
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14916  | https://doi.org/10.1038/s41598-020-71909-8

www.nature.com/scientificreports

Usefulness of heart rhythm 
complexity in heart failure 
detection and diagnosis
Cheng‑Hsuan Tsai1, Hsi‑Pin Ma3, Yen‑Tin Lin4, Chi‑Sheng Hung2, Shan‑Hsuan Huang3, 
Bei‑Lin Chuang3, Chen Lin5, Men‑Tzung Lo5, Chung‑Kang Peng6 & Yen‑Hung Lin2*

Heart failure (HF) is a major cardiovascular disease worldwide, and the early detection and diagnosis 
remain challenges. Recently, heart rhythm complexity analysis, derived from non-linear heart rate 
variability (HRV) analysis, has been proposed as a non-invasive method to detect diseases and predict 
outcomes. In this study, we aimed to investigate the diagnostic value of heart rhythm complexity 
in HF patients. We prospectively analyzed 55 patients with symptomatic HF with impaired left 
ventricular ejection fraction and 97 participants without HF symptoms and normal LVEF as controls. 
Traditional linear HRV parameters and heart rhythm complexity including detrended fluctuation 
analysis (DFA) and multiscale entropy (MSE) were analyzed. The traditional linear HRV, MSE 
parameters and DFAα1 were significantly lower in HF patients compared with controls. In regression 
analysis, DFAα1 and MSE scale 5 remained significant predictors after adjusting for multiple clinical 
variables. Among all HRV parameters, MSE scale 5 had the greatest power to differentiate the HF 
patients from the controls in receiver operating characteristic curve analysis (area under the curve: 
0.844). In conclusion, heart rhythm complexity appears to be a promising tool for the detection and 
diagnosis of HF.

Heart failure (HF) remains an important cause of morbidity and mortality and it also leads to a tremendous social 
burden worldwide1,2. Although there have been dramatic achievements and improvements both in medical and 
device treatments for HF in recent decades, the incidence of HF is still increasing3,4. The early diagnosis of HF 
still remains a challenge in the modern era. An easily performed, low cost and non-invasive tool would therefore 
be especially useful for the early detection and diagnosis of HF.

HF is a complex syndrome which involves neurohormonal activation and autonomic nervous system dys-
function, leading to overactivation of the sympathetic system and a reduction in vagal activity5. Heart rate 
variability (HRV) is a fundamental and non-invasive techniques used to assess autonomic modulation of the 
heart6–9. Traditional HRV has been shown to be markedly reduced in patients with HF9,10, and this reduction 
has been related to the severity of HF and its prognosis11. However, the predictive power of traditional linear 
HRV is unsatisfactory12. Accordingly, non-linear methods to analyze the complexity rather than only changes 
in the variability beneath the R-R intervals have been developed13,14. Heart rhythm complexity derived from 
non-linear HRV measures the complexity of heart rate interval, and is composed of multiscale entropy (MSE) 
and detrended fluctuation analysis (DFA). Compared to linear parameters, heart rhythm complexity has shown 
a much greater ability to detect diseases such as end-stage renal disease, primary aldosteronism, and pulmonary 
hypertension15–17. Therefore, it would seem to be reasonable to use heart rate complexity in the detection and 
diagnosis of HF. However, only few studies have investigated the role of heart rhythm complexity in predicting 
the prognosis of HF12,18, data on heart rhythm complexity in the detection of HF are lacking. Therefore, in this 
study, we aimed to evaluate the ability of heart rhythm complexity in the detection and diagnosis of HF.
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Methods
Patients.  We prospectively enrolled 55 Taiwanese patients with symptomatic HF with impaired left ven-
tricular ejection fraction (LVEF < 50%) at National Taiwan University Hospital from August 2008 to December 
2015. We also enrolled 97 participants who were admitted to our hospital and received coronary angiogram 
examinations which revealed patent coronary arteries or non-significant coronary artery disease (CAD; ste-
nosis ≤ 50%) as the control group. The patients in the control group did not have any HF symptoms and had a 
LVEF > 55% at enrollment. Patients with chronic atrial fibrillation, uncontrolled arrhythmia and cardiac pace-
maker paced rhythm were excluded from this study.

The baseline demographics, past medical history, complete blood count, biochemistry studies, and medica-
tions were recorded at enrollment. All subjects provided written informed consent for storage of their informa-
tion in the hospital database and usage for research.

This study was approved by the Institutional Review Board of National Taiwan University Hospital and all 
research was performed under relevant guidelines and regulations.

