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ABSTRACT
Influenza virus infections pose a serious public health problem and vaccination is the most effective
public health intervention against them. The current manufacture of influenza vaccines in embryonated
chicken eggs entails significant limitations. These limitations have been overcome by producing vac-
cines in cell culture, which allow a faster and more flexible response to potential pandemic threats.
Given the impact of influenza B virus on disease burden, the availability of quadrivalent vaccines is
useful for increasing the rate of protection from disease.

This paper analyzes the limitations of the current production of influenza vaccine in eggs and the
advantages of vaccines developed in cell culture, as well as their safety, tolerability, efficacy and
effectiveness. Additionally, we reflect on the contribution of new quadrivalent vaccines from cell culture
as an alternative in seasonal vaccination campaigns against influenza.
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Introduction

Influenza virus infections are considered a serious public
health problem during seasonal outbreaks, while representing
a constant threat through the appearance of new, potentially
highly virulent pandemic strains.1,2 Vaccination is the most
effective public health intervention for reducing the impact of
seasonal influenza.3 However, influenza vaccines must be
produced “ad hoc” each season to correspond to the con-
stantly changing antigenic characteristics of circulating influ-
enza viruses.4 In addition, the conventional methods of
producing inactivated influenza vaccines in the allantoic cav-
ity of embryonated chicken eggs, have important
limitations.1,2,5,6 First, this production method requires the
availability of a large number of eggs in a short period of
time, and poses an increased risk of contamination that
requires the use of anti-infective agents.7 This necessitates
a prolonged process of planning and execution, which can
cause an insufficient supply of vaccines if some batches do not
meet quality standards.1 Secondly, after identifying the strain,
it takes a minimum of 4–6 months to produce the vaccines
and in the event that a pandemic strain appears and dissemi-
nates, there might not be enough time available for produc-
tion or necessary quantities of eggs. Finally, the effectiveness
of the annual influenza vaccine has been low in some recent
years, especially for the H3N2 component, and has become
a concern for global public health.8,9 An important cause of
the waning effectiveness has been attributed to the egg-based
vaccine production process, since the mode of receptor-
binding and domain binding-specificity are also modified to
adapt to avian viral receptors during egg passage.
Nevertheless, the structural and biophysical mechanisms
involved in changes in antigenicity and the practical

consequences for vaccine effectiveness resulting from adaptive
substitutions in H3N2 viruses have not yet been fully
explored.10

It seems pertinent to develop innovative techniques and
procedures for the development of new influenza vaccines:
production methods based on cell cultures, recombinant vac-
cines, vaccines based on reverse genetics, as well as live
attenuated vaccines or live vector vaccines that have shown
great potential in clinical trials.11,12

In recent years, new influenza vaccines have been licensed
that employ mammalian cell lines in their production. These
cell lines confer several advantages for the large-scale vaccine
manufacture, including the ability to rapidly expand produc-
tion in both a prepandemic and pandemic environment.12-15

This vaccine production system offers more flexibility than
egg-based systems, due to adequate substrate availability for
viral growth and higher viral yields,5 greater antigenic stability
of hemagglutinin (HA),16 and higher immune responses eli-
cited than those produced by egg-derived vaccines.17 In addi-
tion, unlike conventionally manufactured vaccines, cell
culture-derived influenza vaccine (CCIV) can be produced
in large quantities in a shorter period of time.18 The manu-
facturing process of CCIV poses a lower risk of contamina-
tion, and does not require thimerosal, antibiotics or
formaldehyde. As the production process of CCIV is egg-
free, CCIV are suitable for people with any type of hypersen-
sitivity or allergy to the egg proteins.14 Moreover, cell culture
facilities can be used for the production of other vaccines
when they are not used for the production of influenza vac-
cine for prolonged periods.5

Particularly in the last decade, discrepancies have arisen
between the circulating B strain and the recommended strain,
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which have reduced the effectiveness of trivalent vaccines
(TIV)4,19,20 and, increasingly, both B strains circulate in codo-
minance in a given season.4,19-21 However, predicting exactly
which of the two lineages will be prevalent is difficult and the
antigenic divergences between the two lineages of influenza
B viruses are so important that they reduce cross-reactivity.22

