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Abstract

Background.—The key characteristics (KCs) of human carcinogens provide a uniform approach 

to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach 

were requested by organizations and individuals applying the KCs.

Methods.—We assembled an expert committee with knowledge of carcinogenesis and 

experience in applying the KCs in cancer hazard identification. We leveraged this expertise and an 

examination of the literature to more clearly describe each KC; identify current and emerging 

assays and in vivo biomarkers that can be used to measure them; and, make recommendations for 

future assay development.

Results.—We found that the KCs are clearly distinct from the Hallmarks of Cancer, that 

interrelationships among the KCs can be leveraged to strengthen the KC approach (and an 

understanding of environmental carcinogenesis), and that the KC approach is applicable to the 

systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro. We 

identified gaps in coverage of the KCs by current assays.

Conclusion.—Future efforts should expand the breadth, specificity and sensitivity of validated 

assays and biomarkers that can measure the 10 KCs.

Impact.—Refinement of the KC approach will enhance and accelerate carcinogen identification, 

a first step in cancer prevention.
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Introduction

Carcinogenesis is a multi-step process in which normal cells are transformed into cancer 

cells by acquiring various properties that allow them to form tumors. These acquired 

properties of cancer cells that distinguish them from normal cells have been classified as a 
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series of Hallmarks by Hanahan and Weinberg (1) (Figure 1A). Originally, six Hallmarks 

were described in 2000 (1,2) along with two enabling characteristics (genome instability and 

inflammation) and two emerging Hallmarks (deregulated metabolism and immune system 

evasion) were added in 2011 (2). By considering cancer as an accumulation of multiple 

Hallmarks, research has been guided to understand the origins of cancer, to identify targets 

for prevention and to design strategies to reverse various Hallmarks, individually as well as 

collectively, to treat cancer. Carcinogens (i.e., agents that induce cancer) are thought to act 

by inducing multiple Hallmarks in normal cells, thereby transforming them into cancer cells 

through a variety of mechanisms.

In 2009, Guyton et al. (3) described how carcinogenic chemicals act through multiple 

pathways, mechanisms and/or modes-of-action to induce cancer. They identified 15 types of 

‘key events’ associated with carcinogenesis and documented how known human 

carcinogens, such as benzene and arsenic, can cause many of these key events (e.g., 

genotoxicity, immunosuppression). Similarly, Kleinstreuer et al. (4) described how 

chemicals that target multiple Hallmark processes in vitro are more likely to be rodent 

carcinogens in vivo. In 2012, participants at two workshops organized by the International 

Agency for Research on Cancer (IARC) noted that human carcinogens, while operating 

individually through distinct mechanisms, often share one or more characteristics related to 

the multiple mechanisms by which agents cause cancer. This led to the identification of 10 

key characteristics (KCs) of human carcinogens (Figure 1B) (5). These KCs, such as “is 

genotoxic”, “is immunosuppressive”, or “modulates receptor-mediated effects”, are based on 

empirical observations of the chemical and biological properties associated with the human 

carcinogens identified by the IARC Monographs program up to and including Volume 100. 

Hence, whereas the Hallmarks are the properties of cancer cells, the KCs are the properties 

of human carcinogens that induce cancer. Thus, while the Hallmarks describe what biology 

exists in a cancer, the KCs describe the actions of carcinogens that can cause those 

Hallmarks to become acquired.

Relationship of the Key Characteristics to the Hallmarks of Cancer

Some of the KCs produce effects analogous to the Hallmarks, e.g. carcinogens that induce 

genome instability can produce this Hallmark in both normal and cancer cells and those that 

induce immunosuppression produce an effect analogous to cancer cells evading immune 

destruction by suppressing immune surveillance mechanisms. However, as Stewart recently 

noted (6), there often is not a one-to-one relationship. Indeed, several of the KCs can 

produce genetic and epigenetic alterations that could cause almost all of the Hallmarks, 

whereas other Hallmarks, such as ‘reprogramming energy metabolism,’ which occur in 

many cancer cells, have no real equivalent in the KCs. It is therefore generally not possible 

to identify individual relationships between specific KCs of carcinogens and a single 

Hallmark of cancer.

Use of the Key Characteristics in Cancer Hazard Identification

Mechanistic evidence is an important contributor to hazard identification, the first step in 

human health risk assessment. For example, it can add biological plausibility to 

epidemiological findings, thereby strengthening causal inference, and contribute to 
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understanding the human relevance of findings in experimental animal studies. Prior to the 

introduction of the key characteristics approach, however, there was no widely accepted 

method to systematically search for and organize relevant mechanistic evidence. The KCs 

now provide a common basis for assembling and evaluating mechanistic evidence to support 

cancer hazard identification and are increasingly being used by multiple authoritative bodies 

including the California EPA (CalEPA) OEHHA, who sponsored this project. One important 

advantage of using the KCs to assemble data relevant to carcinogenic mechanisms is that an 

a priori hypothesis about a specific mechanism of action is not required. Instead, as noted by 

a recent National Academies report, the KCs are based on the empirically observed, 

common properties of human carcinogens, thus avoiding “a narrow focus on specific 

pathways and hypotheses” and instead “providing for a broad, holistic consideration of the 

mechanistic evidence” (7). The key characteristics approach therefore presents a 

comprehensive and inclusive approach to using mechanistic data in cancer hazard 

identification, in contrast to more narrow, reductionist approaches such as adverse outcome 

pathway and mode of action frameworks that focus on singular events.

IARC has applied the KCs in mechanistic data evaluations for more than 50 diverse 

chemicals and complex exposures since 2015 (8), and have now formally incorporated them 

into the January 2019 Preamble of the IARC Monographs (9). Other authoritative bodies are 

increasingly using the KCs, such as the National Toxicology Program’s Report on 

Carcinogens (NTP, RoC), who used them in recent evaluations of antimony trioxide and 

haloacetic acids (10,11). As the KCs of carcinogens have been applied by IARC, CalEPA 

OEHHA, NTP and the U.S. EPA in their hazard identification and evidence integration 

efforts, several opportunities for refinement have been identified (8). For instance, some 

members of various IARC Monograph Working Groups and the Carcinogen Identification 

Committee of the State of California and several participants at the AACR conference, 

Environmental Carcinogenesis: Potential Pathway to Cancer Prevention, requested that they 

be more clearly defined and asked how they relate to the Hallmarks of Cancer. In addition, 

specific questions have arisen about which assays and biomarkers measure each of the KCs, 

e.g., whether certain measures of hematotoxicity belong under KC 7 (immunosuppression) 

or 10 (altered cell proliferation).

Materials and Methods

With funds provided by the CalEPA OEHHA, we assembled an expert working committee 

consisting of academics, regulators, scientists in the government and pharmaceutical 

industry, from the U.S., Canada, France, Netherlands and Japan. IARC, NTP, U.S. 

