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Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) is a popular tool for noninvasively 

assessing properties of white matter in the brain. Among other uses, dMRI data can be used to 

produce estimates of anatomical connectivity on the basis of tractography. However, direct 

comparisons of anatomical connectivity as estimated through invasive neural tract-tracing 

experiments and dMRI-derived connectivity have shown only a moderate relationship in 

nonhuman primate (particularly macaque) studies. Tractography is plagued by known problems 

associated with resolution, crossing fibers, and curving fibers, among others. These problems lead 

to deficits in both sensitivity and specificity, which trade off with each other in multiple datasets. 

Although not yet examined quantitatively, there is reason to believe that some large white matter 

bundles, those with more topographic organization, may produce more accurate results than 

others. Moving forward, sophisticated analytical approaches and anatomical constraints may 

improve tractography accuracy. However, broadly speaking, dMRI-derived estimates of brain 

connectivity should be approached with caution.
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Introduction

Understanding brain connectivity (its “wiring diagram”) is essential for the study and 

treatment of mental illness. Noninvasive neuroimaging techniques that allow for estimates of 

connectivity in humans are popular tools for biological psychiatrists. Among these 

techniques is diffusion magnetic resonance imaging (dMRI), which takes advantage of the 

differential diffusion of water molecules across tissue types. However, while dMRI can 
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provide essential information about white matter composition, tractography methods for 

estimating connectivity are prone to error. Here, we review the attempts to validate dMRI-

derived connectivity, and provide possible future directions for improvement. Our goal is to 

communicate the results and meaning of validation studies from the neuroimaging methods 

community to biological psychiatrists performing dMRI tractography.

How is dMRI tractography implemented?

dMRI is a noninvasive neuroimaging technique that measures the restriction of diffusion of 

water molecules in tissue(1). Because dMRI provides information about white matter 

orientation at each voxel, tractography can be used to delineate white matter tracts and track 

groups of axons through the brain(2). In this review, we are particularly interested in how 

dMRI data is used to model neuronal projections and estimate structural connectivity, 

meaning whether and to what extent brain regions connect to one another.

While not the focus of this review, dMRI data can produce multiple informative metrics at 

each voxel, including fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial 

diffusivity (AD), and radial diffusivity (RD)(2). FA is the degree of diffusion restriction, 

thought to reflect white matter integrity. Alterations in FA have been observed when 

comparing healthy controls to various disease states(3,4), as well as in voxels with crossing 

fibers(5). ADC is a measure of the magnitude of diffusion of water within a tissue, and can 

be used in monitoring brain infarctions(6). AD and RD are the diffusion rates along the main 

and transverse diffusion directions, respectively. The benefits and deficiencies of structural 

connectivity discussed in this review do not apply to these metrics, which have their own 

validation literatures.

There are several options for estimating the fiber directions present in each voxel, with the 

choice of model partially dependent upon how data were collected. The early diffusion 

tensor model allowed for the estimation of a single orientation in each voxel. While this 

provided very informative results, it was incapable of discriminating complex fiber 

arrangements(7). Later models, such as high angular resolution diffusion imaging (HARDI), 

require the acquisition of more diffusion directions and multiple b-values(8,9). HARDI is 

capable of estimating multiple fiber directions in each voxel(10,11). Data acquired with a 

HARDI protocol can be analyzed with various models including Q-ball, persistent angular 

structure MRI, and diffusion orientation transformation(8,9,12). Additional advances in 

dMRI acquisition include the b-tensor model, which further improves the estimates of fiber 

orientation(13,14).