Echocardiography.  All subjects received standard transthoracic echocardiography (iE33 xMATRIX Echo-
cardiography System, Philips, Amsterdam, Netherlands). The LVEF was measured via a parasternal long axis 
view (M-mode) and apical 4-chamber view (biplane Simpson’s method) in accordance with the recommenda-
tions of the American Society of Echocardiography19.

Ambulatory ECG recording and assessment of HRV.  All patients in this study received 24-h ambu-
latory ECG Holter (Zymed DigiTrak Plus 24-h Holter Monitor Recorder and DigiTrak XT Holter Recorder 
24 h, Philips, Amsterdam, Netherlands) recordings. During the examination, all patients maintained their daily 
activities without specific limitations. Holter recordings in the HF patients were not performed during acute 
decompensated HF, and were only performed in patients with a stable condition. In the control group, Holter 
recordings were performed within 1 week after coronary angiography.

A stable 4-h segment of daytime RR intervals (between 9AM and 5PM) was selected. The selected RR intervals 
were automatically annotated using an algorithm, and then examined by two experienced technicians. MAT-
LAB software with self-written code was used to process the signals. Traditional linear HRV analysis including 
time and frequency domain analysis, and non-linear HRV analysis including DFA and MSE were performed by 
independent physicists.

Traditional linear HRV analysis including time and frequency domain analysis was performed according to 
the recommendations of the North American Society of Pacing Electrophysiology and the European Society 
of Cardiology20. Time domain HRV parameters including mean RR, standard deviation of normal RR (SDRR), 
percentage of the absolute change in consecutive normal RR intervals exceeding 20 ms (pNN20) and percentage 
of the absolute change in consecutive normal RR intervals exceeding 50 ms (pNN50) were calculated. For the 
frequency-domain, spectral analysis was performed using fast Fourier transform algorithms to analyze high 
frequency (HF; 0.15–0.4 Hz), low frequency (LF; 0.04–0.15 Hz), and very low frequency (VLF; 0.003–0.04 Hz) 
in this study.

Non-linear HRV analysis, including MSE and DFA based on chaos and fractal theories, respectively, was 
used in this study as the heart rhythm complexity parameters. DFA provides an algorithm to reveal the fractal 
behavior beneath seemingly nonstationary RR dynamics and remove trends from integrated time series. DFA 
can also quantify the degree of self-affinity14. DFA was performed by summing the detrended integrated time 
series in each scale. Short DFAα1 (4–11 beats) and long DFAα2 (11–64 beats) values were obtained from the 
slope of the log–log plots of fluctuations against time scales.

MSE is used to calculate entropies or the complexities of physiological signals on multiple time scales21. MSE 
uses a coarse-graining process (i.e. averaging consecutive beats to form a new time series) to construct many 
different time scales, and it can be used to quantify the complexity of biological signals in different time scales22. 
In this study, the entropy values of scale 5 (scale 5), the linear-fitted slope of scale 1–5 (slope 5), the summation 
of entropy values of scales 1–5 (area 1–5) and 6–20 (area 6–20) were calculated to represent the complexity of 
the RR dynamics in short- and long-time scales.

Statistical analysis.  Data were expressed as mean ± standard deviation and median (25th and 75th percen-
tiles) for normally distributed and non-normally distributed data, respectively. Comparisons of data between the 
patients with and without HF were made using the independent t-test and Mann–Whitney U test. Differences 
between proportions were assessed using the chi-square test or Fisher’s exact test. Logistic regression analysis 
was used to validate associations between variables and the presence of HF. Significant determinants in univari-
able logistic regression analysis (P < 0.05) including mean RR, SDRR, pNN20, VLF, LF, HF, LF/HF ratio, DFAα1, 
DFAα2, slope 5, scale 5, area 1–5 and area 6–20 were then tested in multivariable logistic regression analysis 
with a stepwise subset selection to identify independent factors to predict the presence of HF. In multivariable 
regression analysis, the independent HRV predictors of HF including pNN20, DFAα1, DFAα2 and MSE scale 5 
were adjusted for clinical variables including age, sex, creatinine, fasting glucose, CAD, hypertension, diabetes 
mellitus (DM), dyslipidemia, and the use of beta blockers, calcium channel blockers (CCBs) and angiotensin II 
receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEIs) in five different logistic regres-
sion models. The area under the curve (AUC) was used to assess the discriminatory power of the model to 
predict HF. All statistical analyses were performed using R software 3.5.1 (https​://www.r-proje​ct.org/) and SPSS 
version 25 for Windows (SPSS Inc., IL, USA). The significance level of the statistical analysis was set at 0.05.

