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Impact of pneumococcal conjugate vaccine on the carriage density of
Streptococcus pneumoniae and Staphylococcus aureus in children living with HIV: a
nested case–control study
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ABSTRACT
Nasopharyngeal colonization density of Streptococcus pneumoniae (pneumococcus) is associated with
disease severity and transmission. Little is known about the density of pneumococcal carriage in children
with HIV (CLH). Pneumococcal vaccines may impact the density of pneumococcus and competing microbes
within the nasopharynx. We examined the impact of one dose of PCV13 on carriage density of pneumo-
coccus and Staphylococcus aureus, in CLH, HIV-uninfected children (HUC), and their unvaccinated parents.
We conducted a pilot-nested case–control study, within a larger prospective cohort study, on the impact of
PCV13, in families in West Bengal India. Quantitative real-time PCR was run on 147 nasopharyngeal swabs
from 27 CLH and 23 HUC, and their parents, before and after PCV13 immunization. CLH had higher median
pneumococcal carriage density, compared to HUC: 6.28 × 108 copies/mL vs. 2.11 × 105 copies/mL (p = .005).
Following one dose of PCV13, pneumococcal densities dropped in both groups, with an increase in S. aureus
carriage to 80% from 48% in CLH, and to 60% in HUC from 25%. While limited in sample size, this pilot study
shows that CLH carried higher densities of pneumococcus. PCV13 was associated with a decrease in
pneumococcal density and a temporal increase in S. aureus carriage regardless of HIV status.
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Nasopharyngeal (NP) colonization is a prerequisite for inva-
sive disease from Streptococcus pneumoniae (pneumococcus)
and Staphylococcus aureus (S. aureus). The density of coloni-
zation within the nasopharynx, determines transmission,
pneumonia susceptibility, and disease severity, specifically in
children, and HIV-infected individuals.1–4

HIV infection in children increases the risk of invasive pneu-
mococcal disease (IPD), and invasive disease due to S. aureus, by
40 to 100 times.5,6 Typically, there is a negative association
between pneumococcus and S. aureus carriage in healthy
individuals;7–11 however, in children with HIV, this may
disappear.9,12–14

Access to pneumococcal conjugate vaccines (PCV) globally
have significantly decreased vaccine serotype (VT) IPD and
carriage. With the decrease in VT pneumococcus in the naso-
pharynx, a temporary increase in S. aureus carriage has been
observed in young children.10,15,16 PCV13 is being introduced in
India in a phased manner, but not yet in programs for children
with HIV. We looked at the impact of one dose of PCV13 catch-
up immunization on pneumococcal and S. aureus carriage den-
sity, in vaccinated HIV infected and uninfected Indian children,
and their unvaccinated parents, before and after PCV13.

We conducted a nested case–control study, within a larger
prospective cohort study on pneumonia prevention in HIV-
infected children in rural West Bengal, carried out from
March 2012 to September 2014.17–19 Children living with HIV
(CLH) andHIV-uninfected children (HUC), received one dose of
13-valent pneumococcal conjugate vaccine (PCV13, Prevnar 13®,

Pfizer) as catch-up immunization. Over 1800 nasopharyngeal
(NP) calcium alginate swabs were collected in 1 mL of skim
milk tryptone glucose glycerin (STGG) from children, and one
of their unvaccinated parents, at multiple time points before and
after vaccination, and banked at −80⁰C. As part of this study,
quantitative real-time polymerase chain reaction (PCR) was run
on nasopharyngeal swabs from a random selection of 147 NP
swabs collected at baseline, and 2-months post-PCV13 immuni-
zation, from children five and under, and their parents. Twenty-
seven children had HIV (CLH) and 23 did not (HUC). A small
number of swabs were investigated because this was an explora-
tory pilot study. The Institutional Ethical Committee, of the Indian
Institute of Technology-Kharagpur approved the study. Written
informed consent was obtained from all study participants.

