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Abstract

Incorporating human domain knowledge for breast tumor diagnosis is challenging, since shape, 

boundary, curvature, intensity, or other common medical priors vary significantly across patients 

and cannot be employed. This work proposes a new approach for integrating visual saliency into a 

deep learning model for breast tumor segmentation in ultrasound images. Visual saliency refers to 

image maps containing regions that are more likely to attract radiologists’ visual attention. The 

proposed approach introduces attention blocks into a U-Net architecture, and learns feature 

representations that prioritize spatial regions with high saliency levels. The validation results 

demonstrate increased accuracy for tumor segmentation relative to models without salient 

attention layers. The approach achieved a Dice similarity coefficient of 90.5% on a dataset of 510 

images. The salient attention model has potential to enhance accuracy and robustness in 

processing medical images of other organs, by providing a means to incorporate task-specific 

knowledge into deep learning architectures.
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Introduction

Computer-aided image analysis can assist radiologists’ interpretation and diagnosis, and 

reduce error rates, as well as the level of stress regarding erroneous diagnosis (Cheng et al. 

2010; Inoue et al. 2017; Jalalian et al. 2017; Moon et al. 2011; Wu et al. 2019). For instance, 

3 to 6% of all radiologists’ image interpretations contain clinically important errors, and 

also, significant variability in the inter- and intra-observer image interpretation is often 

reported (Elmore et al. 1994; Langlotz et al. 2019; Waite et al. 2016).
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The emphasis in this work is on automated computer-aided diagnosis of tumors in breast 

ultrasound (BUS) images (Xian et al. 2018b). A large body of research work employed 

conventional and deep learning approaches to address tasks related to automated lesion 

localization, segmentation, and classification (Inoue et al. 2017; Jalalian et al. 2017; Litjens 

et al. 2017; Moon et al. 2011; Wu et al. 2019). In spite of this progress, existing methods 

lack robustness and consistency when processing images taken with different imaging 

equipment, where the variations in image intensity, contrast, and density often result in a 

degraded performance of models that otherwise perform well on custom-built datasets.

An important way to improve the performance of data-driven models is by incorporating 

prior domain-specific knowledge (Nosrati and Hamarneh 2016). On the other hand, 

incorporating prior knowledge in deep models for breast cancer detection is challenging, 

because unlike other medical organs—such as the kidney or the heart, whose features 

naturally lend themselves to the application of shape or boundary priors—breast tumors 

have a large variability in shape and boundaries from case to case. Extracting other priors in 

the form of curvature, texture, intensity, or number of regions for breast tumors is also not an 

option.

Our proposed approach incorporates topological and anatomical prior information into a 

deep learning model for image segmentation. More specifically, maps of visual saliency are 

employed for integrating image topology knowledge (Xu et al. 2016; Xu et al. 2018). The 

model for visual saliency estimation is formulated as a quadratic optimization problem, and 

it is based on calculations of neutro-connectedness between regions in the image (Xian et al. 

2016; Xian 2017). Anatomical prior knowledge is integrated by decomposing the tissue 

layers into skin, fat, mammary, and muscle layers (Xu et al. 2019), and applying higher 

weights to the salient regions in images belonging to the mammary layer.

In this paper, we propose a novel approach to integrate domain knowledge into a deep neural 

network model by using the attention mechanism (Simonyan et al. 2013). A U-Net 

architecture (Ronneberger et al. 2015) is selected for incorporating the prior knowledge in 

the form of a pyramid of visual saliency maps. Attention blocks are integrated with the 

layers of the encoder to force the network to learn feature representations that place spatial 

attention to target regions with high saliency values. Unlike similar deep learning models 

that introduce attention blocks by merging internal feature representations from different 

layers (Chen et al. 2016; Jetley et al. 2018; Oktay et al. 2018b), the proposed approach 

employs external auxiliary inputs in the form of visual saliency maps for training the model 

parameters.

The main contributions of this paper are: (1) attention enriched deep learning model for 

integrating prior knowledge of tumor saliency; and (2) confidence level calculation for 

visual saliency maps.

The paper is organized as follows. The next section overviews related works in the literature. 

The Materials section describes the used image dataset. The Methods section covers the 

proposed network architecture, attention blocks, and visual saliency maps. Experimental 
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validation is provided in the Results section. The Discussion section presents the findings of 

the experiments, and the Conclusion section summarizes the work.