https://www.r-project.org/
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Results
Patients.  The baseline clinical and echocardiographic data are shown in Table 1. The patients with HF had 
significantly higher prevalence rates of CAD, DM, ARBs or ACEIs usage, beta blocker usage, and a lower rate of 
CCBs usage. In addition, the HF patients had significantly higher serum creatinine and fasting glucose levels. 
The other variables were comparable between the two groups except for the echocardiographic data. The LVEF 
was 35 ± 9.4% in the HF patients and 70 ± 5.6% in the controls. The diameters of left ventricular end-diastolic 
diameter and left ventricular end-systolic diameter in the HF patients were also significantly higher compared 
with the controls.

Linear and non‑linear HRV analysis.  All HRV parameters including linear HRV, MSE and DFA param-
eters were significantly lower in the HF patients compared with the controls, except for DFAα2 which was higher 
in the HF group (Table 2). The mean RR, SDRR, pNN20, pNN50, VLF, LF, HF, LF/HF ratio, DFAα1, MSE slope 
5, scale 5, area 1–5 and area 6–20 were significantly lower in the patients with HF. In addition, the entropies of 
different time scales of MSE curves were significantly different between the HF patients and controls (Fig. 1).

Logistic regression analysis for predictors of HF.  In univariable logistic regression, linear HRV 
parameters including mean RR, SDRR, pNN20, VLF, LF, HF and LF/HF ratio and all heart rhythm complexity 
parameters including DFAα1, DFAα2, MSE slope 5, scale 5, area 1–5 and area 6–20 were significantly associ-
ated with HF. These parameters were further analyzed using multivariable logistic regression, which showed 
that pNN20, DFAα1, DFAα2 and MSE scale 5 remained in the model as independent predictors of HF (Table 3). 
These four HRV parameters were adjusted for age, sex, creatinine, fasting glucose, CAD, hypertension, DM, 
dyslipidemia, and the use of beta blockers, CCBs and ARBs or ACEIs in different models. In model 5, only heart 
rhythm complexity parameters DFAα1 and MSE scale 5 remained as significant predictors of HF after adjust-
ments (Table 4).

Comparisons of all linear HRV and heart rhythm complexity parameters to differentiate the 
patients with HF and controls.  Among all HRV parameters, the MSE scale 5 had the highest AUC to 
predict the presence of HF among all HRV parameters in receiver operating characteristic (ROC) curve analysis 
(AUC: 0.844).

The AUCs of linear and HRV parameters including mean RR, SDRR, pNN20, pNN50, VLF, LF, HF and LF/HF 
ratio were 0.708, 0.745, 0.705, 0.611, 0.743, 0.792, 0.661 and 0.691, respectively, (Fig. 2A). The AUCs of non-linear 
and HRV parameters including DFAα1, DFAα2, slope 5, scale 5, area 1–5 and area 6–20 were 0.719, 0.363, 0.708, 
0.844, 0.786 and 0.777, respectively, (Fig. 2B).

Table 1.   Clinical data of the patients. Data were presented as mean ± standard deviation or number 
(percentage). CAD coronary artery disease, DM diabetes mellitus, HTN hypertension, ACEI Angiotensin-
converting enzyme inhibitors, ARB angiotensin receptor blockers, CCB calcium channel blocker, TG 
triglyceride, T-Chol total cholesterol, LVEF left ventricular ejection fraction, LVEDD left ventricular end-
diastolic diameter, LVESD left ventricular end-systolic diameter.