There are two main ways to analyze dMRI tractography(15). In its simplest form, 

deterministic tractography assumes that the fiber orientation in each voxel is a single, known 

vector. The tract is generated by selecting a starting location and continuing through 

adjacent voxels before terminating when it reaches an area where the linear tract ceases to 

exist. This technique will produce identical results across multiple runs, as the underlying 

assumptions do not change. Deterministic tractography has the advantage of being 

computationally simple. However, it is limited in resolving complex fiber patterns, 

particularly when performed on standard diffusion tensor modeled data. It also does not 
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convey information regarding the strength of the connection(16). Probabilistic tractography 

utilizes probability distributions based on the uncertainty of the diffusion direction through 

each voxel. Probabilistic models are run thousands of times, and each run produces slightly 

different outputs(17). This methodology is less likely to exclude voxels with low FA (which 

could be caused by crossing, kissing or curving fibers). One downside is that calculations 

can be computationally intensive. The number of streamlines that pass through each voxel 

has been used as a surrogate for connection strength, though this is an overly simplistic 

interpretation that can be influenced by anatomically incorrect reconstructions or complex 

fiber arrangements(18). Both probabilistic and deterministic tractography can benefit from 

utilizing models other than the diffusion tensor. One such approach is to model the data 

using spherical deconvolution, which, unlike the diffusion tensor model, can assign multiple 

fiber directions to each voxel(19). A benefit of the spherical deconvolution model is that it 

allows deterministic tractography models to resolve crossing fibers and enhances the 

accuracy of probabilistic tractography(20).

In addition to identifying the locations and fiber orientations of large white matter bundles 

(Figure 1A), dMRI tractography can be used to estimate connectivity between gray matter 

regions (Figure 1B). A region can be used as a seed, then the tracts are followed until 

structural connectivity with other regions is established. Structural connectivity is commonly 

treated as being representative of anatomical connectivity. For example, dMRI has been used 

to examine connectivity of the human striatum(21,22), subthalamic nucleus(23), frontal 

cortex(24), and cerebellum(25), among other brain regions. It has been used to constrain 

and/or interrogate the anatomy of functional connectivity(26,27,28,29). Finally, structural 

connectivity strength has been related to individual differences in cognition and behavior, 

including in psychiatric disorders(30,31,32,33,34). Clearly, it is important to know exactly 

how structural connectivity relates to underlying anatomy.

dMRI faces complex challenges

There are well-established challenges dMRI faces as it attempts to reproduce anatomical 

connectivity. Perhaps the most obvious is voxel size: an average axon is ~1μm wide, 

compared to a typical isotropic dMRI voxel of 1.5mm(35). Thus, each voxel can contain 

millions of axons in various orientations. Another problem with large voxels is partial 

volume effects, which occur when voxels contain a mixture of tissue types (such as blood 

vessels and ventricles)(36). Partial volume effects are especially problematic for tracking in 

the vicinity of ventricles(37), as well as entering the gray matter ribbon.

Voxel sizes cannot currently approach the diameter of a single axon; nevertheless, as spatial 

resolution improves, we may be able to capture smaller groups of axons. However, it is still 

necessary to ensure high signal-to-noise ratios (SNR). Unfortunately, dMRI has intrinsically 

low SNR (relative to other types of MRI). As the b-value (strength of the diffusion gradient 

applied) increases, the SNR decreases. Moreover, the SNR is proportional to the voxel size 

at fixed field strength. Because image acquisition is typically performed with isotropic 

voxels, small changes in the acquisition matrix lead to dramatic reduction in SNR. However, 

by combining diffusion acquisitions with different resolutions, it is possible to overcome the 

reduction in SNR(40).

Grier et al. Page 3

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As noted, there are a very large number of axons present in each of these large dMRI voxels. 

Within the brain, each individual axon can be referred to as a single fiber. When these fibers 

join together and travel together they form fiber bundles (or tracts). [A fiber bundle/tract, 

somewhat confusingly, can be either a group of axons with similar geometry originating in 

many brain regions (e.g., cingulum bundle, corpus callosum), or a subset of labeled axons 

originating in a particular brain region (e.g., a bundle starting in the prefrontal cortex that 

crosses the corpus callosum, joins the superior longitudinal fasciculus, and terminates within 

the parietal lobe)]. While dMRI investigates the microscopic properties of the tissue, 

tractography is performed at the voxel level, modeling fiber bundles. Current processing 

pipelines are generally very good at determining the primary diffusion direction of large 

fiber bundles; however, smaller bundles in proximity to other bundles often have complex 