Different studies have analyzed the divergence of the vaccine
strain from the wildtype, placing it at 42% in a Finnish study23

covering 12 influenza seasons (1999–2012), and 50% in
a Spanish study.24 Given the significant impact of influenza
B virus on disease burden, with an average of 24% to 30% of
all influenza cases,4,24,25 the poor accuracy for forecasting the
predominant B virus strain, and the consequent compromise
in immunity, the recently commercialized quadrivalent vac-
cines, with the addition of a second B strain to the trivalent
vaccine, are very useful for increasing the rate of protection
from protection.5,26 Their benefits also potentially increase
because they may not only reduce influenza cases, but also
generate substantial savings,19,27-29 which caused their inclu-
sion in the recommended composition of seasonal influenza
vaccine30 and their use in certain risk groups.31

This article analyzes the advantages of cell-culture vaccines,
their efficacy, effectiveness, safety and tolerability, and reflects
on the contribution of new quadrivalent vaccines as an alter-
native in seasonal vaccination campaigns against influenza.

Effectiveness of egg-based vaccines

The first commercial influenza vaccines approved in the
US were developed more than 70 years ago,32 and
although the annual manufacturing capacity is estimated
at 400 million doses of trivalent influenza vaccine,33 vac-
cinated persons are not immunized as fully as desired, and
complete and comprehensive protection is still
challenging.9

Conventional influenza vaccines confer substantially
varying protection according to viral types and subtypes.9

In the last decade, the effectiveness of the seasonal vaccine
against H3N2 viruses has been particularly low.9 While the
vaccine’s effectiveness was estimated at 67% for seasonal
H1N1 (prior to 2009), 73% for H1N1pdm09 and 54% for
type B, it was only 33% for H3N2 viruses.9,34,35 The
estimated effectiveness of the influenza vaccine for the
2017–2018 season in the USA was 40%.36 A similar
study carried out in Spain for the 2013/14–2014/15 sea-
sons revealed an overall effectiveness of 36%.37

These results concerning the effectiveness of the influ-
enza vaccine against circulating H3N2 strains compared to
other influenza viruses is partly explained by the lack of
antigenic agreement between circulating strains and the
vaccine strain.9 Antigenic drift can cause a substantial
reduction in vaccine effectiveness. The authors of a study
conducted by the US Flu VE Network found that the effec-
tiveness against H3N2 in the 2014–2015 season was negli-
gible for viruses of the genetic group of hemagglutinin
3C.2a that deviated antigenically, and 44% for 3C.3b viruses
that were antigenically similar to the vaccine strain.38 The
manufacturing process of the vaccine may contribute to
a low effectiveness against H3N2 by generating mutations

in hemagglutinin induced by egg culture that affect its
antigenicity.39

The recognition and neutralization of the influenza
virus by the immune system has been the subject of
extensive research due to its profound implications for
vaccine design. The majority of human antibodies against
the influenza virus are directed to the domain of the
globular head of the glycoprotein hemagglutinin (HA).
In H3N2 viruses, the main targets are five A-E antigenic
domains.40-42 However, most of the domain of the globu-
lar head has an intrinsically high mutational tolerance43,44

that facilitates the escape from the immune system. The
receptor-binding site (RBS) is conserved, but can still
accommodate some level of mutation to evade antibody
recognition.10 Influenza virus often mutates to adapt to
culture in embryonated chicken eggs, which may influence
antigenicity and, therefore, the effectiveness of the
vaccine.10

Hemagglutinin (HA) glycoprotein substitutions that
often arise during serial viral culture change their
antigenicity.10 In this sense, the effect of a prevalent sub-
stitution, L194P, on H3N2 viruses obtained by growing
them in the egg has been characterized. X-ray analysis
revealed that this substitution increased the mobility of
the 190-helix and its neighboring regions at antigen site B,
which constitutes part of the RBS site and is immunodo-
minant in recent human H3N2 isolates. Importantly, sub-
stitution of L194P decreased antibody-binding and
neutralization by three orders of magnitude and signifi-
cantly diminished the binding of human serum antibodies,
i.e. antigenicity of HA.10 The change in the receptor-
binding mode associated with the L194P substitution pro-
vides an explanation of its ability to grow successfully in
eggs.10