HF (N = 55) Control (N = 97) P Value

Age (years) 61 ± 14 59 ± 11 0.215

Male, n (%) 43 (78%) 65 (67%) 0.144

CAD, n (%) 41 (74) 9 (9%)  < 0.001

DM, n (%) 23 (42%) 23 (24%) 0.020

HTN, n (%) 31 (56%) 63 (65%) 0.295

Dyslipidemia, n (%) 15 (27%) 18 (19%) 0.08

Medication

ACEI/ARB 44 (80%) 32 (33%)  < 0.001

Beta-blocker 39 (71%) 46 (47%) 0.005

CCB 9 (16%) 31 (32%) 0.036

Glucose AC, mg/dL 118 ± 38 100 ± 17 0.002

Creatinine, mg/dL 1.6 ± 1.5 0.93 ± 0.20 0.002

ALT 35 ± 43 24 ± 10 0.125

TG, mg/dL 151 ± 99 131 ± 68 0.192

T-Chol, mg/dL 181 ± 38 173 ± 36 0.239

LVEF, % 35 ± 9.4 70 ± 5.6  < 0.001

LVEDD, mm 60 ± 9.6 47 ± 3.8  < 0.001

LVESD, mm 50 ± 9.7 28 ± 3.0  < 0.001
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Discussion
There are three major findings in this study. First, the patients with HF had both worse linear and non-linear 
HRV parameters compared to the healthy controls. Second, DFAα1 and MSE scale 5 were independent predic-
tors of HF after adjusting for clinical variables. Third, MSE scale 5 had the greatest single discriminatory power 
to detect the presence of HF among all HRV parameters.

HF is one of the main causes of cardiovascular mortality and hospitalization in adults4. The prevalence of 
HF is estimated to be about 6.2 million in America and more than 23 million people worldwide3,23. In addition, 
the prevalence of HF has been predicted to increase by 46% from 2012 to 2030, so that more than 8 million 
Americans are expected to have HF by 20303. HF is a complex syndrome resulting from impaired systolic and/
or diastolic function with symptoms of dyspnea, fatigue and fluid retension24. Over the past decades, there has 
been tremendous progress in the treatment of chronic HF, however, chronic HF is still associated with an annual 
mortality rate of up to 15.6%25. Making an early diagnosis is extremely important to allow for timely interventions 

Table 2.   Holter Parameter in HF patients and control. Data were presented as Values are median (25th–75th 
percentile). SDRR standard deviation of normal RR intervals, pNN20 percentage of the absolute change in 
consecutive normal RR interval exceeds 20 ms, pNN50 percentage of the absolute change in consecutive normal 
RR interval exceeds 50 ms, VLF very low frequency, LF low frequency, HF high frequency, DFA detrended 
fluctuation analysis.

HF (N = 55) Control (N = 97) P value

Time domain analysis

Mean RR 740.59 (673.54 ~ 808.53) 841.55 (737.90 ~ 907.57)  < 0.001

SDRR 29.08 (22.01 ~ 27.22) 40.94 (33.11 ~ 48.21)  < 0.001

pNN20 0.17 (0.049 ~ 0.32) 0.32 (0.20 ~ 0.42)  < 0.001

pNN50 0.012 (0.0035 ~ 0.052) 0.029 (0.010 ~ .066) 0.023

Frequency domain analysis

VLF 222.91 (128.43 ~ 382.66) 477.44 (308.03 ~ 644.04)  < 0.001

LF 47.51 (7.79 ~ 123.42) 157.34 (103.22 ~ 239.55)  < 0.001

HF 22.57 (10.39 ~ 53.15) 35.84 (24.58 ~ 80.05) 0.001

LF/HF ratio 2.77 (1.52 ~ 4.84) 4.64 (2.77 ~ 5.88)  < 0.001

Detrended fluctuation analysis

DFAα1 1.03 (0.78 ~ 1.23) 1.25 (1.06 ~ 1.33)  < 0.001

DFAα2 1.23 (0.78 ~ 1.23) 1.16 (1.06 ~ 1.21) 0.005

Multiscale entropy

Slope 1–5 − 0.0017 (− 0.048 ~ 0.024) 0.038 (− 0.013 ~ 0.077)  < 0.001

Scale 5 1.064 (0.86 ~ 1.14) 1.39 (1.24 ~ 1.52)  < 0.001

Area 1–5 3.88 (3.16 ~ 4.81) 5.23 (4.47 ~ 5.62)  < 0.001

Area 6–20 17.95 (15.44 ~ 20.31) 21.33 (19.33 ~ 22.92)  < 0.001

Figure 1.   The entropy over different time scales in patients with (blue) and without (grey) heart failure. 
*p < 0.001.
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in these patients. Unfortunately, many patients do not seek medical assistance even after the development of 
symptoms in the early stage of the disease due to the non-specific or subtle presentations26. Since that, developing 
a useful diagnosis tool is urgently needed to improved outcomes. HRV has the potential to improve the diagnosis 
of HF and patient management.