Environmental Protection Agency (U.S. EPA) and CalEPA were all represented. The 

committee was charged with: 1) more clearly describing each KC based on their knowledge 

and experience in applying them in cancer hazard identification; 2) describing the endpoints 

that best define each KC and the current and emerging assays and in vivo biomarkers that 

can be used to measure these endpoints; and, 3) making recommendations for future assay 

development to improve how agents (e.g., chemicals, therapeutics) can be systematically 

evaluated for cancer hazard in vitro and in vivo. A comprehensive list of all assays that 

measure each of the KCs and Hallmarks to differing degrees is being compiled in a separate 

project, and we note that Menyhart et al. (12) recently catalogued the functional assays 
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which measure most of the Hallmarks of Cancer. Here, we describe each of the KCs and 

document representative assays that can be used to measure them in vitro, in vivo in 

experimental animals, and as biomarkers in humans. The committee selected assays and 

biomarkers that are well-validated or widely-used and identified emerging assays and 

biomarkers that could be used now or in the future (Tables 1 and 2).

Results

Descriptions and Assays to Measure the Key Characteristics of Carcinogens

Key Characteristic 1: Is Electrophilic or Can Be Metabolically Activated to an 
Electrophile—Electrophiles are reactive, electron-seeking molecules capable of binding to 

electron-rich cellular macromolecules including DNA, RNA, lipids, and proteins, forming 

covalent adducts. The measurement of covalent adducts on DNA and proteins is the most 

common method of assessing electrophilic activity both in vitro (Table 1) and in vivo (Table 

2). Electrophiles and their nucleophilic targets can be described by their strength, which can 

help predict their reactivity. “Hard” electrophiles, so called due to the relatively greater 

polarizability of their electrophilic center, are of high concern, having electron-withdrawing 

groups capable of binding nucleophilic N and O sites in DNA (e.g., epoxides) (13). “Soft” 

electrophiles primarily target nucleophilic sites in proteins, such as thiol groups, rather than 

DNA. This can cause glutathione depletion and functional inhibition of critical proteins, 

such as tubulin (14).

Computational chemistry tools can be used to calculate characteristics of chemical structures 

that can aid in identifying hard electrophiles (15). Structural alerts for reactive organic 

functional groups requiring metabolic activation have also been developed (16). While in 
silico calculations can identify potential DNA-reactive electrophiles, in vitro approaches can 

provide confirmation as well as information on chemical potency and/or reactivity. The 

direct measurement of electrophilicity involves approaches that determine a rate constant (k) 

as a measure of reactivity. This can be carried out through adduct measurement of 

deoxyribonucleosides, although this requires a high performance liquid chromatography 

method that limits throughput (17). High-throughput, in chemico assays are available, but 

these target primarily soft electrophiles (18) and there is a need for equivalent, high-

throughput formats for hard electrophiles.

Biomarkers of reactive, electrophilic chemicals in humans have consisted primarily of 

measuring protein adducts reflecting the parent chemical structure through sampling of the 

readily accessible blood proteins hemoglobin and albumin (19). Various analytical 

techniques have been employed to measure adducts at known, susceptible amino acid 

residues in these proteins. Measurement of adducts on DNA is now less frequent but new 

approaches can determine DNA adducts in human biopsy samples by liquid 

chromatography-mass spectrometry, requiring only several milligrams of tissue (20,21). 

Methods for protein and DNA adductomics, which identify multiple adducts, are emerging 

(22,23), as is chemoproteomics, which assesses the sites on proteins adducted by 

electrophilic small molecules (24).
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Key Characteristic 2: Is Genotoxic—Genotoxicity is generally defined as the 

capability of an external agent to cause DNA damage, alteration to the genome (mutation), 

or both. The link between genotoxicity and chemical carcinogenesis is well established and 

has shaped standardized testing batteries of carcinogens for decades (25). Genotoxicity can 

arise from, for example, DNA strand breaks, DNA adducts, DNA-DNA crosslinks, and 

DNA-protein crosslinks, as well as from oxidative damage to DNA (see also KC5, below); 

all of these types of damage may give rise to permanent changes in the nucleotide sequence 

(mutation) as the cell attempts to repair the damage. Genotoxicity can give rise to single 

nucleotide variants (point mutations), or it can manifest over a larger span of the genome at 

the chromosome level, e.g., structural (clastogenicity) or numerical chromosomal 

aberrations (aneuploidy). For practical purposes, we define KC2 as encompassing these 

forms of genotoxicity, which are commonly evaluated using classical in vitro assays 

referenced in some regulatory testing guidelines (Table 1) and can be measured preclinically 

using biomarkers in experimental animals and in humans (Table 2). Though measurements 

of endpoints such as DNA cross-links can provide valuable mechanistic information, more 

apical endpoints such as mutation or chromosome loss, which reflect the consequence of 

damage to daughter cells, are considered more relevant and useful for hazard identification. 

Indeed, chromosome aberrations and micronuclei have been shown to be associated with 

future cancer risk (26,27). A large proportion of established human Group 1 carcinogens are 

genotoxic (IARC Monographs Volume 100 A–F).

There is clear overlap between the genotoxic effects described here in KC2 and other KCs 

that can lead to genotoxicity: for example “KC1: is electrophilic,” for agents that can 

covalently bind DNA and form adducts; “KC3: alters DNA repair or causes genomic 

instability” for agents that inhibit DNA repair or induce error prone repair pathways; and 

“KC5: induces oxidative stress” which can cause oxidative DNA damage. The intent of 

considering multiple distinct KCs with seemingly similar effects on genome integrity is to 

functionally distinguish the mechanisms by which the agent can cause genotoxicity, which 

in turn may facilitate a more biologically accurate understanding of how the agent causes 

cancer. For example, benzene, an established human leukemogen, has all four of these 

characteristics (see also (28): its reactive metabolites are electrophilic (23); it is genotoxic, 

causing both structural and numerical chromosomal changes in humans (29); it inhibits 

topoisomerase II (30) causing genomic instability (31); and its metabolites induce oxidative 

DNA damage (8-hydroxydeoxyguanosine, 8-OHdG) and micronuclei from oxidative stress 

(32).

With the rapid development of next-generation sequencing (NGS) technologies, it is 

becoming possible to directly evaluate the result of genotoxicity at the nucleotide level with 

high resolution. However, further work is needed to validate these systems for detecting rare 

somatic mutations that approach the background level of mutations in humans (33). DNA 

sequencing-based measurements are broadly applicable to in vitro and in vivo model 

systems, and human-based investigations, providing an adequate amount of target tissue 

DNA, or a valid surrogate, can be obtained.

Key Characteristic 3: Alters DNA Repair or Causes Genomic Instability—
Genomic instability is a Hallmark of Cancer and is an enabling characteristic of 
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tumorigenesis (2). DNA damage response (DDR) pathways maintain genomic stability by 

ensuring the fidelity of DNA replication and by activating cell cycle checkpoints and/or 

DNA repair pathways in response to DNA damage caused by endogenous processes and 

exogenous agents (34). Disruptions in DDR pathways and DNA repair can lead to elevations 

in mutagenesis and genomic instability, defined by an increasing rate of the accumulation 

and clonal expansion of genomic alterations, and characterized by gene mutation, 

microsatellite instability (MSI), and genomic/chromosomal instability (CIN) (35).

Genomic instability has been hypothesized to result from the expression of a mutator 

phenotype driven by mutations in DNA repair genes (36). Altered DNA repair and/or 

induction of genomic instability can result from agents that are genotoxic (KC2), induce 

oxidative stress (KC5), or induce epigenetic alterations (KC4) and thereby disrupt the 

expression of genes involved in DNA repair. Several chemical and physical agents have been 

shown to impede or inhibit high-fidelity DNA repair and/or activate error-prone DNA repair 

pathways leading to genomic instability and cancer, including metals (37), aldehydes (38), 

and ionizing radiation (39).