Although eggs provide a cost-effective way to grow influ-
enza viruses, the abundance of avian type receptors in the
chorioallantoid membrane45,46 favors selection of variants that
increase binding to avian type receptors (NeuAcα23Gal), and
reduce the binding to human-type receptors
(NeuAcα2-6Gal),10,45,47,48 explaining the low effectiveness of
the vaccine against H3N2.45,46 These adaptive egg substitu-
tions in HA negatively affect antigenicity,49-54 which leads to
a decrease in vaccine effectiveness.10,53 In addition, genetic
comparisons of hemagglutinin (HA) sequences of several egg-
grown viruses similar to strain A, have revealed that substitu-
tions in the amino acid sequence of HA alter their antigenic
properties.55

Effectiveness of cell culture-produced vaccines

The immunogenicity and safety of influenza vaccines pro-
duced in cell culture have been extensively
studied2,14,21,56,57 as we describe in Table 1. Likewise, the
immunogenicity and safety of the quadrivalent vaccine
developed in cell culture (cQIV) have been evaluated,
demonstrating not only non-inferiority compared to the
trivalent vaccine,58 but also the superiority for both influ-
enza B lineages when comparing the geometric mean titer
and seroconversion rates three weeks after the last
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vaccination.59 The cQIV vaccine elicits strong immune
responses against the four vaccine strains without signs
of immune interference by the addition of a second strain
of influenza B. The immunogenicity of cQIV and trivalent
influenza vaccine from cell culture was comparable in
both young and older adults.60

Producing vaccine with viruses grown in mammalian
cells (for example, Madin-Darby canine kidney [MDCK]
cells) prevents glycosylation introduced in the egg adapta-
tion stage54 and the substitution of HA L194P in subtype
H3N2.10 Early reports suggest that the effectiveness of cell
culture-produced vaccine exceeds that of similar egg-based
vaccines. Publicly available data from the Worldwide
Influenza Center in London revealed that circulating
H3N2 isolates from the Northern hemisphere influenza
seasons from 2011–12 to 2017–18 had, in all seasons,
a higher degree of antigenic similarity with MDCK-
propagated reference vaccine than with egg-based reference
vaccine strains. In half of the seasons evaluated, little or no
antigenic similarity was documented between circulating
viruses and the seed virus of the egg-based vaccine.27

These data suggest that mismatch has occurred consistently

with the H3N2 reference viruses propagated in eggs, more
so than with reference viruses propagated in MDCK cells.27

In a trial comparing the efficacy of cell culture-derived
influenza vaccine (CCIV) and the egg-derived inactivated
trivalent vaccine (TIV) with placebo against laboratory-
confirmed influenza in healthy adults in the United
States, Finland and Poland during the 2007–2008 influ-
enza season, the efficacy of CCIV was superior to that of
TIV, although the differences are not statistically signifi-
cant: CCIV showed an efficacy of 83.8% [61.0%–97.5%]
against the vaccine strains and 69.5% [55%–97.5%] against
circulating virus strains, whereas TIV showed an efficacy
of 78.4% [52.1%–97.5%] against vaccine strains and 63.0%
[46.7%–97.5%] against all wild-type virus strains.56

Not only the virological evidence supports a greater effec-
tiveness for cell culture vaccines compared to those produced in
eggs.61-64 A recent study, based on the analysis of the 2017–18
influenza season dominated by A(H3N2) in a vaccinated popu-
lation over 65 years of age, showed that the quadrivalent influ-
enza vaccine (cQIV) was 11% (95% CI: 8%–14%) more effective
in preventing hospitalizations and visits to the influenza clinic
than comparable egg-based quadrivalent standard-dose

Table 1. Comparative studies on the immunogenicity, safety and effectiveness of cell culture vaccine versus egg-derived vaccine.