The traditional linear HRV has been extensively studied in HF and autonomic dysfunction. In 1988, Saul et al. 
reported that severe HF patients had worse time domain and frequency domain HRV compared with healthy 
controls9. Binkley et al. demonstrated that parasympathetic withdrawal was a feature of HF27. Further studies 
also revealed that linear HRV were associated with volume status, functional class of HF, LVEF, serum norepi-
nephrine and tumor necrosis factor level in HF patients28–31. Furthermore, functional test and the alternation 
of heart loading condition also interfere the diagnostic power of HRV. AR Kiselev et al. showed that frequency 
domain, LF analysis was superior to time domain analysis, SDRR during loading condition in HF detection32. 
The early appearance of these HRV abnormalities suggests that autonomic dysfunction plays a critical role in the 
progression of HF and HRV can be used in multiple serial tests during follow-up, and also that it has advantages 
in continuous disease monitoring. Patel et al. also showed that abnormal HRV was associated with the devel-
opment of new HF33. However, previous HRV studies have mainly focused on linear analysis, and its ability to 
predict outcomes remains limited compared with non-linear HRV8,12. Non-linear HRV has also been studied with 
regards to the diagnosis and outcome prediction in many diseases with excellent results, including the outcomes 
of acute stroke34, primary aldosteronism16, severity of abdominal aorta calcification35, critical illnesses requir-
ing extracorporeal life support36, post-myocardial infarction heart function37, and pulmonary hypertension17.

Heart rhythm complexity based on non-linear methods, including DFA and MSE measures the complexity 
beneath seemingly stationary biological signals14,21. A healthy biological system is able to make rapid adjustments 

Table 3.   Univariable and multivariable logistic regression model to predict the presence of heart failure. *In 
multivariable logistic regression, the mean RR, SDRR, VLF, LF, HF, LF/HF ratio, slope 5, area 1–5 and area 
6–20 were excluded from the model. SDRR standard deviation of normal RR intervals, pNN20 percentage of the 
absolute change in consecutive normal RR interval exceeds 20 ms, pNN50 percentage of the absolute change in 
consecutive normal RR interval exceeds 50 ms, VLF very low frequency, LF low frequency, HF high frequency, 
DFA detrended fluctuation analysis.

Univariable logistic regression Multivariable logistic regression

β (95% CI) P OR (95% CI) P

Mean RR 0.993 (0.989 ~ 0.996)  < 0.001

SDRR 0.928 (0.898 ~ 0.959)  < 0.001

pNN20 0.009 (0.001 ~ 0.096)  < 0.001 0.005 (< 0.001 ~ 0.202) 0.005

pNN50 0.065 (0.001 ~ 6.777) 0.249

VLF 0.997 (0.996 ~ 0.999)  < 0.001

LF 0.991 (0.987 ~ 0.995)  < 0.001

HF 0.992 (0.984 ~ 1.000) 0.037

LF/HF ratio 0.724 (0.607 ~ 0.863)  < 0.001

DFAα1 0.039 (0.009 ~ 0.171)  < 0.001 0.021 (0.002 ~ 0.202) 0.001

DFAα2 760.450 (11.826 ~ 52,836.633) 0.002  < 0.001 (< 0.001 ~ 0.481) 0.030

Slope 5  < 0.001 (< 0.001 ~ 0.004)  < 0.001

Scale 5 0.002 (< 0.001 ~ 0.015)  < 0.001 0.002 (< 0.001 ~ 0.038)  < 0.001

Area 1–5 0.283 (0.180 ~ 0.444)  < 0.001

Area 6–20 0.697 (0.608 ~ 0.800)  < 0.001

Table 4.   Heart rhythm complexity to predict heart failure after adjustment. Data were presented with β (95% 
CI). † P < 0.05 *Independent predictors of heart failure in multivariable logistic regression model including 
mean RR, SDRR, VLF, LF, HF, LF/HF ratio, DFAα1, DFAα2, slope 5, scale 5, area 1–5 and area 6–20 after 
stepwise subset selection. Model 1 unadjusted. Model 2 adjusted by age and sex. Model 3 adjusted by age, sex, 
beta blocker, CCB and ARB or ACEI use. Model 4 adjusted by age, sex, creatinine and AC glucose. Model 
5 adjusted by age, sex, creatinine, AC glucose, CAD, DM, HTN and dyslipidemia. pNN20 percentage of the 
absolute change in consecutive normal RR interval exceeds 20 ms, DFA detrended fluctuation analysis.

pNN20* DFAα1* DFAα2* Scale 5*

Model 1 0.009 (0.001 ~ 0.096)† 0.039 (0.009 ~ 0.171)† 760 (11.83 ~ 5.3* 104)† 0.002 (< 0.001 ~ 0.015)†

Model 2 0.008 (0.001 ~ 0.085)† 0.035 (0.007 ~ 0.175)† 1535 (18.64 ~ 1.3*105)† 0.002 (< 0.001 ~ 0.016)†