DNA repair activity is a useful human biomarker for mutagenic agents. Repair activity can 

be detected by measuring the expression, location, or recruitment of DNA repair proteins, 

but these measurements may not reflect the end outcome or consequence of a change in 

mutagenic repair capacity. The comet assay (i.e., single-cell gel electrophoresis) can be used 

to measure the rate or capacity of DNA repair, including high-throughput applications (40). 

Other high-throughput approaches include molecular beacon assays that can detect multiple 

DNA repair enzyme activities (41), and fluorescence-based, multiplex flow-cytometric host 

cell reactivation assays that have been used to measure inter-individual differences in DNA 

repair capacity in humans (42). Newer higher-resolution NGS-based methodologies can 

measure the consequences of activated mutagenic DNA damage repair (e.g., large deletions/

amplifications and inter-/intra-chromosomal translocations) which provides more direct 

evidence of the repair outcome itself (43,44).

Other potential contributors to genomic instability have been identified. Oncogene-induced 

DNA replication stress, generated by sustained cell proliferation, may confer a selective 

advantage that drives tumorigenesis (45). In addition, genomic instability can be induced by 

chronic inflammation (KC6), independently of DNA damage, following exposure to 

pathogens, chemicals, direct-/indirect DNA mutagens, radiation, hypoxia, or starvation 

(39,46–48). Several inflammatory mediators involved in pro-inflammatory signaling and 

activation of NF-κB have been implicated, including reactive oxygen species (ROS), 

cytokines, TNF-α, and aberrant expression of activation-induced cytidine deaminase (AID), 

a DNA mutator enzyme (39,49).

Spectral karyotyping (SKY) is a useful technique for identifying and characterizing genomic 

instability exhibited by CIN (50). Higher resolution NGS technologies have been established 

that can measure genomic instability at the DNA level (Tables 1 and 2), although they have 

been largely restricted to studying tumor heterogeneity (51). Further characterization with 

expanded numbers of drugs/xenobiotics is needed to validate these genomic endpoints and 

for the purposes of nonclinical and clinical safety studies.
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Key Characteristic 4: Induces epigenetic alterations—Epigenetic modifications 

occur without changing DNA sequence and lead to stable and mitotically heritable changes 

in gene expression. Epigenetic modifications include alterations to DNA (e.g., DNA 

methylation), non-coding RNAs (e.g., altered expression of microRNA), chromatin (e.g., 

histone modifications), and 3D structures (e.g., nucleosome positioning) (52). These 

alterations are surprisingly common (53), and some cancer types show wide-spread losses in 

DNA methylation with small gains in specific genomic areas and genes (54). The 

downstream effects depend on the type of epigenetic modification and the location in the 

genome where they impact (e.g., promoter/exon/intron/inter-/intra-genic region of oncogene 

or tumor suppressor genes). Epigenetics marks are hypothesized to serve as mediators of 

cancer etiology and progression, in many cases preceding cancer (55).

A variety of methods exist to measure DNA methylation status at the global and locus-

specific level. In human samples and cell cultures, the most commonly used method is to 

measure locus-specific methylation using Illumina 450K and 850K bead chip arrays. A more 

comprehensive but costly method is bisulfite sequencing, usually in the form of reduced 

representation bisulfite sequencing (RRBS) which can generate genome-wide methylation 

profiles at a single nucleotide level. Total genomic 5‐methylcytosine can be quantified by 

using a variety of antibody kits with ELISA, high‐performance liquid chromatography, or 

liquid chromatography/mass spectrometry. Since more than one‐third of DNA methylation 

occurs in repetitive elements, analyzing the methylation of repetitive elements can also serve 

as a surrogate marker for global genomic DNA methylation. Many carcinogens alter DNA 

methylation status. For example, arsenic exposure is associated with global DNA 

hypomethylation and increased DNA methylation of proto-oncogenes such as RAS (56), 

p53, and p16 (57).

Mass spectrometry is the gold-standard method for analyzing histone modifications, as it 

enables the quantification of specific modifications with high resolution (58). However, it is 

quite difficult to apply in practice and many researchers have used antibody-based methods. 

A variety of carcinogenic metals, including arsenic, chromium and nickel have been shown 

to cause significant modifications of histone proteins (59). The Assay for Transposase 

Accessible Chromatin with high-throughput sequencing (ATAC-seq), as the name suggests 

uses a transposase to insert sequencing adapters into accessible regions of chromatin, 

followed by sequencing, to assess genome-wide DNA accessibility (60). It is a rapid and 

sensitive alternative to DNase-Seq and has been used with multiple cell types and species. 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is extensively used to 

map epigenetic proteins such as histone proteins, chromatin regulators, and transcription 

factors in the genome (61).

Changes in non-coding RNA expression are now usually measured by small RNA 

sequencing, but a variety of arrays also exist. In situ hybridization/FISH are also used to 

detect both small RNAs and long-non-coding RNAs. Chemical carcinogens alter the 

expression of multiple microRNAs and this has been postulated to play a role in chemical 

carcinogenesis (62,63).
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The difficulty with interpreting the KC “induces epigenetic modifications” is that the 

relevance of a particular epigenetic change for carcinogenesis by a specific agent may not be 

clear and causality is hard to establish. More validation is clearly needed to fully understand 

which epigenetic endpoints are most indicative of carcinogenic risk.

Key Characteristic 5: Induces Oxidative Stress—The induction of oxidative stress 

and subsequent injury is a characteristic of diverse carcinogens, including radiation, 

asbestos, some chemicals metabolized to quinones, and carcinogenic infectious agents (64). 

Specifically, these carcinogens are capable of influencing redox balance within target 

tissues, leading to an imbalance favoring formation of ROS at the expense of their 

detoxification, and may also be accompanied by the production of reactive nitrogen species. 

Oxidative stress can lead to oxidative damage to DNA, including base modification, DNA-

protein crosslinks, and other lesions (65,66). For instance, 8-OHdG is a DNA adduct that is 

considered a critical biomarker for carcinogens that cause oxidative stress. Other 

biomolecules, including proteins and lipids, are also subject to oxidative damage. Thus, 

oxidative stress is directly related to many other KCs, notably KCs 2 and 3 via DNA damage 

leading to genotoxicity and alteration of DNA repair, as well as others including chronic 

inflammation (KC 6) and altered cell proliferation (KC 10). For example, oxidative stress 

affects cellular proliferation (e.g., EGFR regulation, ERK1/2 and MAPK activation), evasion 

of apoptosis (e.g., Src, NF-κB and PI3K/Akt activation), tissue invasion and metastasis (e.g., 

MMP secretion, Met overexpression, and Rho-Rac interaction), and angiogenesis (e.g., 

VEGF release) (67,68).

