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Metal ions in signaling: looking beyond Calcium

Cell signaling —the processes by which cells relay information from their environment to 

the intracellular machinery—is essential for cells to adjust to changes at the organismal and 

tissue level and produce a coordinated physiological response. Metal ions play a prominent 

role in these processes. Calcium(II), in particular, is widely recognized as a ubiquitous 

second messenger that impacts almost every aspect of cell physiology, ranging from cell 

motility to cell death.[1] Fully validated examples of other divalent main group cations and 

d-block metals in a signaling role, however, are much more difficult to pinpoint. This gap 

stems from a combination of pervasive conceptual and methodological limitations.

Conceptually, d-block metals have been traditionally considered to play structural and 

catalytic roles as static cofactors in proteins, thus controlling basal metabolic activity in the 

cell. The fraction of the total metal content that is “free” or, more fittingly, kinetically 

available is maintained at very low levels to prevent cytotoxicity, especially for redox-active 

metals that may otherwise generate harmful reactive oxygen species. This fact seems 

paradoxical with the occurrence of large transients in free ions first thought to be required 

for signaling. A recent account by Maret [2*] discusses how such transients can be 

generated for a tightly bound metal such as Zn2+. For example, either release from 

subcellular compartments or mobilization of the bound pool upon chemical modification of 

thiol-based metal binding sites by small redox-reactive species (e.g. nitric oxide action on 

metallothioneins) can change the levels of labile ion. Analogous models could be invoked 

for the mobilization of other tightly bound d-block metals, consistent with their unique 

bioinorganic chemistry. For these, it is clear that the term “free” metal does not apply in the 

same way as with Ca2+, and that changes in metal availability must be considered instead. 

With these considerations in mind, the possibility of d-block metal signaling has started to 

gain traction [3*], although whether the cations are involved as effectors of canonical 

signaling pathways (e.g. Ras/MAPK), regulators of second messengers (Ca2+), or acting as 

signal carriers of their own, is still matter of debate in many systems.
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The notion of magnesium playing a role as a signaling ion has been considered for decades 

[4], but is still plagued by similar conceptual challenges to other metals at the other end of 

the concentration spectrum. The basal levels of intracellular free Mg2+ are relatively high—

Mg2+ is the most abundant divalent cation in the cell—leaving little room for large transients 

[5,6*]. Furthermore, the extra-and intracellular concentrations of this metal are similar, 

raising questions about the feasibility of large fluxes in the absence of marked concentration 

gradients across membranes (though an electrochemical gradient is present). Yet an 

important, but often ignored, aspect of Mg2+ biology is that the main species comprising the 

“bound” pool are polyphosphates (e.g. MgATP) whose concentrations are highly dynamic. 

As such, localized changes in metal availability triggered by processes that alter the rate of 

synthesis or conversion of these species, altering the free to bound ratio of the metal, are 

possible. Moreover, based on the well-tuned binding affinity of some Mg2+-regulated 

proteins such as kinases and phosphatases, it is possible that relatively small transients—

much smaller than previously recognized—are sufficient to generate a downstream effect. A 

bona fide sensor protein capable of carrying forward the effect of a Mg2+ signal, however, 

has remained elusive [7].

Full validation of a signaling event requires the demonstration of transient changes in the 

availability of the signaling species, completed with the identification of a source and a 

target. Changes in the free or available metal pools can be detected with small molecule 

fluorescent indicators that bind to kinetically accessible metals without disrupting the total 

cellular buffer. Armed with the right indicators, fluorescence microscopy can be a powerful 

tool for the study of metal signaling, providing the spatial resolution required to visualize the 

transient mobilization of intracellular metal cations in response to stimuli, combined with 

the temporal resolution to distinguish acute transients with reversible downstream effects 

from the chronic changes leading to long-term regulation. We present herein the most recent 

advances in the development of fluorescent probes and imaging techniques for understudied 

ions in cellular signaling, discussing remaining challenges and opportunities in the field. The 

reader is directed to excellent literature that discusses Zn2+ [2*,8] and Cu+ signaling [3*,9], 

and presents recent advances in the detection of labile Fe2+/3+ [10,11], which are not covered 

here in detail. Instead, we focus the discussion on Mg2+, an ion that is most often overlooked 

but that exemplifies the kind of paradigm shift posed by metal signaling beyond calcium.