Model 3 0.001 (< 0.001 ~ 0.018)† 0.025 (0.004 ~ 0.160)† 7,691 (49.05 ~ 1.3*106)† 0.001 (< 0.001 ~ 0.028)†

Model 4 0.015 (0.001 ~ 0.257)† 0.093 (0.014 ~ 0.621)† 632 (2.74 ~ 1.5*105)† 0.004 (< 0.001 ~ 0.040)†

Model 5 0.042 (0.001 ~ 1.977) 0.010 (< 0.001 ~ 0.199)† 1846 (0.80 ~ 4.2*106) 0.005 (< 0.001 ~ 0.104)†
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to cope with dynamic environmental changes. This requires complex connections among autonomic, endocrine 
and cardiovascular systems. Once a subject is diseased, the system breaks down and the complexity decreases. 
Heart rhythm complexity analysis can quantify this phenomenon beneath biological signals instead of only 
variability provided by traditional linear HRV13,14,21,38. In the DIAMOND-CHF trial, the non-linear analysis 
parameter, DFAα1 but not linear parameters remained as an independent predictor of mortality in HF patients12. 
Patel et al. also recently demonstrated that abnormal DFAα1 in asymptomatic HF patients was associated with 
the onset of HF years in advance of the first clinical event in a retrospective analysis33,39. However, very few 
studies have investigated MSE analysis in HF patients. MSE was first introduced by Costa et al. in 200238. In that 
paper, they demonstrated different patterns of MSE in patients with cardiovascular diseases such as atrial fibril-
lation and HF, however they retrieved ECG data from an ECG databank (physionet) without details of clinical 
variables. In addition, they did not analyze which MSE parameters can be used to detect HF, which limited its 
clinical application. Signorini et al. provided data supporting that HF patients had worse heart rate complexity; 
however, they only used the slope of the MSE curve as the MSE parameter. In our previous studies, we showed 
that individual scale values or areas under a certain serial scale could provide better power to detect a disease and 
predict the prognosis15–17,35,36,40. In addition, Signorini et al. did not compare non-linear methods to traditional 
linear methods18. In this study, we showed the advantage of heart rhythm complexity analysis over traditional 
linear methods, which may justify its use in clinical practice. In recent years, machine learning has been used to 
improve the diagnostic power of HRV by feature selection from time domain, frequency domain and non-linear 
analysis to form a new tool for HF detection41–43. However, the non-linear HRV feature which these studies used 
were mainly approximate entropy and sample entropy instead of multiscale entropy. Through coarse graining 
process, multiscale entropy can generate entropy in different time scales and provided more usefully informa-
tion. In a recent small pilot study, our group showed that MSE could be used to predict survival in HF patients40, 
which further highlights the importance of MSE in cardiovascular diseases. In the future, we can integrate the 
MSE into the machine learning process to further improve the clinical use of HRV in HF detection.

In the current study, we found that the HF patients had significantly worse linear and non-linear HRV com-
pared with the healthy controls, and that MSE scale 5 and DFAα1 were significant predictors of HF even after 
adjustments for multiple clinical variables. Furthermore, MSE scale 5 was the best single predictor of HF among 
all of the HRV parameters. These findings support our hypothesis that non-linear HRV has a better diagnostic 
power for HF compared with traditional linear HRV.

There are several limitations to this study. First, this is a small study with a limited number of cases which 
may have interfered with the statistical power of the analysis. The results of this study should be confirmed in 
larger clinical studies. Second, the data in the HF group were only derived from HF patients with LVEF < 50%, 
and patients with HF with preserved ejection fraction were not enrolled in this study. Third, the baseline char-
acteristics including prevalence of CAD, DM and medications were different in the HF patients and controls, 
and they may still be confounders in this study. Fourth, functional tests were not included in this study which 
might improve the diagnostic power of HRV analysis. Fifth, this is a cross-sectional study. Further studies are 
needed to evaluate the prognostic value of heart rhythm complexity in HF patients.

Figure 2.   Analysis of the discriminatory power of the two groups in receiver operating characteristic curve 
analysis. (A) Shows the AUC of the linear heart rate variability parameters, and (B) shows the non-linear heart 
rate variability parameters that could discriminate the heart failure and control groups.
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Conclusion
In conclusion, heart rhythm complexity had good diagnostic value in the enrolled patients with HF, and MSE 
scale 5 had the greatest single discriminatory power among all of the HRV parameters. The heart rhythm com-
plexity had good potential for improvement in HF diagnosis and management.
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