DNA was extracted from swabs using the RTP pathogen kit
(Stratec®). We ran quantitative PCR for S. pneumoniae (LytA) and
S. aureus [sensor histidine kinase (vicK)], using the FTD
Respiratory pathogens 21 plus kit (FTD Diagnostics®). Positive
samples had cycle threshold (Ct) value ≤38. The Ct value is
defined as the number of amplification cycles required for the
detection of the target organism nucleic acid; thus, higher Ct
values indicate the lower density of bacterial DNA. The coloniza-
tion density in copies/mL was calculated using reference
standards.

Weight-for-age z-scores (WAZ) were calculated using
EpiInfoTM7. Children with Z scores between −2 and −3, fell into
the moderately malnourished category; those below −3, were
categorized as severely malnourished.20 CLH were categorized
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into immunologic categories based on CD4 counts.21 χ2 or
Fisher’s exact test were used for categorical variables, and
Wilcoxon rank-sum test and two-sample t test, for Ct value and
density. The risk for carriage was calculated by logistic regression
and for carriage density by linear regression. All data analysis was
performed using Stata 13 (Stata Corp.).

The 147 swabs came from 27 CLH and their parents, and 23
HUC and their parents, collected at two time points (Table 1).
Quantitative real-time PCR was run on nasopharyngeal swabs
from 23 CLH, 20 HUC, 17 PCLH, and 15 PHUC before PCV-
13 immunization, and 20 children and 16 parents of each group
after PCV-13 immunization. The median age of CLH was 3.9
years at baseline, and 3.1 for HUC. Stunting and wasting were
more prevalent in CLH. The median WAZ and HAZ scores were
lower in CLH (WAZ −2.33; HAZ −1.96) compared to HUC
(WAZ −1.33; HAZ −0.92) (p = .003; p = .0028). All PCLH were
HIV-infected, and 78% of them were on antiretroviral treatment
(ART). Mothers contributed 89% of all parental swabs.

Twenty-six percent of CLH were on ART for a median
duration of 2 months at baseline. Most CLH were in immune
stage 2 (48%) or 3 (29%) at baseline. The median CD4 count
was 677 cells/mm3 throughout the study.

The pneumococcal carriage rates were similar in CLH (9/23,
39%) and HUC (8/20, 40%) at baseline (p = .95) (Table 2).
Children with stage 2 and 3 HIV disease had 88% carriage
compared to children with stage 1 HIV (11%) (p = <0.001).
Carriage rates did not change following immunization in either
CLH or HUC [7/20 (35%) in both p = 1.0]. Post-PCV13 in CLH,
carriage was found only in children with stage 2 (4/7, 57%) and 3
disease (3/7, 42%), and mainly in those not on ART (4/7, 57%).

Overall, pneumococcus was more frequently detected in chil-
dren (31/83; 37%) than in parents (13/64; 20%), regardless of
HIV or immunization status (p = .025). Parents were 8 times
more likely to carry pneumococcus if their child was colonized
(p = .006), suggesting familial carriage. No difference was noted
in the carriage in either group of parents before [PCLH (11%);
PHUC (20%) p = .52], and after their child received PCV13
[PCLH (31%), PHUC (18%)] (p = .41)] (Table 2).

The median density of pneumococcal carriage was higher in
CLH as compared to HUC: 6.28 × 108 copies/mL vs. 2.11 × 105

copies/mL (p = .009) at baseline (Table 2). Most CLH (8/9, 88%)
had carriage density ≥1x106 copies/mL; in contrast, only one
HUC had a density ≥106 at baseline. This was reflected in the

differences in Ct values of CLH compared to HUC (p = .0053)
(Table 2). The pneumococcal density in children had a strong
association with HIV in child [Regression coefficient (Coeff)
4.89; 95% CI 1.984–7.79; p = .002] and HIV in mothers [Coeff
4.22, 95% CI 1.17–7.27; p = .008].