patterns(41). Crossing fibers are fibers that cross each other; kissing fibers run in close 

proximity, but do not cross; bending fibers have a slight curvature. Each of these 

configurations causes difficulties in analysis determined by how the fiber directions are fit to 

a model. For example, for a simple diffusion tensor fit, parallel, fanning, bending and 

crossing fibers are indistinguishable. However, if a fiber orientation density function (fODF) 

fit is used instead, these fibers start to diverge in their appearance in the modeled data and 

can be tracked with various algorithms(19). Nevertheless, it is important to remember that 

fiber tracking recreating the major orientations and locations of most of the white matter 

bundles is highly accurate and reproducible. Inaccurate tractography often occurs in smaller, 

deeper bundles and at gray matter/white matter junctions. Hence, problems likely apply 

more to gray-matter-to-gray-matter tracking (which has to travel through these junctions) 

than to tractography restricted to white matter(38,39).

Anatomical methods for validation

The methods used for validation of diffusion tractography are mostly drawn from traditional 

neuroanatomy. None of these techniques is non-invasive, but all provide some form of 

ground truth against which to measure diffusion tractography studies.

Physical dissections of brain tissue can reveal major white matter bundles(42). These can 

provide a visual framework from which to validate the results from dMRI studies of where 

large white matter bundles are located, and what their major orientations are(42,43). 

However, crucially, dissections are unable to identify axonal start and end points or how 

fibers enter and exit bundles, and are fundamentally limited in resolution. Thus, they are not 

well-suited for determining the gray-matter-to-gray-matter anatomical connections that 

subserve neuronal information processing.

There are various histochemical stains and light imaging methods (such as polarized light 

imaging) that can be utilized to examine myelinated fibers (and thus fiber directions) in the 

brain(44,45,46). This method shows whether diffusion directions match the majority of true 

axonal orientations. However, like dissection methods, it cannot connect fiber orientations 

with specific gray matter areas, and thus cannot resolve details of anatomical connectivity.

Anatomical tract-tracing can be used as a “ground truth” when assessing the accuracy of 

diffusion tractography when the latter is estimating gray-matter-to-gray-matter connectivity. 
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It is helped in this regard by the availability of two well characterized datasets, Markov-

Kennedy and CoCoMac(47,48). In neural tract-tracer studies, tracer compounds are 

manually injected into target brain regions. Days to weeks later, the animal is sacrificed. 

Because this technique requires intracranial surgery, timed sacrifice, and perfusion, it is 

impossible to implement in humans. Microscopy is performed to locate the cells and axons 

containing the tracer. Retrograde connectivity strength can be straightforwardly quantified 

by counting labeled cells within an afferent region. Anterograde connection strength is 

trickier; labeled axonal boutons can be counted, but this time-intensive process is often 

unrealistic over large quantities of tissue. Similarly, number of labeled axons in a bundle 

may also be quantified in some datasets, but the size of the primate brain typically makes 

this prohibitive (and it can sometimes be difficult to distinguish individual axons). Neural 

tract-tracing studies provide exquisite detail on the topography and strength of connections 

from one brain region to another, as well as the sometimes convoluted paths axons take to 

reach their targets. However, tract-tracing is ill-suited to characterizing, in the span of a 

single study, the overall composition of a large bundle. This is because the tracer is injected 

into only one region of the brain, and cannot be moved. Thus, tracer studies are 

fundamentally not “whole-brain.” Only by combining cases from many injections (as in, 49) 

can overall composition be estimated, but it will still be limited by the injections available 

and chosen.

Manganese tracing has been offered as an alternative to the laborious practice of neural tract-

tracing(50,51,52,53,54). Manganese can be injected into the live brain, and then visualized 

on a T1-weighted MRI. For the purposes of connectivity, this means that manganese 

methods are dependent on the resolution of the MRI. Thus, it is quite coarse. Furthermore, 

manganese is multi-synaptic, meaning it can cross synapses in a manner that traditional 

tract-tracers cannot. It can be difficult to distinguish mono vs multi-synaptic effects, along 

with connection strength, without prior knowledge. Manganese tracing can roughly 

recapitulate the anatomical connectivity of large networks (such as the cortico-striatal-

pallidal network,55). Thus, while it can outline large, strong networks, and has the 

advantage of being able to do so across multiple synapses, manganese tracing has not 

replaced traditional tract-tracing in the field, and it will not be our focus here.