A wide variety of assay systems, exemplified in Tables 1 and 2, are available to measure an 

increase in ROS formation, changes in oxidative enzymatic activity, defects in the 

antioxidant defense system, lipid peroxidation, protein oxidation, and oxidative damage to 

DNA. These methods and associated biomarkers are widely used across in vivo studies in 

humans and experimental animals (69), small model organisms like C. elegans (70), and in 
vitro cell-based assays. This KC is often non-specific, as non-carcinogens can also induce 

oxidative stress. Therefore, oxidative stress is most informative in hazard identification when 

there is concordance among increases in oxidative stress markers and additional KCs. For 

instance, such concordance has been shown previously when oxidative stress was 

accompanied by genotoxicity in strains of yeast and bacteria known to be more sensitive to 

oxidative DNA damage (8). Furthermore, evidence is strengthened when these effects can be 

shown to be attenuated with co-exposure to antioxidants or in knockout animals (8). Overall, 

it appears that ROS production alone is not specific to carcinogens in the absence of other 

KCs. Thus, future efforts should be focused on further identifying ROS endpoints and 

markers that are specifically associated with induction of other KCs, such as DNA damage 

and inflammation.

Key Characteristic 6: Induces chronic inflammation—Chronic inflammation 

associated with the development of cancer is a prolonged response to persistent infections or 

irritants that inflict cell death and tissue injury followed by deregulated compensatory cell 

proliferation and aberrant repair (71). The type, intensity, and timing of the inflammatory 

response varies depending on the host immune status, the initiating stimulus, and the target 
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organ. For example, infection of the gastric mucosa with the bacterium Helicobacter pylori 
induces epithelial cell death and acute and chronic inflammation leading to atrophic gastritis. 

Eventually, an adaptive response characterized by intestinal metaplasia of the gastric 

epithelium occurs and in ~3% of persistently-infected patients, intestinal-type gastric 

adenocarcinoma develops after a long latent period (72). In contrast to this complex 

inflammatory response, Schistosoma haematobium infection leads to chronic irritation and 

granulomatous inflammation in response to the helminth eggs in the lining of the urinary 

bladder. Over years or following repeated helminth infections, these eggs induce metaplasia 

and hyperplasia of the transitional epithelial lining of the bladder, potentially leading to 

squamous cell carcinoma (73). During these chronic inflammatory reactions, production of 

reactive oxygen and nitrogen species by infiltrating inflammatory cells contributes to 

oxidative stress and epigenetic alterations (KCs 4, 5). In addition, repeated episodes of cell 

necrosis or immune-mediated apoptosis (e.g., persistent hepatitis B infection in the liver) 

and altered parenchymal cell differentiation and proliferation links chronic inflammation 

with other KCs (e.g., KC 10). Sustained release of growth factors, cytokines, angiogenic 

factors, and matrix metalloproteinases perpetuate the chronic inflammatory response and 

facilitate tumor growth, progression, and invasion (74).

The best measure of chronic inflammation is by histopathology following repeated in vivo 
exposures (Table 2). Studies in rodents have provided strong evidence for the involvement of 

chronic inflammation in cancers induced by welding fumes, malathion, 

tetrachloroazobenzene, indium tin oxide and melamine in recent IARC evaluations (8). Due 

to the short-term nature of most in vitro assays, it is difficult to assess persistent, chronic 

inflammatory responses in these systems. Some ‘long-term’ in vitro co-culture models better 

mimic chronic inflammation, especially in regard to cytokine/chemokine profiles, but it is 

difficult to model inflammatory cell recruitment. It is also difficult to establish a causal 

relationship between inflammatory biomarkers and development of cancer, especially in 

epidemiological studies (75,76). Proinflammatory cytokines such as TNF-alpha or IL-6, C-

reactive protein, fibrinogen, and high mobility group box 1 (HMGB1) have been 

investigated as potential circulating biomarkers for chronic inflammation in a variety of 

diseases, including asbestos-related diseases (77,78). Unfortunately, these biomarkers are 

not very specific for diagnosis of chronic inflammation due to poor sensitivity, confounding 

exposures, and variability in individual patients over time (76,79). Because of its stability 

IL-6 is perhaps the best current biomarker available (80).

Key Characteristic 7: Is Immunosuppressive—Immunosuppression is a reduction in 

the capacity of the immune system to respond effectively to foreign antigens, including 

antigens on tumor cells. Epidemiological data from patients with congenital 

immunodeficiencies, virally-induced immunodeficiencies (e.g., HIV-mediated), and from 

patients treated with immunosuppressive therapies (e.g., organ transplant rejection 

prevention therapies) indicate that profound immunosuppression is associated with an 

increased cancer risk. Immunosuppression-associated cancer types can include 

hematological malignancies and solid tumors and these cancers are often but not always 

associated with an oncogenic virus etiology. Examples include cyclosporine-induced non-

Hodgkin lymphoma (81) and lung cancer from welding fumes (82), agents which are both 
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immunosuppressive. The interplay between immunity and tumorigenesis is complex and 

different components of the immune system are either pro- or anti-tumorigenic. While 

profoundly altered immunity, such as that achieved during organ transplant can promote 

cancer risk, not all components of the immune system are equally important in defense 

against or promotion of cancer and a similar cancer hazard for all immunomodulatory 

molecules (e.g., for anti-inflammatory agents) should not be assumed (83).

Immunosuppressive agents are molecules that interfere with key steps of the “cancer-

immunity cycle” which can be divided into several processes, starting with the release of 

antigens from the cancer cell, followed by the presentation of cancer antigens to immune 

effector cells, the priming / activation of these effector cells (e.g., T lymphocytes), 

infiltration / migration of immune effector cells into tumors, and ending with the killing of 

cancer cells (84). T cell function plays a particularly important role in anti-tumor immunity 

and some components of innate immunity. Natural Killer (NK) cells can also play an 

important role. Several immunosuppressive agents (such as cyclosporine A or 

dimethylbenzanthracene) directly inhibit T cell activation leading to decreased immune 

surveillance of pre-cancerous cells/lesions.

Rodent tumor models or rodent bioassays are generally poor models to assess the cancer 

hazard associated with immunosuppression (85). Endpoints or assays that can assess the 

degree of interference with anti-tumor immunity should ideally interrogate various key steps 

of the cancer-immunity cycle. Certain phenotyping and functional assays and endpoints 

listed in Tables 1 and 2 are representative of assays that can inform that hazard. These 

include standard hematology and anatomic pathology (e.g., evidence of marked 

lymphodepletion and hematotoxicity), lymphocyte population enumeration by flow 

cytometry, and NK cell activity. There are also some less routine but important endpoints 

such as T helper and cytotoxic T cell functions (including endpoints relating to factors that 

govern killing mechanisms such as cytokine production and evidence of degranulation). 

Other assays or models such as host resistance models may detect immunomodulation (e.g., 

decreased resistance to bacterial infection or even certain viruses) but these effects may not 

translate to decreased immune surveillance of tumors. Efforts are ongoing to identify and 

develop new approaches and methods to evaluate systemic immune status in vivo. Systems 

immunology approaches can leverage methods such as mass cytometry to interrogate 

multiple cell types and functions concomitantly (Table 2).