Following PCV13, there was a decline in pneumococcal den-
sities in both CLH (3.77x107 copies/mL; p = .11) and in HUC
(4.94x104 copies/mL; p = .70), but neither achieved statistical
significance. There was, however, a significant increase in the Ct
values in both groups, reflecting a reduction in bacterial load
(CLH [20.44], HUC [32.22]; p = .018). Post-PCV13, no child in
the HIV group carried ≥109 copies, and (4/7) 57% of carriers in
the HUC had <105 copies.

We also looked at the S. aureus carriage in children and their
parents pre- and post-PCV13. At baseline, 48% (11/23) of CLH
had S. aureus carriage compared to 25% (5/20) in HUC (p = .12)
(Table 3). Ninety percent (10/11) of CLHhaving S. aureus carriage
at baseline had stage 2 or 3 HIV disease; and 63% (7/11) were not
on ART. Following PCV13, S. aureus carriage increased to 80%
(16/20) (p = .029) in CLH, and 60% (12/20) (p = .025) in HUC.
There was a trend toward an increase in carriage densities of
S. aureus following PCV-13 in CLH, but not in HUC.

S. aureus carriage did not differ between the parents of
either group at baseline (PCLH 29%, PHUC 27%; p = .86)
(Table 3). Following PCV13, parents also had a significant
increase in S. aureus. Carriage increased to 62% in PCLH
(p = .05) and to 93% in PHUC (p = .0001). S. aureus carriage
in the child increased risk of carriage in parents, 6.6 times in
PCLH (95% CI: 1.22–35.43, p = .028) and 3.3 times in PHUC
(95% CI: 0.68–16.3, p = .13). Overall, post-PCV13 S. aureus
carriage increased in children by 3.93 times (95% CI 1.57–9.84,
p = .003), regardless of their HIV status.

CLH are at 20–40 times increased risk of IPD, even when
on ART.22 Pneumococcal conjugate vaccines have signifi-
cantly decreased IPD and pneumonia in CLH, in multiple
settings.23 We conducted a single dose catch-up PCV immu-
nization study in children >2 years of age, and looked at
carriage 2-months post-immunization. Other studies have
also looked at carriage 2-months post-PCV.24,25 The CDC
catch-up schedule for PCV recommends one dose for healthy
children over 2 years, and two doses separated by 8 weeks for
CLH under-18 years.26 The timing and number of doses of
PCV for CLH is still not clear in developing countries, where

Table 1. Demographic characteristic of study participants by HIV status.

Characteristic Overall (n = 50) Children with HIV (n = 27) Children without HIV (n = 23)

Child’s age baseline years, median (IQR25, IQR75) 3.52 (2.91, 4.04) 3.91 (3.36, 4.83) 3.11 (2.66, 3.74)
Female child, n (%) 26 (52%) 13 (48.2%) 13 (56.52%)
Number of Children in house, median (IQR25, IQR75) 2 (1, 2) 2 (2, 2) 1 (1, 2)
Family income median (IQR25, IQR75) 9478 (7594, 11362) 11362 (9478, 11362) 7594 (7594, 9478)
Children
HAZ, median (IQR25, IQR75)
Baseline −1.53 (2.54, −.62) −1.96 (−3.05, −1.22) −0.92 (−1.8, −.44)
Post-PCV −1.36 (−2.07, −0.84) −1.76 (−2.32, −1.09) −1.03 (−1.58, −0.06)
WAZ, median (IQR25, IQR75)
Baseline −1.94 (−2.52, −1.1) −2.33 (−3.91, −1.91) −1.33 (−1.97, −0.72)
Post-PCV −2.25 (−2.57, −1.26) −2.50 (−3.24, −2.28) −1.26 (−2.08, −0.61)
Parent
Parent on ART during study 78% 78% -
Mothers age at baseline, median years (IQR25, IQR75) 26 (23, 30) 30 (25,33) 25 (21, 26)
Mother Education (median years, IQR25, IQR75) 8 (6, 10) 6.5 (3, 9) 9 (7, 12)
Mothers Previously on TB treatment 5 (10.2%) 5 (19.23%) 0
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access to ART has been delayed.22 In India, at this time no
PCV is offered to CLH. We found that CLH had higher
pneumococcal carriage densities before and after one dose of
PCV-13, and, unfortunately most children were not on ART,
which puts these children at high risk of severe IPD. Also, we
found that CLH were living in households with adults with
HIV who are also at increased risk for IPD, and clearly
increased carriage in children predicted carriage in parents
in this group.