We focus on tract-tracing comparisons to diffusion tractography performed in nonhuman 

primates. The macaque, rather than other nonhuman animal models, has been an essential 

part of the effort to build a wiring diagram of the brain, because its gross white matter 

topology is similar to humans’. By contrast, rodents simply do not have well-defined 

bundles in the same locations as in humans(56,57). There are two sizable databases of 

anatomical connectivity in macaques. CoCoMac(48,58,59) combines across the vast 

anatomical literature to estimate connectivity, retrograde and anterograde, between gray 

matter regions. CoCoMac is a very large database, with many cases per region. One 

disadvantage, however, is that definitions of connectivity strength may differ considerably 

across investigators, and this is not fully standardized (the database simply distinguishes 

among weak, moderate, and strong levels of label). Furthermore, the white matter pathways 

used to reach each gray matter region are obscure. The Markov-Kennedy(47,60) database 

was generated in a single laboratory, so the analysis framework (density of cells, cells per 

region and per brain) is applied identically across cases. They have placed retrograde tracers 
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in 29 cortical regions, and reported connectivity in 91 cortical regions; no subcortical data 

are available. As with CoCoMac, white matter trajectories remain obscure. Finally, although 

not a database per se, the definitive text summarizing white matter organization in macaques 

is Fiber Pathways of the Brain(49). We would refer you to this book for details about axonal 

trajectories according to region and bundle.

Validating structural connectivity

Herein, we will review the papers comparing anatomical tract-tracing results to tractography, 

with a focus on the macaque model. We will be explicit about the types of anatomical and 

dMRI data used. In many cases, the dMRI data were generated quite differently than the 

typical human dMRI acquisition: notably, many are ex vivo studies with scans lasting 

several days.

Thomas et al.(61) compared two anatomical cases with ex vivo dMRI from a single macaque 

brain (using a 7T Bruker BioSpin HARDI MRI; resolution 250μm; acquisition time of 71 

hours). One anterograde injection was used from the motor cortex and one from area 

V4(49). In these cases, fibers of passage and terminating fibers were known. In both gray 

and white matter, dMRI and anatomical data were segmented into regions; bundles from 

each method were classified as present in each region or not. Specificity and sensitivity were 

then evaluated across diffusion models. Specificity is the ability of an algorithm to correctly 

ignore false tracts, and can be operationalized as true negatives/(true negatives + false 

positives). Sensitivity is the ability for a tractography algorithm to properly identify a true 

tract, and can be operationalized as true positives/(true positives+false negatives). Specificity 

and sensitivity varied considerably according to the specific diffusion model applied; 

however, accuracy overall was quite low. To demonstrate this, the authors combined 

sensitivity and specificity into one metric, the Youden index(62): specificity + sensitivity - 1. 

A Youden index of 1 represents perfect specificity and sensitivity. In this study, Youden 

index values ranged from 0.04 to 0.59. Unfortunately, the optimal diffusion models were 

different for the two anatomical cases, meaning that a diffusion model that produced a high 

Youden index for one region often produced a low one for the other. This severely limits 

one’s ability to find a widely applicable, accurate diffusion model. In addition, an increase in 

sensitivity was accompanied by a decrease in specificity, meaning that capturing more true 

tracts came at the cost of including more false tracts. The authors conclude pessimistically 

that “there is an inherent limitation in determining long-range axonal projections based on 

voxel-averaged estimates of local fiber orientation.”

Another study(63) ceompared th CoCoMac and Markov-Kennedy databases with dMRI data 

drawn from 10 macaque brains (3T Siemens Trio Tim, resolution 1.1 mm; 86 minutes). Q-

sampling imaging was used to fit multiple fibers to each voxel, and deterministic fiber 

tracking was used. Cortical gray matter was segmented into 39 regions(64,65), and whole-

brain connectivity matrices were generated (with empty cells for unsampled anatomical 

data). These matrices were then correlated with each other. Correlation coefficients between 

structural and anatomical connectivity strengths were significant, but weak (r=0.25–0.31).