Magnesium, a controversial second messenger:

In marked contrast with its heavier Group II metal congener, magnesium has received little 

attention in the context of signaling. A possible role for this metal in signal transduction was 

first investigated with regards to the cellular response to insulin, and the proposal that Mg2+ 

ions act as second messengers in this context has been out in the field since the 1970s [12]. 

But this notion has been met with skepticism. Evidence for a connection between 

hypomagnesemia and glucose-stimulated insulin response has been contradictory [13–15] 

and the relevant mechanistic details have remained elusive.

Within the last decade, the idea of Mg2+ participating directly in signal transduction was re-

examined by Lenardo and coworkers, who demonstrated that this cation meets the criteria—

originally delineated based on cAMP [16]—to be designated as a second messenger in the 
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context of T-cell activation. Their mechanistic proposal invokes an influx of Mg2+ through 

MagT1 in response to antigen receptor stimulation, leading to activation of phospholipase C-

γ (PLCγ1) and changes in Ca2+ influx [17]. This mechanism has since been revised and 

refined [18**,19] to account for the fact that MagT1 functions as an accessory subunit of the 

oligosaccharyl-transferase, OST—and perhaps not as a magnesium transporter, after all— 

playing a role in Mg2+-dependent glycosylation of NKG2D (also known as killer cell lectin-

like receptor K1) and thus affecting the function of cytotoxic immune cells [19]. The basic 

features of the model, however, are thought to remain, though the source of the observed 

cytosolic Mg2+ transient upon T-cell activation is unclear.

More recently, Oka and coworkers demonstrated an increase in cytosolic Mg2+ upon γ-

aminobutyric acid (GABA) receptor stimulation in young neurons. The transient was 

proposed to originate from mobilization of Mg2+ from mitochondria, and it was shown to 

activate the mammalian Target of Rapamycin (mTOR) and transcription factor CREB, 

independent of Ca2+, thus suggesting a role of Mg2+ as a second messenger in early stages 

of neuronal development (Figure 1) [20**].

Imaging cellular free Mg2+:

The selectivity problem: One of the most important challenges in the study of Mg2+ in a 

signaling context is disentangling its role from that of Ca2+. The complex interplay between 

the two ions has been difficult to examine given the poor selectivity of currently available 

molecular tools for detection of the former. Specifically, most small molecule fluorescent 

sensors for the hard Mg2+ ion bear metal recognition moieties rich in carboxylate groups, 

which also bind other hard biologically-relevant divalent cations leading to interferences in 

cellular imaging [21]. The aminophenol triacetic acid (APTRA) moiety, most commonly 

used in commercial Mg2+ indicators, is notorious for this limitation [22].

Recent efforts toward the design of better, more selective chelators [23,24**] have ushered 

important advances in fluorescent sensor development. The groups of Mizukami and 

Kikuchi developed the MGQ series of sensors (Figure 2) based on a novel 2,8-

dicarboxyquinoline metal binding moiety that exhibits good selectivity for Mg2+ over Ca2+ 

and is well tuned to the low millimolar physiological concentrations of Mg2+ (e.g. KD Mg
2+= 

0.24 mM for MGQ-2) [24,25]. Both green and red-emitting derivatives exhibit a turn-off 

fluorescent response, less desirable for imaging applications. Nevertheless, combination 

with a turn-on sensor of a different color enabled ratiometric imaging of Mg2+ extrusion 

with enhanced sensitivity in cells overexpressing CNNM4, a Mg2+ transporter [25]. Highly 

selective, ratiometric imaging based on individual small molecule probes remains an 

important unmet need in the field, particularly relevant to proper quantification of Mg2+ 

transients.