Key Characteristic 8: Modulates Receptor-Mediated Effects—Receptor-mediated 

effects can occur at the cell surface (through ligand-binding) or intracellularly (via the 

disruption of signaling cascades or actions on nuclear/cytosolic receptors), all of which can 

modulate transcriptional changes in the nucleus. Outcomes of transcriptional changes are 

varied and often regulate critical cellular pathways. Some receptors promote cell 

proliferation (e.g., hormone nuclear receptors such as estrogen (ER) (86), androgen (AR) 

(87), and progesterone (PR) (86) receptors and growth factor receptors such as EGFR/erbB 

(88) and HER2/neu (89)). Activation of the aryl hydrocarbon receptor (AhR) (KC8) can lead 

to immunosuppression (KC7), in addition to effects on cell proliferation and survival 

(KC10) (90–92). Finally, the activation of certain nuclear receptors, including peroxisome 
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proliferator activated receptor alpha (93) and constitutive androstane receptor (94), is 

associated with rodent liver carcinogenesis (94,95).

Nuclear and cytosolic receptors are generally regulated by small molecules and are thus of 

higher priority for evaluating xenobiotics as carcinogens compared to peptide-regulated 

growth factor receptors. Binding of drugs/xenobiotics to receptors is readily measurable but 

does not completely inform how downstream signaling activity is modulated. Hence, the 

best approach is to evaluate both receptor binding and receptor functional activity. 

Radioligand binding and luciferase reporter gene assays in human cells are the current 

respective gold standard assays. For example, internationally harmonized guideline assays 

exist for binding and transcriptional activation of both ER and AR, although not all use 

human cells. Other binding and reporter assays are available for several aforementioned 

receptors although they generally lack extensive validation. As many of these receptors have 

been the target of pharmaceutical research, there are contract research organizations that 

provide testing services for many of them. Research efforts are still needed in some cases, 

such as with the AhR where distinguishing between effects that promote carcinogenesis 

from those that inhibit it cannot be readily determined through binding and transcriptional 

activation assays and is likely crucial for the identification of carcinogens (96).

Agents that modulate a ligand’s synthesis, transport, distribution, biotransformation, and 

clearance can indirectly modulate receptor mediated effects. We are only aware of one 

guideline assay investigating ligand synthesis (Table 1), and this is an area where many 

assays can be developed. The recent identification of the 10 KCs of endocrine disrupting 

chemicals also highlighted the need for additional assays to assess many aspects of 

endocrine disruption that may be useful in evaluating agents for this KC of carcinogens (i.e., 

KC8) (97).

Key Characteristic 9: Causes Immortalization—Cancer cells are immortal, and 

therefore have limitless replicative potential. Normal cells have a limited lifespan that has 

been described as the Hayflick limit, as measured in vitro by cell doublings of normal 

human fibroblasts. Several mechanisms can influence immortalization: cellular pathways 

that regulate stemness versus senescence, telomere length and telomerase activity, and 

Alternative Lengthening of Telomeres (ALT), break-induced telomere synthesis and mitotic 

DNA synthesis (MiDAS) at so-called common fragile sites and telomeres (98–100). 

Telomeres are the protective ends of chromosomes that are necessary to prevent 

chromosomal instability and are maintained through telomerase and other gene products. 

Cancers frequently have elevated telomerase activity and maintain or extend their telomeres 

through genetic and epigenetic mechanisms. Carcinogens have been shown to activate 

telomerase and/or extend telomeres (101–103).

Immortalization is associated with stemness, the ability of cells to self-replicate indefinitely. 

With the exception of normal stem cells, whose behavior relies on signals from stem cell 

niches (104), most normal cells differentiate and lose the capacity for self-replication (101–

103). However, cancers generally appear to maintain a small subpopulation of their cells that 

are the cancer stem cells, which are required for unlimited replication. For example, the 

MYC oncogene, which is upregulated by some carcinogens, can promote the stemness of 
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cancer stem cells (101–103). The opposite of immortalization and stemness is cellular 

senescence, a cellular program that results in terminal differentiation of cells that have 

undergone irreparable cellular stress, including DNA damage. Immortalization is regulated 

through many gene products including cell cycle checkpoint inhibitors such as p16 and DNA 

repair gene products such as p53 (101–103). Carcinogens including human DNA and RNA 

viruses, such as human papillomaviruses, Epstein-Barr virus, Kaposi sarcoma–associated 

herpes virus, hepatitis B virus, hepatitis C virus, HIV, Merkel cell polyomavirus (MCPyV), 

and human T-lymphotropic virus type 1 (HTLV-1), are carcinogenic through effects on 

cellular immortalization and senescence (105). Similarly, chemical carcinogens including 

tobacco, PCBs and asbestos have been shown to impede cellular responses to DNA damage 

that promote immortalization and inhibit senescence (106).

A carcinogen’s influence on immortalization and senescence can be measured through a 

number of biochemical endpoints in cultured cells, including: transformation assays, as well 

as more specific assays such as telomerase activity, telomere length, and regulation of 

certain genes in stem cells and cancer stem cells (e.g., MYC, p16 and p53) (101–

103,105,106). Some of these endpoints can also be evaluated in vivo and in human 

biomarker studies to facilitate translation, however more validation is needed in this area. In 

the future, the development of imaging-based reporters for telomerase, cell cycle 

checkpoints, and senescence markers such as beta-galactosidase activity may be useful for 

assessing carcinogenic activity.

Key Characteristic 10: Alters Cell Proliferation, Cell Death or Nutrient Supply
—Tumor size is regulated by cell proliferation (growth), cell loss by apoptosis (programmed 

cell death) or necrosis, and the vascular supply that provides oxygen and other nutrients. 

Cancer cells also often have different cellular energetics than normal cells, e.g., using 

glycolysis for energy under aerobic conditions under the Warburg effect. Carcinogens may 

impact these processes by stimulating uncontrolled cell proliferation, angiogenesis to 

increase vascularity and the evasion of apoptosis, rather than apoptosis induction. The 

resultant altered cell proliferation and/or cell-cycle control can contribute to carcinogenesis 

in three ways: 1. predispose replicating cells to propagate unrepaired DNA damage and 

cancer-causing mutations; 2. sustained replication may be an independent mechanistic event; 

and 3. abnormal proliferation may allow transformed cells to evade usual checkpoints and to 

continue replication. Such scenarios foster evasion of apoptosis or other terminal 

programming, e.g., autophagy (107).

Measures of cell proliferation include microscopic identification of mitotic cells on 

histology, measurement of S-phase cells by incorporation of 3H-thymidine or 

bromodeoxyuridine, stains for proliferating cell nuclear antigen, and identification of the 

growth fraction with stains such as MIB1 for Ki-67. In vitro assays for cell proliferation can 

be challenging owing to the potential influence of paracrine actions and other homeostatic 

responses that may be lost in simple 2-dimensional cell cultures or by use of transformed 

cell lines commonly used in the laboratory. Static measures of apoptosis include 

identification of apoptotic cells on histology (sometimes with TUNEL assay or Annexin-V), 

and expression of pro- and anti-apoptotic genes. Evasion of apoptosis is determined as a 

change in apoptosis in response to a known therapeutic agent, e.g., tamoxifen, compared to 
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controls after exposure to a chemical of interest (108,109). The vascularity of a tumor can be 

assessed by visual observation of blood vessel density, sometimes employing stains for 

capillary basement membrane.