Several culture-based studies have reported similar pneumo-
coccal carriage rates in CLH versus HUC27–31, but culture-based
studies do not typically comment on the density of carriage.19

Quantitative PCR is gaining recognition to study carriage and
the impact of PCVs, particularly on the dynamics of serotype-
specific carriage density.32,33 The pneumococcal carriage density
determines disease severity in HIV-infected adults3 and is asso-
ciated with transmission.2,4 Through qPCR, we could quantify
the density of carriage and the detection limit increased.19

A recent study using qPCR, showed increased pneumococcal
density in CLH compared to HUC in Mozambique, both before
and after the country rolled-out PCV-10.34 The impact of the
introduction of PCV into childhood immunization programs on
IPD and carriage in unvaccinated adults with HIV is an area of

active investigation throughout sub-Saharan Africa.35 Increased
carriage density in the context of HIV could be due to a decrease
in pneumococcus specific CD4-T lymphocytes, particularly the
CD154 response, which is known to clear pneumococcus.32,36

The impact of PCVs on the density of VT versus NVT
serotypes is less clear.32,34,37–39 We found an overall drop in
pneumococcal density post-PCV13. This warrants further
investigation in high-risk families.

Typically, a negative correlation exists between pneumococ-
cus and S. aureus in young children;7,9–11 possibly mediated by
hydrogen peroxide produced by pneumococcus,40 or cross-
reactive antibodies41 or by pilus.42 VT strains in particular are
negatively correlated with S. aureus.10,11 HIV infection impacts
this association. Co-colonization of pneumococcus and S. aureus
has been seen in CLH by us12 and others9,13 and in HIV-infected
adults.14

Pneumococcal immunization may influence the colonization
of competing microbes. Some population-based studies have
observed an increase in S. aureus carriage following PCV-7
vaccination during infancy,15,16,33,43,44 and some have not.45,46

Gambian children had an S. aureus carriage increase 4 months
after PCV-7.47 In South Africa, children had an initial increase in
S. aureus carriage post-PCV-7 immunization that then

Table 3. Staphylococcus aureus colonization in children and their parents before and after PCV13.

Pre-PCV13 (A) Post-PCV13 (B) P1 P2 P3

S. aureus colonization in children
HIV-infected, n/x (%) 11/23 (47.8%) 16/20 (80%) 0.029 0.12 0.16
HIV uninfected, n/x (%) 5/20 (25%) 12/20 (60%) 0.025
Ct value (Median, IQR25, IQR75)
HIV-infected 27.35 (18.12, 33.82) 19.73 (13.77, 29.45) 0.24 0.69 0.22
HIV uninfected 20.97 (19.76, 32.72) 30.22 (13.77, 29.45) 0.77
Density (Copies/mL)(median, IQR25, IQR75)
HIV-infected 2.98e+05 (1.09e+03, 5.22e+08) 1.51e+08 (4.2e+04, 2.15e+10) 0.14 0.69 0.12
HIV uninfected 1.90e+07 (3.5e+03, 4.61e+07 3.1e+04 (1.0e+04, 2.86e+09) 0.20
S. aureus colonization in parent
HIV-infected 5/17 (29.1%) 10/16 (62.5%) 0.056 0.86 0.032
HIV uninfected 4/15 (26.67%) 15/16 (93.3%) 0.0001

n/x;n = number of swabs positive; x = total number of swabs tested.
P1 = p values comparing column A (pre) and column B (post-PCV) by χ2 test for colonization and two-sample t test for Ct and carriage density.
P2 = p values comparing HIV infected and uninfected groups, pre-PCV by χ2 test for colonization and Wilcoxon rank sum test for continuous variables (Ct and
carriage density).