Sensors based on β-dicarbonyl chelators, including the KMG series [30–32,40,41] and 

related compounds [33,35] (Figure 2), also show an excellent metal selectivity profile. Due 

to their low denticity, however, these compounds easily form ternary complexes with Mg2+-

bound biomolecules [42*], encumbering the distinction of free—available for signaling—

versus bound metal. In recent work, Murata et al [41] used a near infrared-emitting member 

of the KMG family in parallel to a genetically encoded MgATP indicator to monitor rapid 
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changes in magnesium upon mitochondria uncoupling. This combined imaging approach 

ruled out a major direct effect of MgATP on the fluorescence output of the small molecule. 

Similar approaches are likely necessary for the unequivocal study of free Mg2+ with these 

indicators in systems in which the highly dynamic pools of biomolecule-bound Mg2+ may 

change. Oka and coworkers capitalized on a combination of green and mitochondria-

targeted, red-emitting members of the KMG family, namely KMG-104 and KMG-301, 

respectively, to show GABA-induced release of Mg2+ from mitochondria leading to 

activation of the mTOR and CREB signaling pathways in the maturation of neural networks. 

This work constitutes the most recent demonstration that Mg2+ participates in signal 

transduction, with a clearly identified source and molecular target [20**].

Looking for the source of ion mobilization—Despite mounting evidence toward 

Mg2+ acting as a second messenger, questions remain regarding the identity of the cellular 

stores that act as sources of the free metal, especially relevant to mobilization in a signaling 

context. Mitochondria have been found to perform this function [20,31,43], but studies have 

also shown that the pool of biomolecule-bound Mg2+, including the highly abundant pool of 

MgATP available in many compartments, could be a major contributor to intracellular 

changes in free Mg2+ under certain circumstances [39*]. The development of targeted 

fluorescent sensors is crucial for probing organelle-specific levels of metals and 

investigating patterns of ion accumulation and mobilization. Through favorable 

combinations of lipophilicity and positive charge, mitochondria targeting of Mg2+ indicators 

can be readily achieved [28*,32]. But more general design strategies, suitable for targeted 

imaging of other compartments of choice, remain scarce.

Buccella and coworkers have tackled the challenge of organelle-targeted Mg2+ detection by 

developing a hybrid system that combines a small molecule fluorescent sensor, Mag-S-Tz, 

and a HaloTag fusion protein that acts as intracellular directing group [36*]. The small 

molecule fluorophore is installed on the protein via in situ fluorogenic reaction with a dual 

reactive chloroalkane ligand. The fluorogenic conjugation step is key to enabling selective 

activation of fluorescence in the chosen subcellular locale, minimizing spurious signal from 

fluorophores that remain trapped in undesired compartments and compromise spatial 

resolution. In experiments done with HEK 239T cells, the hybrid system enabled 

comparison of the relative levels of free Mg2+ in various organelles, showing differences in 

basal concentrations of the compartments as well as the strengths and generality of this 

approach for potentially probing sources and destinations of intracellular metal trafficking. 

Another important advantage of hybrid protein-small molecule sensing designs is their 

increased intracellular retention compared to the freely diffusing small molecule 

counterparts. This feature, demonstrated by the groups of Kikuchi and Mizukami with a 

HaloTag-conjugated Magnesium Green derivative, MGH [37], enables imaging of ions over 

long periods without loss of signal, thus facilitating the distinction of short term signals 

versus long term changes involved in chronic regulation.

Quantifying the amplitude of a signal: a major challenge across metals—
Quantification of the magnitude of a transient—the amplitude of a signal—remains a major 

challenge for most metals. Ratiometric detection, typically based on two wavelengths of 
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fluorescence emission or excitation, normalizes the signal and minimizes the effect of most 

analyte-independent factors that affect the fluorescence output in microscopy experiments. 