Author Objective Population Results/conclusion

Ambrozatis14, Vaccine 2009 Tolerability and
immunogenicity

n = 1,200 (18–60 years) Local reaction 27–31% CCIV vs 25% TIV
Systemic reaction: overall CCIV 24–26% vs. TIV 23%
Immune responses were similar for CCIV vs. TIV

Bart21, Human Vaccine &
Immunotherapeutics 2016

Immunogenicity
and safety

N = 2,680 Overall antibody responses were similar in cQIV and TIV
At day 22, the GMT and the percentage of subjects with seroconversion for
unmatched B strains were higher in QIV than TIV.

Frey56, Clinical Infectious
Diseases 2010

Immunogenicity,
efficacy and
safety

n = 11,404 (18–49 years) Baseline seroprotection rates, seroconversion rates, and antihemagglutinin
GMT did not differ between CCIV and TIV.
The overall vaccine efficacy was 83.8% (one-sided 97.5% CI lower limit,
61.0%) for the CCIV and 78.4% (one-sided 97.5% CI lower limit, 52.1%) for
the TIV group. An A/H1N1 virus was isolated from 56 of 60 cases, including
43 in the placebo group, five in the CCIV group (vaccine efficacy, 88.2%), and
8 in the TIV group (vaccine efficacy, 80.3%). Three cases were caused by
vaccine-like H3N2 strains and only one by a vaccine-like B strain.
The percentage of study participants reporting solicited reactions was similar
in each group.

Szymczakiewich57, Journal of
Infectious Diseases 2009

Immunogenicity
and safety

18–60 years, n = 1,300; elderly
persons > or = 61 years,
n = 1,354

The immunogenicity of CCIV was non-inferior to that of the conventional
vaccine for all three vaccine strains in both age groups, regardless of
underlying health status. Both vaccines fulfilled European Union registration
criteria and were well tolerated, with similar incidences of solicited local and
systemic reactions in both age groups; the only significant difference was an
increased frequency of mild or moderate pain with CCIV than the
conventional vaccine among adult (22% vs 17%; P < .05) and elderly (9% vs
5%; P < .001) vaccines.

Hartvickson59, International
Journal of Infectious
Disease 2015

Immunogenicity
and safety

N = 2,333 cQIV met the non-inferiority criteria against all four vaccine strains and
demonstrated superiority for both influenza B strains
Similar percentages of subjects experienced solicited and unsolicited adverse
events (AEs) across all groups

Barta60, Human Vaccine&
Immunotherapeutics 2016

Immunogenicity
and safety

N = 2,680 QIV non-inferiority criteria for all vaccine strains and demonstrated
superiority for both influenza B strains
Between 48–52% subjects experienced≥one solicited AE.
Serius AE were reported < 1%

Izureta65, Journal of
Infectious Diseases 2018

Relative vaccine
effectiveness
(RVE)

>13 million
beneficiaries

Relative vaccine effectiveness for cell-cultured vaccine relative to egg-based
quadrivalent vaccine was 10%

Szymczakiewich66, Human
Vaccine&
Immunotherapeutics 2012

Immunogenicity
and safety

n = 2,609 The safety profile of both vaccines was similar, no serious adverse events
related to either vaccine occurred. Mild or moderate pain was the most
commonly reported reaction. Reactogenicity was slightly higher in elderly
subjects receiving CCIV/TIV concomitantly with PV [46% vs 37%; p = non-
significant]. Both vaccines met CHMP licensure criteria for adults and elderly
subjects. With concomitant CCIV and PV, all three CHMP criteria were met for
A/H1N1 and A/H3N2, whereas the B strain only met seroprotection and GMR
criteria.
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products.65 The results indicate that cell culture and high-dose
vaccines were significantly more effective in preventing hospi-
talizations and primary care visits due to flu than quadrivalent
and trivalent egg-based vaccines.65

Another retrospective cohort study estimated the effec-
tiveness of cQIV versus egg-based QIV (eQIV) for influ-
enza-like respiratory diseases by analyzing electronic
records or vaccination information systems for US pri-
mary care between August 1, 2017 and March 31, 2018.
This study demonstrated that cQIV was statistically more
effective than eQIV in the prevention of influenza-like
respiratory infections as measured in primary care visits
in the 2017/2018 influenza season. The relative effective-
ness of cQIV was 36.2% while that of eQIV was 26.8% for
the group of adults aged 18 to 64, both statistically sig-
nificant estimates. The lack of statistical significance in the
extremes of age precludes definitive conclusions about the
relative effectiveness of cQIV in these age groups, mainly
due to the small number of cases in pediatrics (4–17 years)
or in adults over 65 years of age.36