Grier et al. Page 6

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Reveley et al.(66), ex vivo datasets (7T Bruker MRI; 250μm resolution; ~3 days) from 2 

macaques were compared with myelin-stained sections (within-subject) and a tracer 

injection (between-subjects). The investigators were interested in the transition points 

between white matter and cortical gray matter. The myelin stains demonstrated that the 

boundary had many different fiber orientations present: for example, local U-fibers running 

parallel to the boundary were intermixed with outgoing projections. With the tract-tracer 

injection case (in the intraparietal sulcus), fibers could be seen exiting the injection site, 

crossing the white matter boundary, and entering the deep white matter. The dMRI data were 

unable to capture this pattern. When seeding inside the gray matter, only 24% of brain 

regions managed to generate long-range projections deep into the white matter, with the rest 

caught in local fiber systems. Expanding the seeds to capture some of the white/gray matter 

boundary did lead to more projections to the deep white matter, but at the expense of 

accuracy. Although there were problems with both gyral and sulcal seeds, the challenges 

associated with superficial white matter were more pronounced in sulci.

Donahue et al.(67) compared anatomical connectivity from Markov-Kennedy(47) with scans 

from ex vivo macaque and vervet brains (4.7T Bruker MRI; macaque brain scanned at 

0.43mm resolution for 27 hours; vervet brain scanned twice, 0.5mm resolution, for 20 hours 

and 68.5 hours). A number of different analysis strategies were used: area-based vs vertex-

based (for the injection site), crossed with seeding in the white matter vs surface. Seeding in 

the white matter enhanced the gyral bias described above(66). Importantly, the anatomical 

and dMRI datasets were “reasonably” correlated, with correlation coefficients of 0.55–0.60. 

This study successfully employed fractional scaling (number of streamlines/labeled cells in 

an area was normalized by total number of streamlines/labeled cells in the brain) and 

symmetrization (averaging connection strength from region A to B with B to A); without 

these, the correlation coefficient was 0.48. In addition, accuracy decreased with distance 

between regions.

Focusing exclusively on connectivity within the cortical visual system, Azadbakht et al. used 

two fixed macaque brains to acquire ex-vivo dMRI data(68) (rhesus macaque brain imaged 

for 64 hours at 0.8mm resolution; crab-eating macaque imaged for 27 hours at 0.43mm 

resolution; 4.7T Bruker MRI). Anatomical data were drawn from a landmark synthesis of 

visual system connectivity(69,70), in which reports from many prior studies were combined 

to determine whether two brain regions were connected (but without regard to strength of 

connectivity). Accuracy (true positives plus true negatives divided by the sum of true 

positives, true negatives, false positives, and false negatives) was 77% in one dataset and 

70% in the other, indicating that similar tractography results can be attained with different 

acquisition methods. These numbers may have been helped by the relatively close distance 

between regions under investigation, which are mostly in the caudal cerebral cortex. False 

positives were mostly short-range projections, while false negatives were weighted toward 

longer pathways. Imposing FA thresholds reduced accuracy (perhaps due to partial volume 

effects), and distance corrections did not dramatically alter accuracy (likely because of a 

sensitivity/specificity tradeoff). The authors followed up on the most consistent “false” 

connections by comparing with the more recent Markov-Kennedy database. Among those 

that had been tested in Markov-Kennedy, 8 out of 9 “false positives” were found to have 

anatomical connectivity. This might suggest that the tractography more accurately matches 
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anatomical connectivity than is suggested by comparison to(69). However, 8 of 10 tested 

“false negatives” were also absent in the Markov-Kennedy database, suggesting that the 

majority of false negatives, were, in fact, errors. Ultimately, this study shows the use of tract-

tracing data as the “ground truth” comparator is limited by the particulars of a given dataset. 