Reversible, ratiometric metal-responsive indicators are thus preferred when quantitative 

rather than qualitative information is sought about the target metal.

Genetically encoded, entirely protein-based FRET sensors are ideal candidates for 

ratiometric detection of ions with subcellular resolution. This class of sensors has been used 

extensively to study the roles of Ca2+ and Zn2+ in cell signaling [44,45]. For Mg2+, however, 

the scarcity of protein domains that (i) bind the metal with the right affinity and selectivity, 

(ii) exhibit a large conformational change upon metal binding, and (iii) retain in cellulo the 

binding properties optimized in vitro, have been major roadblocks. Merkx and coworkers 

reported MagFRET, the first genetically-encoded Mg2+ sensor, based on modified human 

centrin-3 (HsCen3) for magnesium recognition [38]. Though MagFRET-1 showed favorable 

properties in vitro, it was unresponsive to procedures known to alter cellular Mg2+ levels, 

possibly due to unanticipated interactions of the probe with other proteins in the cellular 

milieu. Most recently, Maeshima and coworkers reported MARIO, a new genetically-

encoded Mg2+ indicator that incorporates the cytosolic domain of the E.coli Mg2+ 

transporter CorA for metal binding, flanked by an ECFP/Venus FRET pair for ratiometric 

detection [39*]. A nuclear-targeted variant was employed to monitor relative Mg2+ levels 

during mitosis in the first—and only—successful example of fluorescence detection of 

changes in cellular free Mg2+ by a genetically encoded magnesium indicator in live cells. 

Metal quantification based on calibration of fluorescence ratio from dual wavelength Mg2+ 

indicators, however, is still primarily achieved with less selective small molecule indicators 

and remains to be demonstrated with the newer genetically encoded counterparts. Advances 

toward this goal are important for assessing the amplitude of the Mg2+ transients, which are 

notoriously difficult to quantify over the background of a high basal concentration.

Conclusions and Perspective:  Advances in imaging technologies combined with the 

development of increasingly selective, sensitive fluorescent indicators have revolutionized 

the study of the cell biology of metals. Fluorescent indicators developed by Roger Tsien, 

such as fura-2 [46], were instrumental in attaining our current understanding of calcium 

signaling, and they established much of the foundation for the design of tools that are now 

ushering the re-evaluation of the roles of other metals in biology. Furnished with the right 

indicators, fluorescence microscopy is particularly well suited to reveal in real time the 

transient changes in metal availability required for signaling to take place. Furthermore, the 

high resolution offered by fluorescence imaging with targeted indicators can deliver 

information on the spatial localization of such signals and help uncover intraor extracellular 

sources of ion mobilization, thus providing a more complete picture of the information flow.

As exposed herein through the lens of magnesium, the study of metals in signaling roles is 

pushing the design of a better toolbox to track metals at the sub-cellular level. Each metal 

cation brings unique parameters and technical challenges to the development of fluorescent 

indicators. Yet the final requirements are similar for all, and include well-tuned affinity, high 

selectivity for the target cation over others, ability to quantify transient changes in ion 

concentration, and controllable localization to enable visualization of patterns of metal 

accumulation and translocation to and from subcellular compartments. Undoubtedly, much 
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progress has been made in various fronts. Careful molecular design, based on consideration 

of the unique coordination chemistry of each metal, has enabled the development of 

indicators with sufficient selectivity to probe, at last, transients of Mg2+ without the 

interference from Ca2+ fluxes. New genetically encoded indicators have provided access to 

metals on specific cellular compartments of interest. Finally, hybrid indicators are filling 

some of the gaps left by small molecules and protein-based ones, combining some of the 

best features of both classes. But a number of challenges still remain, and reliable 

quantification is perhaps at the top of the list.