P3 = p values comparing HIV infected and uninfected groups, post-PCV by χ2 test for colonization and Wilcoxon rank sum test for continuous variables (Ct and
carriage density).

Table 2. Pneumococcal colonization in children and parents before and after PCV13 immunization in the child.

Pre-PCV13
(A)

Post-PCV13
(B) P1 P2 P3

Pneumococcus colonization in children
HIV infected, n/x (%) 9/23 (39.13%) 7/20 (35%) 1 0.95 1
HIV uninfected, n/x (%) 8/20 (40%) 7/20 (35%) 1
Ct value (Median, IQR25, IQR75)
HIV infected 16.1 (12.93, 24.98) 20.44 (19.42, 27.79) 0.07 0.005 0.018
HIV uninfected 28.36 (27.73, 32.52) 32.22 (22.15, 33.31) 0.57
Carriage Density (copies/mL) (median, IQR25, IQR75)
HIV infected 6.28e+08 (5.69e+06, 3.05e+09) 3.77e+07 (2.15e+05, 6.62e+07) 0.11 0.009 0.14
HIV uninfected 2.1e+05 (3.2e+04, 3.75e+05) 4.94e+04 (9.48e+03, 4.15e+07) 0.70
Pneumococcus colonization in parent
HIV infected 2/17 (11.76%) 5/16 (31.25%) 0.17 0.52 0.41
HIV uninfected 3/15 (20%) 3/16 (18.7%) 0.93

n/x; n = number of swabs positive; x = total number of swabs tested.
P1 = p values comparing column A (pre) and column B (post-PCV) by χ2 test for colonization and two-sample t test for Ct and carriage density.
P2 = p values comparing HIV infected and uninfected groups, pre-PCV by χ2 test for colonization and Wilcoxon rank sum test for continuous variables (Ct and
carriage density).

P3 = p values comparing HIV infected and uninfected groups, post-PCV by χ2 test for colonization and Wilcoxon rank sum test for continuous variables (Ct and
carriage density).
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normalized 16 months post-immunization.33 It is difficult to
make comparisons with other studies as they differ in age, size,
methodology, immunization doses, and the time point post-
immunization. An increase in S. aureus among parents could
be from the familial transmission.

The major strength of this study is the use of qPCR to
examine the density of colonization of pneumococcus in high-
risk HIV-infected Indian children. This is the first study that
examines the nasopharyngeal ecology in Indian families with
respect to PCVs.

The major limitation lies in the small sample size, lack of
serotype-specific density data, and short time-point post-
vaccination. The S. aureus increase needs validation in larger
cohorts of high-risk children. Future larger longitudinal stu-
dies of serotype-specific carriage density and immunogenicity
in CLH are required to draw final conclusions on the dosing
and timing of PCV in these children, living in low and mid-
dle-income countries.

This descriptive pilot study is important in the Indian con-
text, due to the ongoing-phased roll-out of PCVs in India. India
has a huge burden of HIV and pneumococcal disease. But still,
CLH are not yet prioritized to receive pneumococcal vaccines.
This study provides insights on the increased risk of CLH in
carrying the high density of pneumococcus in families where
both children and adults are affected by HIV. Population-based
PCV immunization, may provide indirect protection to unvac-
cinated high-risk adults.

This study demonstrates that the pneumococcal and
S. aureus colonization interactions exist within the nasophar-
yngeal space of CLH and HUC. Pneumococcal vaccines inter-
rupt these interactions in vaccinated children.
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