Discussion

Our primary goal was to clearly describe each KC, based on the latest scientific 

developments and from experience in applying them in cancer hazard identification. In 

demonstrating the applicability of the KCs to identify measurable, proximal effects of 

carcinogens rather than endpoints that may be a consequence of tumorigenesis, this exercise 

showed that the KCs are clearly distinct from the Hallmarks. It also showed the applicability 

of KCs to a broad range of agents, not just environmental chemicals but also drugs/

xenobiotics, defined mixtures, and complex exposures as well as viruses, fibers and 

engineered nanomaterials.

A second goal was to describe some of the endpoints that best define each key characteristic 

and the current and emerging assays and in vivo biomarkers that can be used to measure 

these endpoints. This exercise revealed that the KCs not only vary in complexity, but also in 

the number of endpoints and available assays and useful model systems. Representative 

assays and biomarkers listed in Tables 1 and 2 were compiled from literature sources to 

illustrate the types of endpoints that reflect each KC and current approaches for measuring 

them. The assays and biomarkers presented in the Tables are by no means an exhaustive list 

and were compiled from literature sources. They represent a range of states of validation and 

experience in applying them. It would be valuable to understand the sensitivities and 

specificities for each of these as well as domains of applicability in order to utilize them 

most effectively. This could perhaps be accomplished through development and testing of a 

panel of known carcinogens and non-carcinogens covering a wide range of mechanisms 

across these assay panels.

A third goal was to make recommendations for future assay development and validation to 

improve how chemical agents (e.g. xenobiotics, therapeutics) can be systematically 

evaluated for cancer hazard in vitro and in vivo. In this regard, the compilation of assays 

revealed specific challenges for certain KCs. For KC7 (is immunosuppressive) in vivo 
approaches remain paramount, but existing rodent and other experimental tumor models 

have limitations for detecting cancer hazards associated with immunomodulators. New 

methods are needed to evaluate systemic immune status based on systems immunology 

approaches, leveraging methods such as mass cytometry to interrogate multiple cell types 

and functions concomitantly (e.g., evidence of hematotoxicity affecting leukocytes, impact 

on cytotoxic T cells and/or NK cells). For some of these endpoints, assays still need to be 

optimized, and there remains a very limited understanding of how changes in such endpoints 

relate to cancer hazard. For KC6 (induces chronic inflammation), chronic in vivo exposures 

(in experimental animals or in humans) also remain more pertinent than in vitro co-cultures, 

followed by more simplistic in vitro studies. Development and validation of in vivo 
alternatives, e.g., the colonic organoid-based cell transformation assay (see Table 1), could 

be prioritized to fill these gaps.
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Another important issue that emerged is the interrelationship of KCs and the impact on 

testing strategies and interpretation. For instance, multiple KCs consider seemingly similar 

effects on genome integrity. However, this complementarity makes it possible to functionally 

distinguish among genotoxic mechanisms, providing a more biologically accurate 

understanding of how the agent may cause cancer. Thus, each of the implicated KCs can be 

seen to have an important, but distinct role. At the other extreme, KC5 (induces oxidative 

stress) does not have a stand-alone role in causal identification of carcinogens, and is best 

seen in the context of its impact on other KCs (such as KC2, is genotoxic). Endpoints and 

markers such as oxidative damage to DNA and inflammation that specifically probe KC5 

(induces oxidative stress) in concert with KC2 (is genotoxic) and KC6 (induces chronic 

inflammation), may be informative for interpretation. Similarly, for KC8 (modulates 

receptor-mediated effects), which broadly encompasses a range of different ligands and 

receptors with varying relation to cancer causation, related efforts on the KCs of endocrine 

disrupting chemicals (97) may aid interpretation. As multiple KCs may be additive or 

synergistic, further work is merited to understand how to best integrate endpoints and 

biomarkers impacted by multiple KCs, as well as to define minimal set(s) of KCs that could 

by themselves characterize certain carcinogens. Such efforts could, in concert with in silico 
predictions, inform the order of testing and attendant conclusions.

This exercise also raised questions about whether the KCs as currently defined capture all 

the pertinent mechanisms of carcinogens. For instance, carcinogens may impact the tumor 

microenvironment, enhance invasiveness and promote metastasis, but there are very few 

specific examples. These impacts may be investigated using organoids or models on chips 

and as such may currently be encompassed in KC10 (alters cell proliferation, cell death or 

nutrient supply), but further focus on these critical aspects of carcinogen action may be 

warranted.

Despite the identified challenges, this compilation of assays and biomarkers is useful in 

various ways. For one, it can inform priority-setting for funding and development of new 

assays, and to fill the identified gaps. The updated definitions and lists of associated assays 

will also advance application of the KCs in cancer hazard identification, as the basis for 

improving searches for existing mechanistic data relevant to the KCs, and in prioritizing the 

findings informative for evaluation. This compilation can also be used to design and conduct 

a battery of tests to probe carcinogenic activity. This could address all KCs, for a complete 

assessment, or target specific assays based on agent properties, predictive modeling (e.g., 

computational test for electrophilicity), or outstanding research gaps. Ultimately the choice 

of assay and extent of testing would be dependent on the application of the data, from 

screening and prioritization of agents for further testing, to exploring specific hypotheses, 

supporting product registration, or performing hazard identification and risk assessment. In 

some cases, standard assays are already available (e.g., with guidance from the Organization 

for Economic Co-operation and Development, OECD) and amenable to study in vitro. In 

others, there is a possibility for investigation in populations exposed to carcinogens, such as 

in occupational settings, to provide data especially relevant in hazard identification exercises 

(110). It would be especially useful if the mutational signatures of tumors from individuals 

exposed to specific carcinogens could be identified. These in vivo biomarkers and signatures 
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would then be of great value in the translation of in vitro hazards and assess dose-response 

in experimental animals or humans.

To support these future applications, a number of short- and long-term steps can be 

envisioned. In addition to the outstanding assay development needs for various KCs, as 

noted above in the sections on KC5 (induces oxidative stress), KC6 (induces chronic 

inflammation), and KC7 (is immunosuppressive), assay validation work is relevant for 

several KCs. For instance, error-corrected NGS systems for detecting rare somatic mutations 

that approach the background level of mutations in humans are especially relevant for KC2 

(is genotoxic) (33). It would be beneficial to develop standard lists of carcinogens and non-

carcinogens to support assay qualification and validation, as well as future efforts toward 

evidence-based KC grouping and weighting. Publicly available resources such as open-

source bioinformatic tools, detailed compilations of assays and the associated best practices 

for study design, conduct and reporting could also be useful. Further work could outline the 

priorities for such assay development, validation, and guidance for reporting and 

interpretation. In all, these future efforts will help to improve current methods for hazard 

screening and testing, and thereby advance carcinogen identification, a first step in cancer 

prevention.
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Figure 1. The Hallmarks of Cancer and the Key Characteristics of Carcinogens
A. List of the Hallmarks of cancer. The Hallmarks of cancer, acquired properties of cancer 

cells that distinguish them from normal cells, have been described by Hanahan and 

Weinberg (1,2). Six Hallmarks were described in 2000 (1) and two emerging hallmarks 

(deregulated metabolism and immune system evasion) and two enabling characteristics 

(genome instability and inflammation) were added in 2011 (2).