Safety and tolerability of cell culture-produced
quadrivalent vaccines

All vaccines developed in cell culture, both trivalent and
quadrivalent, have been well tolerated and have had excellent
safety profiles that make them ideal for influenza vaccination
campaigns.14,19,48,56,57,59,66

Localized reactions were reported in 27% to 31% of
subjects who received CCIV compared to 25% of those
who received TIV, mostly erythema and pain. Localized
reactions, including pain at the injection site, were mild to
moderate; serious local reactions rarely occurred (≤1% of
subjects in any vaccine group) and disappeared without
sequelae. All vaccines induced similar rates of systemic
reactions (24–26% after CCIV versus 23% after TIV) and
the most common in any group were headache, malaise
and fatigue. Similar to the localized reactions, the reported
systemic reactions were mostly mild (1 to 10%) or mod-
erate (<1 to 4%) and transient. Statistical differences have
not been documented for any localized or systemic reac-
tion, as well as unexpected adverse events (AEs), during
the follow-up period of 3 weeks to 6 months, nor were
other indicators of reactogenicity reported.14

In general, current studies show that revaccination with
CCIV and TIV in adults or the elderly was equally well
tolerated, with similar reactogenicity profiles for each age
group. Safety, immunogenicity and reactogenicity were not
affected by the type of vaccine received in previous influenza
seasons, although reactogenicity rates are expected to increase
with simultaneous administration of pneumococcal vaccine.
This increase in reactogenicity observed in concomitant
administration with pneumococcal vaccine is expected to
resemble that reported in similar studies.67,68 Concomitant
administration had no impact on the severity of the AEs
observed, and did not condition the antibody response to
influenza antigens.

cQIV vaccines are presented as well tolerated, with a safety
profile similar to that of TIV vaccines. The majority of the

elicited responses were mild to moderate and transient, with-
out serious AEs related to vaccination.19,21,59

In children under 18 years of age, vaccination with cQIV did
not cause serious adverse reactions related to the vaccine or deaths.
The reported AEs were generally mild to moderate in severity and
limited to a duration of less than seven days. The most frequently
reported local AEs were increased sensitivity and pain at the
injection site. The most frequently reported systemic AEs were
drowsiness, fatigue and headache. The body temperature of most
subjects was within the normal range after the vaccination.59

According to Bart et al.,21 in those over 18 years of age, the
most commonly elicited AE was pain at the injection site,
whose overall incidence was 33.6% in the cQIV group (33.6%)
versus 27.8% and 29.4% in trivalent vaccine groups (cTIV1
and cTIV2, respectively). Severe pain was reported in 0.2% of
subjects in the cQIV group and in 0.1% of subjects in the
cTIV1 group. Rates from other local AEs were similar
between the vaccine groups. The most commonly reported
systemic AEs were fatigue and headache. Severe systemic AE
were reported by <1% of the subjects.

Conclusions

Quadrivalent influenza vaccines from cell culture present an
alternative for seasonal influenza vaccination campaigns. Results
have proven their efficacy, safety and tolerability, and seem to
support greater effectiveness, backed by greater antigenic stability
of cell culture-derived vaccines, although more studies will be
necessary to confirm these observations. Although the cost of
production is higher and efficiency studies will be necessary to
really determine the value of the vaccine, new techniques for
influenza vaccine production are urged in a WHO strategy. The
race toward the production of new influenza vaccines using new
techniques, which began decades ago, has begun to bear fruits in
recent years, and vaccines developed in cell culture will consoli-
date their use in influenza campaigns and increase their share in
the global production of influenza vaccines.

In conclusion, cell culture-derived vaccines overcome the
limitations of current egg-based vaccines, and can generate
greater confidence in influenza vaccination, especially among
health workers themselves, which allows for an enhanced
uptake and better results of influenza vaccination.
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