was limited by a few missing pieces of information,
namely in some cases either the date of onset of illness or hos-
pitalization of each individual was not observed. The time
event reconstruction was relatively simple and the reconstruc-
tion was limited to one dimension. However, the surveillance
data of individuals during unexpected outbreaks are often
imperfectly collected and require complicated reconstruction.
In the future, we plan to extend our modelling approach by
applying it to datasets with higher dimensional imputations.

In conclusion, the present study has shown that the case
isolation of the 2014 EVD outbreak in Nigeria was effective,
and the public health interventions by the Nigerian govern-
ment should be commended for successfully controlling the
outbreak. Accounting for the protective effect of case isolation,
we demonstrate that the observed number of secondary cases
per primary case and serial interval were, respectively, reduced
and shortened.
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