The notion of d-block metals and magnesium playing a role in signaling represents a clear 

departure from the current paradigm in which these metals are viewed exclusively as 

controlling basal metabolic activity. This shift forces us to rethink the basic mechanistic 

aspects of information transfer and to question the magnitude of a transient required to carry 

a signal. In principle, the vast differences in the concentrations of the different metals—and 

of the affinities and concentrations of their binding partners, which ultimately determine 

both metal availability and the concentration range at which a downstream effect can be 

triggered—open the possibility of multiple ions operating in parallel, carrying different 

signals with virtually no crosstalk. Probing the molecular aspects of such model poses an 

exciting challenge for chemists and biologists alike, presenting a fertile ground for 

innovation in tool design.
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Figure 1. 
Schematic representation of the proposed mechanism for the GABA-induced, Mg2+-

mediated activation of mTOR in developing neurons. Stimulation of GABA receptors is 

shown to elicit the release of mitochondrial Mg2+ into the cytosol by an unidentified 

mechanism. An increase in [Mg2+]cyto leads to the activation of mTOR and CREB, which 

activates transcriptional programs toward dendritic growth.
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Figure 2. 
Selected fluorescent indicators used for imaging cellular free Mg2+. (A) Small molecule 

indicators. (B) Genetically encoded, all-protein-based indicators. MARIO is comprised of 

the metal binding cytoplasmic domain of CorA (PDBID: 2HN2), flanked by ECFP (PDBID: 

2YDZ) and Venus (PDBID: 1MYW) fluorescent proteins; MagFRET contains the N 

terminus of sCen3 as metal binding domain (drawn based on HsCen2, PDBID: 2GGM) 

flanked by Cerulean (PDBID: 2Q57) and Citrine (PDBID: 1HUY). (C) Hybrid indicators 

comprised of a small molecule sensing component and a protein carrier. The basal 

concentration of free Mg2+ in most cells is 0.5–1.0 mM, requiring indicators with low 

affinity for maximum sensitivity under physiological conditions.
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Table 1.

Spectroscopic properties of selected fluorescent indicators for imaging free Mg2+.

Probe Absorption λmax (nm) Fluorescence Emission 
λmax (nm) Φ(free), Φ(bound)

KD, Mg2+ 25 °C 
(mM)

KD, Mg2+ 37 °C 
(mM)

Ref.

Small molecules

Mag-Fura-2 369, 330
a

511, 491
a 0.24, 0.30 1.9

b 1.5 [26,27]

Mag-mito 356, 330
a

495, 482
a

0.42, 0.25
c 6.7 N.R. [28*]

Mag-S 396, 350
a

572, 547
a 0.17, 0.30 3.2 1.97 [29]

KMG-20 425, 445
a 485 0.63 N.R. 10 [30]

KMG-104 504 523 N.R., 0.02 2.1 N.R. [31]

MGQ-1 515 536 0.36, <0.01 N.R. 0.14 [24**]

MGQ-2 516 536 0.33, <0.01 N.R. 0.27 [24**]

MGQR 561 588 0.29, <0.01 N.R. 0.29 [25]

KMG-301 563 590 N.R., 0.15 4.5 N.R. [32]

MagQ2 600 634 0.0099, 0.34 1.51 N.R. [33]

KMG-501 663 684 0.004, 0.05 3.2 N.R. [34]

CMg1 820, 880d 559 0.29, 0.28 1.7 N.R. [35]

Hybrid Sensors

Mag-S-Tz 404, 358
a 595 0.1, 0.24 3.1 N.R. [36*]

MGH 515 538 0.19, 0.56 N.R. 1.3 [37]

Genetically Encoded

MagFRET-1 Cerulean, Citrine 0.15
e - [38]

MARIO ECFP, Venus 7.2 N.R. [39*]

a
Ratiometric sensor; two values represent absorption or emission maxima in the metal-free and -bound form, respectively.

b
Dissociation constant reported at 22 °C.

c
Quantum yields determined on reference, non-targeted analogue.

d
Two-photon absorption maxima.

e
Temperature not specified N.R. = not reported.
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