Related Works

Computer-aided segmentation in medical imaging has been an important research topic for 

several decades, and it encompasses a vast body of work in the published literature. Recent 

advances in deep learning models (Goodfellow et al. 2016; LeCun et al. 2015) demonstrated 

great improvements in semantic image segmentation (Badrinarayanan et al. 2017; Chen et 

al. 2018a; Chen et al. 2018b; He et al. 2015; Lin et al. 2017; Long et al. 2015; Ronneberger 

et al. 2015; Zhao et al. 2017). Consequently, significant efforts have been devoted toward the 

implementation and design of deep neural networks for a wide range of medical 

applications, including segmentation of tumors and lesions (e.g., brain tumor (Kamnitsas et 

al. 2017), skin lesions (González-Díaz 2017), histopathology images (Chen et al. 2017; 

Graham et al. 2018; Kumar et al. 2017; Lin et al. 2018; Naylor et al. 2019)), and 

segmentation of organs (e.g., pancreas (Oktay et al. 2018b), lung (Hu et al. 2019), heart 

(Oktay et al. 2018a), or head and neck anatomy (Zhu et al. 2019)).

Likewise, the implementation of deep models for breast tumor segmentation has spurred 

interest in the research community in recent years (Xian et al. 2018b). Whereas the most 

popular image modality for this task have been ultrasound images (Abraham and Khan 

2018; Chiang et al. 2019; Huang et al. 2018; Yap et al. 2018) and digital mammography 

images (Akselrod-Ballin et al. 2017; Dhungel et al. 2015; Jung et al. 2018; Kooi et al. 2017; 

Moor et al. 2018; Ribli et al. 2017), a body of literature used MRI (Jaeger et al. 2018), and 

histology images (Lin et al. 2018). U-Net (Ronneberger et al. 2015) and its numerous 

variants and modifications have been the most commonly used architecture for this problem 

to date. In spite of this progress, breast tumor segmentation is still an open research topic, 

due to challenges related to the inherent presence of noise and low contrast of images, 

sensitivity of current methods to the used image-acquisition method, equipment, and 

settings, and the lack of large open datasets of annotated images for training purposes.

Priors in medical image segmentation.

Incorporating prior task-specific knowledge for medical image segmentation is important for 

improved model performance (Nosrati and Hamarneh 2016), and it can be crucial in tasks 

with small datasets of annotated medical images (i.e., most medical tasks at the present 

time). Prior knowledge can generally be in the form of shape, boundary, curvature, 

appearance (e.g., intensity, texture), topology (e.g., connectivity), anatomical information/

atlas (structure of tissues or organs), user information (seed points or bounding boxes), 

moments (size, area, volume), distance (between organs and structures), and other forms. 

Although recent deep learning-based models have caused a leap of performance in image 

segmentation over conventional methods based on thresholding, region-growing, graph-

based approaches, and deformable models (Cai and Wang 2013; Gómez-Flores and Ruiz-

Ortega 2016; Huang et al. 2017; Liu et al. 2010; Rodrigues et al. 2015; Xiao et al. 2002), 

incorporating prior knowledge in deep neural networks has proven to be a difficult task, and 

consequently, has not been widely investigated. Namely, semantic image segmentation using 
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deep networks typically relies on loss functions that optimize the model predictions at a 

pixel level, without taking into consideration inter-pixel interactions and semantic 

correlations among regions at the image level. To integrate prior knowledge into 

segmentation models, several works have proposed custom loss functions that enforce 

learning feature representations compatible with the priors. For instance, a loss function that 

penalizes both geometric priors (boundary smoothness) and topological priors (containment 

or exclusion of lumen in epithelium and stroma) was devised for histology gland 

segmentation (BenTaieb and Hamarneh 2016). Likewise, loss functions in fully 

convolutional networks (FCNs) that encode a shape prior were proposed for kidney 

segmentation (Ravishankar et al. 2017), cardiac segmentation (Oktay et al. 2018a), and 

segmentation of star shapes in skin lesions (Mirikharaji and Hamarneh 2018). The 

disadvantage of this approach is that the related models are task-specific and cannot be 

repurposed for segmentation of other objects of interest in medical images. Another line of 

research introduces a post-processing step with Conditional Random Fields where the 

segmentation predictions by a deep learning network are improved through assigning class 

labels to regions with similar topological properties (Chen et al. 2018a; Havaei et al. 2017; 

Huang et al. 2018). However, these methods increase the processing complexity and 

computational expense, and have been mostly replaced in recent years with end-to-end 

training models. Furthermore, a body of work proposed to incorporate shape priors by 

redesigning the network architecture. For example, Li et al. (Li et al. 2016) employed an 

FCN with a VGG-16 base model where shape priors are learned by a consecutive 

concatenation of the original images with the obtained segmentation maps during several 

iterations of the procedure. Gonzalez-Diaz (González-Díaz 2017) created probability maps 

based on the knowledge of the patterns of skin lesions (e.g., dots, globules, streaks, or 

vascular structures) and merged them with extracted feature maps in a ResNet-based 

architecture. Furthermore, a boundary prior was incorporated in a deep learning model 

called DCAN that has two subnetworks for learning concurrently shapes and contour 

boundaries in histology images (Chen et al. 2017). Yet another class of methods utilizes 

generative models for introducing prior knowledge. E.g., in several early pre-FCN image 

segmentation models, Boltzmann machines networks were employed for learning shape 

priors (Chen et al. 2013; Eslami et al. 2014). A more recent research uses variational Bayes 

autoencoders for incorporating prior anatomical knowledge of the brain geometry in 

segmentation of MRI images (Dalca et al. 2018).