B. Symbolic illustration of the Hallmarks of cancer.

C. List of the key characteristics of human carcinogens. The 10 key characteristics of human 

carcinogens describe the properties of human carcinogens that induce cancer (5). Expert 

participants at two IARC-led workshops initiated the development of the key characteristics 

based on empirical observations of the chemical and biological properties associated with 

the human carcinogens identified by the IARC Monographs program up to and including 

Volume 100.

D. Symbolic illustration of the key characteristics of human carcinogens. Reprinted with 

permission from (203) Guyton KZ, Rieswijk L, Wang A, Chiu W, Smith MT (2018). Key 
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characteristics approach to carcinogenic hazard identification. Chemical Research in 

Toxicology. 31(12):1290–1292. Copyright (2018) American Chemical Society
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Table 1.

Representative in silico and in vitro assays to measure the key characteristics of carcinogens

Endpoint In silico or non-human in vitro assay Human in vitro assay

KC 1: Is Electrophilic

Electrophilic reactivity In silico prediction (111)

Protein adducts
Fluorescence-based (MSTI) assay (18)
Glutathione depletion assay (112)
*Chemoproteomics (113)

DNA adducts DNA adduct measurement by HPLC (114)

KC 2: Is Genotoxic

Mutation/single nucleotide 
variants

In silico prediction (115)
Bacterial reverse mutation (Ames) (OECD 471)

Mammalian mutation assay (mouse lymphoma assay, human HPRT mutation assay) (OECD 476)

*Error-corrected Next-Generation Sequencing (116)

Structural chromosome 
alterations/DNA strand breaks 
(clastogenicity); aneugenicity

Chromosome aberration assay (OECD 473/475)
Micronucleus assay (OECD 487)
Comet assay (OECD 489)

*TGX-DDI biomarker in Human TK6 cells* 
(117)

KC 3: Alters DNA Repair or Causes Genomic Instability

Copy Number Variations 
(Duplications, Deletions, 
Amplifications, Insertions)

Comparative Genome Hybridization (CGH, Array based) (118)
Next Generation High-throughput Sequencing for somatic mutation detection (43)

Inter-/intra-chromosomal 
translocations

Spectral Karyotyping (SKY), Karyotyping (50)
Next Generation High-throughput Sequencing for somatic mutation detection (43)

Microsatellite instability Fluorescent Multiplex PCR-based method using DNA (119)

DNA repair capacity

Unscheduled DNA synthesis (120)
Host cell reactivation for evaluation of nucleotide excision repair, mismatch repair, base excision repair, 
nonhomologous end joining, homologous recombination, and methylguanine methyltransferase (121,122)
Topoisomerase I and II enzymatic activity analysis using gel electrophoresis (123)

KC 4: Induces Epigenetic Alterations

Global and locus-specific DNA 
methylation

High-performance liquid chromatography and ELISA-based methods (124)
Enzyme activity assays for “writers, erasers, editors and readers” (125)
Bisulfite sequencing (BS-seq) (126)

Histone modifications
ChIP-Seq (61)
Stable isotope labeling by amino acid in culture (SILAC) (127)
High throughput histone mapping (HiHiMap) (128)

Chromatin remodeling Transposase-accessible chromatin using sequencing (ATAC-seq) (129)

Changes in non-coding RNAs RNA-Seq (130)
in situ / FISH detection of small RNAs (131) and long non-coding RNAS (132,133)

KC 5: Induces Oxidative Stress

Oxidative DNA damage
8-OHdG adducts via HPLC-electrochemical detection (134,135)
Comet assay modified with lesion-specific repair endonucleases (e.g., 8-oxoguanine DNA glycosylase 
[OGG1], formamidopyrimidine (fapy)-DNA glycosylase [FPG], Endonuclease III [Nth]) (136)

Reactive oxygen species (ROS) 
formation Electron paramagnetic resonance (137)

Glutathione oxidation Measurement of GSH/GSSG ratio (138)
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Endpoint In silico or non-human in vitro assay Human in vitro assay

Nrf2-ARE-dependent gene 
expression response

Antioxidant enzyme activity (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase) 
(139))
Nrf2/ARE-dependent gene expression (140)

Lipid peroxidation Thiobarbituric acid reactive substances assay for detection of malondialdehyde, 4-Hydroxynonenal 
hydroperoxides and isoprostanes (141)

KC 6: Induces Chronic Inflammation

Inflammatory signaling *Colonic organoid-based cell transformation assay (142)

KC 7: Is Immunosuppressive

T cell activation and 
proliferation Mitogen and/or antibody mediated proliferation (143)

Cytotoxic T-lymphocyte (CTL) 
activity

*BiTE®-mediated CTL assay (144)

Natural killer cell activity Missing-self cytotoxicity assay (145)

KC 8: Modulates Receptor-mediated Effects

Interacts with receptors Androgen and estrogen receptor binding assay ((146), OECD TG 493)

Receptor activation
Estrogen receptor Transactivation (147)
Androgen receptor Transactivation (148)
Aryl hydrocarbon receptor transactivation (149)

Alters ligand synthesis Aromatase enzyme activity (US EPA 890.1200)
H295R steroidogenesis assay (OECD TG 456)

KC 9: Causes Immortalization

Alters in vitro transformation 
activity Cell transformation assays (150)

Alters cellular senescence 
markers Changes in B-galactosidase, p16, p21, and p53 protein levels (151)

Telomere length and 
telomerase activity Telomerase activity assay (152)

Alterations in stem cell genes Expression of MYC, Oct3/4, Klf4, Sox-2 (153,154)

KC 10: Alters Cell Proliferation, Cell Death or Nutrient Supply

Cell proliferation

DNA labeling (e.g., EdU, 3H-thymidine) (155)
Cell cycle markers (e.g., Ki-67, propidium iodide) (155)
Metabolic activity (e.g., MTT) (155)
Cell number/microscopy (e.g., Hemocytometer) (155)
Colony formation (156)

Evasion or reduction of 
apoptosis

Evasion of apoptosis (157) by TUNEL, Annexin-V, PARP cleavage or others
*Changes in expression of pro and anti-apoptotic factors (158)

Angiogenesis
Endothelial cell proliferation, migration and differentiation (159)
Transwell cell invasion (Boyden) assay (160)
Aortic ring assay (161)

Glycolytic (Warburg) shift Cellular respiration and acidification (Seahorse) assay (162)

*
Emerging assay or biomarker. Abbreviations: 8-OHdG, 8-hydroxydeoxyguanosine; BITE, Bispecific T-cell Engager; ChIP-Seq, chromatin 

immunoprecipitation-sequencing; ELISA, enzyme-linked immunosorbent assay; GSH, glutathione; GSSG, glutathione-S-S-glutathione; HPLC, 
high-performance liquid-chromatography; Klf4, Krüppel-like factor 4; LC, liquid chromatography; MSTI, (E)-2-(4-mercaptostyryl)-1,3,3-
trimethyl-3H-indol1-ium; nrf2/ARE, nuclear erythroid 2-related factor 2/antioxidant response element; Oct3/4, octamer-binding transcription factor 
3 or 4; PARP, poly (ADP-ribose) polymerase; Sox-2, SRY-Box 2; TGx-DDI, toxicogenomics-DNA damage-inducing; TUNEL, Terminal 
deoxynucleotidyl transferase dUTP nick end labeling.
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Table 2.