Potentially, one way to mitigate this problem is with quantitative assessments of anatomical 

connectivity (as in the Markov-Kennedy database); a weak connection may have been 

missed by early anatomical work, when tract-tracers were less sensitive. Connections also 

vary considerably in their strength, and this feature of the brain will ultimately be important 

to capture.

Schilling et al.(71) developed challenge datasets to determine whether any particular 

tractography algorithm could accurately replicate anatomical connectivity. For the macaque 

dataset, both the anatomical and dMRI data were the same as used in Thomas et al.(61). An 

ex vivo squirrel monkey dataset was also generated (50 hours at 9.4T; 300μm resolution). 

The squirrel monkey anatomical connectivity was generated from an injection of tract-tracer 

into the primary motor cortex. Uniquely, these occurred within the same brain, allowing for 

within-subject comparison. There were ultimately 176 submissions generated by 9 research 

groups. Like Thomas et al.(61), Schilling et al(71) conclude that sensitivity and specificity 

trade off in the submissions. The median Youden index values were notably low: 0.21 and 

0.30 for the macaque and squirrel monkey datasets, respectively (the highest were 0.56 and 

0.58). Intriguingly, the squirrel monkey dMRI tractography slightly outperformed the 

macaque, perhaps because of reduced cortical folding or the within-subject design.

Shen at al. (79) examined cortical tractography results from ten macaques imaged in vivo 
(7T Siemens Magnetom, 1.0mm resolution), and systematically manipulated parameters in 

the probabilistic tractography model. Resulting connectivity matrices were compared to the 

Markov-Kennedy and CoCoMac databases. When compared with the Markov-Kennedy 

database, “default” tractography settings yielded a very high sensitivity (0.99), but very low 

specificity (0.01), consistent with many of the other studies described here. Precision (true 

positives divided by the sum of true and false positives), however, was significantly above 

chance (0.79), and seemed to depend upon analysis parameters used. The two parameters 

with the biggest impact were the curvature threshold and the discarding of “weak” 

connections. The curvature threshold restricts how much a streamline is permitted to change 

angles along its path, and the optimal one was below 0.6. “Weak” connections were defined 

as streamlines that fail to meet a minimum criterion(80). After determining the “optimal” 

tractography parameters for each subject, a correlation coefficient (r) (between the 

tractography estimates of connectivity network edge weights and those from the Markov-

Kennedy database) of 0.71 was achieved. This suggests that subject or tract -specific 

optimization may dramatically improve accuracy.

Although not as comparable to human dMRI because of dramatic differences in gross brain 

anatomy, mice have also been used for structural connectivity validation. In a comparison of 

anatomical tract-tracing results from the Allen Brain Atlas database(72,73,74) and dMRI 

tractography, DICE coefficients (overlap between labeled tracer and tractography) were in 

the 0.4–0.5 range(75). These improved somewhat with the addition of anatomical 

constraints. Chen et al.(76) found dramatic variation in tractography performance across 
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number of regions used (coarseness of the atlas) and streamline length, with optimal 

performance with coarser parcellations and longer connectivities. They also agreed with the 

conclusions of(61): specificity comes at the cost of sensitivity, and vice versa.

The above studies, which ask how individual brain regions use each bundle, stand in contrast 

to more promising studies in which the location and major fiber directions of the largest 

white matter bundles of the brain are identified by tractography. The difference between 

these approaches is analogous to the difference between knowing where in the country and 

in what direction (north/south vs east/west) a highway runs, versus knowing which entry and 

exit points a particular vehicle used on its journey. For example, in a recent challenge to 

identify 25 major fiber bundles (as segmented by an expert radiologist)(77,78), the majority 

of the processing pipelines were able to reconstruct portions of all but the smallest of fiber 

bundles with some specificity. Despite challenges with the finer details of tracking each 

bundle, the match between the anatomical bundle boundaries and the dMRI ones was very 

high, indicating tractography is an excellent tool for estimating the locations and fiber 

orientation(s) of large bundles.

