PERSPECTIVE

IL-6 (Interleukin 6) Blockade and Heart Rate Corrected QT Interval Prolongation in COVID-19

Pietro Enea Lazzerini[®], MD; Franco Laghi-Pasini, MD†; Maurizio Acampa[®], MD; Mohamed Boutjdir, PhD*; Pier Leopoldo Capecchi, MD*

The recently published Multi-Society Document from American Heart Association/American College of Cardiology/Heart Rhythm Society by Roden et al¹ conveys an important alert on heart rate corrected QT interval (QTc) prolongation and Torsades-de-pointes risk associated with exploratory coronavirus disease 2019 (COVID-19) treatments. Indeed, accumulating evidence indicates that COVID-19 patients are burdened by a higher risk of malignant ventricular arrhythmias, with a potential contributing role of repurposed antiviral therapies.^{1,2} In particular, the authors underlined as among the exploratory COVID-19 treatments are included antimalarials (chloroquine and hydroxychloroquine), protease inhibitors (lopinavir/ritonavir), and azithromycin,¹ all drugs listed as definite or possible causes of Torsades-de-pointes at https://www.crediblemeds.org.

In this view, recommendations about electrocardiographic/QTc monitoring along with a decisional guide for optimizing risk/benefit ratio when exploratory drugs are administered is of crucial importance.¹ Moreover, the document also highlights as severely ill patients with COVID-19 are frequently burdened by comorbidities, specifically electrolyte imbalances, concomitant QT-prolonging drugs, and the high-grade systemic inflammatory state,¹⁻³ further increasing Torsades-de-pointes susceptibility.¹

However, while correcting hypokalemia and hypomagnesemia is recommended, the possibility of targeting inflammation to reduce arrhythmia risk has not been addressed, although supported by several data: (1) cytokine levels, particularly IL-6 (interleukin 6), are markedly elevated in severe COVID-19, where the anti-IL-6 receptor monoclonal-antibody tocilizumab seems to be able to reduce mortality²; (2) it has been demonstrated that IL-6 directly blocks the human-ether-a-go-go-related potassium channel² and that high circulating IL-6 levels (≥10 pg/mL) due to different inflammatory diseases associate with QTc prolongation and Torsades-de-pointes development³; (3) IL-6 can also potently inhibit cytochrome p450-3A potentially increasing bioavailability of several QT-prolonging drugs (macrolides, azole antifungals, antidepressants, and antihistamines), as well as induce central hypothalamus-mediated cardiac sympathetic system hyperactivation, a well-recognized trigger for life-threatening arrhythmic events in patients with long-QT syndrome²; (4) in active rheumatoid arthritis, tocilizumab rapidly reversed QTc prolongation by controlling systemic inflammation.⁴

A recent study performed on a large cohort of hospitalized patients in the New York City area supports the inherent relevance of these mechanisms in COVID-19. In fact, at admission, that is, before treatment with exploratory antiviral drugs, a high percentage of patients who underwent ECG showed marked QTc prolongation, >500 ms (6.1%, 260/4250), along with elevated C-reactive protein levels (median 13.0 mg/dL).⁵

As a complement to the Multi-Society Document,¹ we propose the perspective to consider administration of anti-IL-6 targeted drugs (tocilizumab and sarilumab) in COVID-19, not only in patients with signs of multi-organ dysfunction, but also in those with QTc>500 ms, particularly when IL-6≥10 pg/mL (Figure). In these subjects, by specifically dampening inflammation-driven arrhythmic risk, IL-6 blockade could reduce the need of withholding/withdrawing potentially useful COVID-19 repurposed pharmacotherapies. Although it is not currently known how to select patients in whom correction of QTc prolongation will improve overall outcome,

Key Words: coronavirus = cytokines = electrocardiography = inflammation = interleukins

Correspondence to: Pietro Enea Lazzerini, MD, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy. Email lazzerini7@unisi.it *Drs Boutjdir and Leopoldo Capecchi contributed equally to this work.

tDr Laghi-Pasini retired.

For Sources of Funding and Disclosures, see page 1071.

^{© 2020} American Heart Association, Inc.

 $^{{\}it Circulation: Arrhythmia \ and \ Electrophysiology \ is \ available \ at \ www.ahajournals.org/journal/circep}$

Nonstandard Abbreviations and Acronyms

COVID-19	coronavirus disease 2019
IL-6	interleukin 6
QTc	heart rate corrected QT interval

nevertheless evidence indicates that a short-term anti-IL-6 treatment is safe, also potentially decreasing the extent of myocardial injury frequently observed in COVID-19. A phase II clinical trial evaluating for the first time the impact of tocilizumab in nonrheumatoid arthritis subjects with an acute cardiac damage demonstrated how in these patients, a single administration of tocilizumab reduced the inflammatory response and myocardial injury (troponin levels), with no safety concerns (including infections) in the following 6 months follow-up period.²

ARTICLE INFORMATION

Affiliations

Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Italy (P.E.L., F.L.-P., P.L.C.). Stroke Unit, University Hospital of Siena, Italy (M.A.). VA New York Harbor Healthcare System, SUNY Downstate Medical Center (M.B.). NYU School of Medicine, New York, NY (M.B.).

Sources of Funding

This work was funded by Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Progetti di Rilevante Interesse Nazionale (PRIN), Bando 2017, protocollo 2017XZMBYX.

Disclosures

Dr Lazzerini received a grant (minor funding) from Roche Italia S.p.A in 2018. The other authors report no conflicts.

REFERENCES

- Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug interactions on QTc in exploratory COVID-19 (Coronavirus Disease 2019) treatment. *Circulation*. 2020;141:e906–e907. doi: 10.1161/ CIRCULATIONAHA.120.047521.
- Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, Arrhythmic risk, and inflammation: mind the gap! *Circulation*. 2020;142:7–9. doi: 10.1161/ CIRCULATIONAHA.120.047293
- Lazzerini PE, Laghi-Pasini F, Bertolozzi I, Morozzi G, Lorenzini S, Simpatico A, Selvi E, Bacarelli MR, Finizola F, Vanni F, et al. Systemic inflammation as a novel QT-prolonging risk factor in patients with torsades de pointes. *Heart.* 2017;103:1821–1829. doi: 10.1136/heartjnl-2016-311079
- Lazzerini PE, Acampa M, Capecchi PL, Fineschi I, Selvi E, Moscadelli V, Zimbone S, Gentile D, Galeazzi M, Laghi-Pasini F. Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: tocilizumab reduces corrected QT interval by controlling systemic inflammation. *Arthritis Care Res (Hoboken)*. 2015;67:332–339. doi: 10.1002/acr.22455
- Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen S, et al; and the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. *JAMA* 2020;23:2052–2059. doi: 10.1001/jama.2020.6775

Figure. Proposal for an integrated management of heart rate corrected QT interval (QTc) prolongation in coronavirus disease 2019 (COVID-19), also including inflammation targeting with IL (interleukin)-6 blocking agents.

Yellow boxes represent methods to reverse the mechanisms that related arrows point. *When all other more conventional reversible causes are addressed.