Representative endpoints/biomarkers and corresponding examples of in vivo assays and biomarkers that can be 

used to measure the key characteristics of carcinogens

Endpoint In vivo assay in experimental animals In vivo biomarker in humans

KC 1: Is Electrophilic

Protein adducts

Protein adduct measurement by LC/Mass spectrometry (163)
*Chemoproteomics (113)
Hemoglobin or albumin adducts in blood (164)
*Protein adductomics (165)

DNA adducts
DNA adductomics (166,167)
Nuclease P1-enhanced (32)P-postlabeling method (168)
Mass spectrometry (21)

KC 2: Is Genotoxic

Mutation/single nucleotide 
variants

Transgenic rodent assay (e.g., Big Blue®) 
(OECD 488)
Pig-a assay (169)

Hypoxanthine-guanine phosphoribosyltransferase 
(HPRT) mutation assay (170)
Glycophorin A (GPA) assay (171)

Next Generation High-throughput Sequencing for somatic mutation detection (43)

Structural chromosome 
alterations/DNA strand breaks 
(clastogenicity); aneugenicity

Micronucleus assay (OECD 474)
Chromosomal aberration test (OECD 475)

Micronucleus assay (172,173)
OctoChrome FISH (174)

Alkaline comet assay (OECD 489; (175))
Chromosomal aberration (44)
Interphase and metaphase FISH (176)

KC 3: Alters DNA Repair or Causes Genomic Instability

Copy Number Variations 
(Duplications, Deletions, 
Amplifications, Insertions)

Comparative Genome Hybridization (CGH, Array based) (118)
Next Generation High-throughput Sequencing for somatic mutation detection (43)

Inter-/intra-chromosomal 
translocations

Spectral Karyotyping (SKY), Karyotyping (50)
Next Generation High-throughput Sequencing for somatic mutation detection (43)

Microsatellite instability Fluorescent Multiplex PCR-based method using DNA (119)

DNA repair capacity

Unscheduled DNA synthesis (120)
Host cell reactivation for evaluation of nucleotide excision repair, mismatch repair, base excision repair, 
nonhomologous end joining, Homologous recombination and methylguanine methyltransferase (121,122)
Topoisomerase I and II enzymatic activity analysis using gel electrophoresis (123)

Increased expression of 
activation-induced cytidine 
deaminase (AID)

Western blotting using antibodies (177)

KC 4: Induces Epigenetic Alterations

Global and locus-specific DNA 
methylation

Illumina Methylation EPIC 850k Beadchip (178)
High-performance liquid chromatography and ELISA-based methods (124)
Enzyme activity assays for “writers, erasers, editors and readers” (125)
Bisulfite sequencing (BS-seq) (126)

Histone modifications
ChIP-Seq (61)
Stable isotope labeling by amino acid in culture (SILAC) (127)
High throughput histone mapping (HiHiMap) (128)

Chromatin remodeling Transposase-accessible chromatin using sequencing (ATAC-seq) (129)

Changes in non-coding RNAs RNA-Seq (130)
In situ / FISH detection of small RNAs (131) and long non-coding RNAS (132,133)

KC 5: Induces Oxidative Stress

Oxidative DNA damage
8-OHdG adducts via HPLC-electrochemical detection (PMID: 30992736)
Comet assay modified with lesion-specific repair endonucleases (e.g., 8-oxoguanine DNA glycosylase 
[OGG1], formamidopyrimidine (fapy)-DNA glycosylase [FPG], Endonuclease III [Nth]) (136)
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Endpoint In vivo assay in experimental animals In vivo biomarker in humans

Reactive oxygen species (ROS) 
formation Electron spin resonance imaging (179)

Glutathione depletion NMR-based non-targeted global 
metabolomics (180) Magnetic resonance spectroscopy (181)

Nrf2-ARE-dependent gene 
expression response

Antioxidant enzyme activity (superoxide dismutase, catalase, glutathione reductase, glutathione 
peroxidase) (139)
Nrf2/ARE-dependent gene expression (140)

Lipid peroxidation Thiobarbituric acid reactive substances assay for detection of malondialdehyde, 4-Hydroxynonenal 
hydroperoxides and isoprostanes (141)

KC 6: Induces Chronic Inflammation

Tissue inflammation Histological examination (limited in human)

KC 7: Is Immunosuppressive

Hematology White blood cell counts and examination of lymphoid tissues (182)

Immunophenotyping of T cells 
and NK cells Enumeration of NK cell, CD4+ and CD8+ T-cells (183)

T cell activation and 
proliferation Mitogen and/or antibody mediated proliferation (143)

Cytotoxic T-lymphocyte (CTL) 
activity BiTE®-mediated CTL assay (144)

Virus-specific CTL function in mouse (184)

Generation of antigen-specific 
CD8+ T cells 

*Measurement of endogenous or vaccination-induced anti-viral immunity (185)

Natural killer cell activity Missing-self cytotoxicity assay (145)

Systems immunology Mass cytometry (186)

KC 8: Modulates Receptor-mediated Effects

Activates or antagonizes 
receptors

Posttranslational and/or transcriptional changes associated with the estrogen, androgen and aryl 
hydrocarbon receptor activity (187)

Alters receptor expression Immunohistochemistry or western blotting in animal or human tissue (187)

Alters ligand synthesis, 
clearance, distribution or levels

Circulating steroid hormone levels (188–190)
Alteration in sex-hormone binding globulins (188,191,192)

KC 9: Causes Immortalization

Alters cellular senescence 
markers Changes in B-galactosidase, p16, p21, and p53 levels (151)

Telomere length and telomerase 
activity

Telomere length by real-time PCR (193,194)
Telomerase activity assay (152)

Alterations in stem cell genes Expression of MYC, Oct3/4, Klf4, Sox-2 (153,195)

KC 10: Alters Cell Proliferation, Cell Death or Nutrient Supply

Proliferation/hyperplasia

Histology/microscopy
DNA labeling (e.g., EdU, 3H-thymidine) (196)
Cell cycle/cell number markers (e.g., Ki-67, propidium iodide) (197)
Cell number/microscopy (155)

Evasion or reduction of 
apoptosis

Histology/microscopy
*Changes in expression of pro and anti-apoptotic factors (198)

Angiogenesis Factor VIII stains for capillary basement membrane (199)
Tissue vascular permeability by magnetic resonance imaging (200)

Glycolytic (Warburg) shift
F-18-fluorodeoxyglucose (FDG) by computed tomography (CT) and positron emission tomography (PET) 
(201)
Magnetic resonance imaging (MRI) and spectroscopy (MRS) (202)
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*
Emerging assay or biomarker. Abbreviations: 8-OHdG, 8-hydroxydeoxyguanosine; BITE, Bispecific T-cell Engager; ChIP-Seq, chromatin 

immunoprecipitation-sequencing; EdU, 5-ethynyl-2’-deoxyuridine; Klf4, Krüppel-like factor 4; LC, liquid chromatography; NMR, nuclear 
magnetic resonance; Nrf2/ARE, nuclear erythroid 2-related factor 2/antioxidant response element; Oct3/4, octamer-binding transcription factor 3 or 
4; Sox-2, SRY-Box 2.. .
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