In summary, validation studies consistently show a moderate relationship between structural 

and anatomical connectivity, though careful manipulation of the tractography parameters can 

increase the correlation between diffusion data and anatomical data, particularly in gray-

matter-to-gray-matter connectivity studies. Moreover, sensitivity and specificity consistently 

trade off, such that an increase in sensitivity comes at the expense of specificity, and vice 

versa. By contrast, dMRI is quite good at replicating the locations and fiber orientations of 

major white matter bundles. Decreased accuracy appears to come in smaller and deeper 

brain structures, gray/white matter junctions, as well as longer distances, which helps to 

explain the challenges associated with gray-matter-to-gray-matter connectivity.

Case studies

Although it has not yet been examined quantitatively, it seems likely that connections 

running through some white matter bundles are easier to recreate. Here, we will consider the 

very different challenges posed by two bundles: the anterior limb of the internal capsule 

(ALIC) and the cingulum bundle.

The ALIC carries fibers running between the prefrontal cortex and the thalamus, 

subthalamic nucleus, and brainstem. Tract-tracing has revealed a distinct topography 

prefrontal fibers use in the ALIC(83,84). For example, fibers from dorsal prefrontal regions 

run dorsal in the ALIC to those from ventral prefrontal regions. These relationships are 

generally maintained in tractography studies on macaques and humans. There are some 

challenges associated with reconstructing tracts through the ALIC (for example, 

ventromedial prefrontal cortex fibers get “stuck” as they attempt to traverse fascicles through 

the anterior commissure), but they can be corrected to reproduce the underlying biology.

The cingulum bundle runs rostral-caudally through the frontal, parietal, and temporal 

lobes(85,86,87) (Figure 1). In contrast to the topographically organized ALIC, it has only 

minimal organization. Tract-tracing shows that fibers traveling through the cingulum bundle 
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segregate mainly in the rostral-caudal dimension, but not in the medial-lateral or dorsal-

ventral(88). Thus, fibers from different brain regions are largely intermixed in the cingulum 

bundle. These projections are very different: they start and/or end in different brain regions. 

However, since each voxel contains fibers from multiple regions, dMRI streamlines may not 

exit the cingulum bundle at the appropriate location. Instead, multiple seed regions (with 

distinct anatomical connectivity) may enter the cingulum bundle, and the streamlines may 

either fail to exit the bundle, or else exit falsely at places where other regions are exiting. 

Thus, we anticipate that anatomical connectivity through the cingulum bundle is particularly 

difficult to replicate with dMRI. Indeed, on visual inspection, Donahue et al.(67) identified 

the cingulum bundle as the source of many obvious false positives in their study. The 

cingulum bundle also highlights the differences between identifying a bundle and its major 

diffusion directions (which, for the cingulum bundle, is relatively straightforward using 

tractography) versus identifying gray-matterto-gray-matter connectivity patterns.

Paths forward

The validation studies described above have a few obvious weaknesses. First, with one 

exception (in the squirrel monkey,71), studies were in different cohorts of subjects. That is, 

some animals were used for anatomical tract-tracing, while others were used for dMRI. This 

brings up problems associated with primarily with registration (of the injection site/seed, of 

the brain regions, of the tracts and connections), but also with individual differences in 

anatomical connectivity. Second, two landmark studies (71,61) rely upon the same 

anatomical dataset, which uses just two cases. Other studies(63,67) took advantage of larger 

anatomical datasets. However, these did not include subcortical connectivity. While 

tractography in subcortical structures is likely to be much more difficult due to their small 

size and SNR problems, it will be important to assess these areas moving forward. Finally, it 

is not yet clear whether certain bundles are easier to track connections through than others, 

as proposed above.

It is also clear that improved dMRI data collection and analyses do enhance the accuracy of 

structural connectivity. On the data collection side, increasing b-values, improving 

resolution, and combining acquisitions with different resolutions to enhance SNR(40) may 

enhance quality. It is not exactly clear how to translate the impressive resolutions in the 

validation studies described here to human. The macaque brain is ~6% the volume of the 

human brain (e.g., 89), but axons are roughly the same size (e.g., 90). Achieving better 

resolutions will probably help, but it is not obvious where the goalpost should be. On the 

data analysis side, the fractional scaling and symmetrization employed by Dohanue et al.

(67), the anatomical constraints imposed by Aydogan et al.(75), and the individualized curve 

thresholds and discarding of weak connections by Shen et al.(79) appear promising. 

Additionally, a well-known problem with tractography is the difficulty of tracking longer 

range connections, largely due to the propagation of uncertainty as the tract increases in 

length (82). Distance correction can be applied, which increases the number of true positive 

connections reconstructed, but also increases the number of false positives (68). Further 

studies have shown this may not improve the accuracy of tractography (79), so this approach 

must be utilized with caution. Finally, studies on the individual anatomical constraints 
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needed for each white matter bundle will ideally go hand-in-hand with novel anatomical 

tract-tracing studies, focused on the particular problems with each bundle.

Clinical Applications

Despite the limitations of diffusion neuroimaging, it has been used effectively in multiple 

clinical settings. For example, for surgical resection planning, numerous studies have shown 

that diffusion imaging can assist in removal of brain tumors in close proximity to white 

matter bundles such as the pyramidal tracts(91). Diffusion tractography is also effective at 

determining deep brain stimulation electrode placement in multiple disease states, including 

treatment-resistant depression(92), movement disorders(93), and chronic pain(94). It should 

also be reiterated, that while dMRI may not fully recapitulate anatomical connections, it 

remains the best non-invasive method to study white matter organization in the human brain 

in vivo.

Conclusion

Here, we have reviewed the validation of dMRI-derived structural connectivity. We conclude 

that, while there is consistently a significant, positive relationship between anatomical 

connectivity and structural connectivity, it is definitely not strong enough for dMRI 

tractography to act as a stand in for gray-matter-to-gray-matter anatomical connectivity. 

Nevertheless, moving forward, advancements in dMRI tractography (on both the data 

acquisition and analysis sides), along with the imposition of anatomical constraints, may 

improve this scenario. Other usages of dMRI, including localization of large white matter 

bundles and identification of differences in white matter integrity between populations, are 

unaffected by this critique. As investigators analyze their structural connectivity data, we 

encourage tailored approaches, with an eye toward ensuring that streamlines are following 

biologically plausible pathways.
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Figure 1: 
Cartoon illustration of dMRI applications in rhesus macaques, with the cingulum bundle 

used as an example. A. DMRI can outline the location of a major bundle (cingulum bundle 

localized in green) as well as the bundle’s major directions (green arrows). This can be used 

to generate regions-of-interest within the bundle. Metrics, such as fractional anisotropy and 

apparent diffusion coefficient (discussed in the Introduction), can be compared within these 

regions-of-interest across populations. B. DMRI is also used to estimate structural 

connectivity, but this may present challenges. Regions-of-interest are shown in the amygdala 

(pink) and area 24 (yellow). The true nature of their anterograde projections through the 

cingulum bundle, as derived from anatomical tract-tracing, are shown as color-matched lines 

and arrows(88). The amygdala uses the ventral portions of the cingulum bundle (temporal 
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and frontal subgenual), and the rostral portion of the dorsal cingulum bundle. It does not 

enter the caudal portion of the dorsal cingulum bundle. The resulting anatomical 

connectivity with anterior cingulate, but not posterior cingulate, is shown as a table, with 

shaded boxes indicating connectivity(95). By contrast, area 24 uses all of the dorsal 

cingulum bundle, as well as the frontal subgenual portion of the cingulum bundle. It has 

anatomical projections to all cingulate regions, as shown by shading in the table(96). It is 

this anatomical connectivity table that dMRI structural connectivity seeks to re-create, on the 

basis of streamlines through the white matter. A coronal inset is shown where amygdala and 

area 24 axons (small colored dots) are both present, and intermixed. A number of challenges 

are apparent. First, because of overlap with area 24 fibers, it may be challenging to stop 

amygdala fibers from continuing on to the posterior cingulate cortex. It may also be difficult 

to correctly identify the points at which fibers from each region join the cingulum bundle. 

Visualizations created using(97,98).
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