Despite the potential demonstrated by the above-described research work, to the best of our 

knowledge, there are no previous studies on the incorporation of prior knowledge in deep 

models for breast cancer detection. The challenge stems from the fact that unlike other 

medical organs (e.g., kidney, heart) where shape or boundary priors can be applied, such 

constraints are not applicable to breast cancer detection, due to the wide difference in the 

geometry of breast tumors. Analogously, it is difficult to extract generalized prior knowledge 

regarding curvature, moments, appearance, intensity, or number of regions for breast tumors. 

In this work, we introduce prior topology information in a deep learning segmentation model 

in the form of region connectivity and visual saliency. Such prior information is combined 

with anatomical prior knowledge of the tissue layers in breast images, as explained in the 

subsequent sections.
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Attention mechanism in deep learning.

Attention mechanism is an approach in deep networks layer design where the goal is to 

recognize discriminative features in the inner activation maps and to utilize this knowledge 

toward enhanced task-specific data representation and improved model performance 

(Simonyan et al. 2013). This mechanism contributes to suppressing less relevant features and 

emphasizing more important features for a considered task; e.g., in image classification, 

important features lie in salient spatial locations in the images.

Attention mechanism has been integrated into various deep learning models designed for 

image captioning (Li et al. 2018; Xu et al. 2015), language translation (Bahdanau et al. 

2015), and image classification (Jetley et al. 2018; Wang et al. 2017). In general, attention in 

deep neural networks is traditionally implemented in two main forms, known as hard and 

soft attention. The implementation of hard (or stochastic) attention is non-differentiable, the 

training procedure is based on a sampling technique, and as a consequence, the models are 

difficult to optimize (Cao et al. 2015; Mnih et al. 2014; Stollenga et al. 2014). Soft (or 

deterministic) attention models are differentiable and trained with backpropagation; due to 

these properties, they have been the preferred form of implementation (Chen et al. 2016; 

Jaderberg et al. 2015; Wang et al. 2017). In image processing, the attention mechanism 

produces a probabilistic map of spatial locations in images, where the parameters of the 

attention map are learned in end-to-end training. Furthermore, the introduced architecture 

designs in image processing typically comprise of multiple attention maps with different 

resolutions, thereby capturing salient features across multiple levels of feature abstraction. 

For instance, Jetley et al. (Jetley et al. 2018) introduced attention gates at three intermediate 

layers in a VGG network, and a weighted combination of the attention maps is used in the 

last layer for image classification. Chen et al. (Chen et al. 2018a) introduce attention blocks 

in the initial DeepLab model for image segmentation, where attention weights are learned at 

different scales of a pyramidal feature representation.

Similar, attention gates were introduced in a U-Net architecture (Oktay et al. 2018b) and 

were employed in medical image processing for segmentation of the pancreas (Oktay et al. 

2018b), and for breast tumor and skin lesion segmentation (Abraham and Khan 2018). This 

type of models uses the extracted features maps in the encoder path of the network for 

calculation of the attention maps, which are afterward merged with the up-sampled features 

maps in the decoder network, typically via element-wise multiplication. Such design forces 

the model to encode the locations and shapes of salient regions in extracted representations 

that are relevant for segmentation of the objects of interest. In the work by Tomita et al. 

(Tomita et al. 2018) an attention module was implemented in a 3D residual convolutional 

neural network to dynamically identify regions of interest (ROI) for processing high-

resolution microscopy images, thus replacing the commonly used approach of sliding 

window ROI selection, and alleviating the computational burden in processing microscopy 

images. In a related work to the proposed approach, AttentionNet is designed on top of a 

ResNeXt encoder-decoder architecture and applies both spatial and channel attention blocks 

for segmentation of the anatomical tissue layers in BUS images (Li et al. 2019). Conversely 

to our method, the authors in (Li et al. 2019) did not apply AttenionNet for breast tumor 
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detection, as well as they used activations maps of the intermediate layers of the network in 

the attention blocks.

Materials and Methods

The proposed approach is validated on a dataset of 510 breast ultrasound images (Xian et al. 

2018a). The dataset is collected from three hospitals: the Second Affiliated Hospital of 

Harbin Medical University, the Affiliated Hospital of Qingdao University, and the Second 

Hospital of Hebei Medical University. All images in the dataset are de-identified, and 

informed consent to the protocol was obtained from all involved patients. Different types of 

imaging ultrasound devices were employed for acquiring the images, including GE VIVID 7 

(General Electric Healthcare, Chicago, IL, USA), GE LOGIQ E9 (General Electric 

Healthcare, Chicago, IL, USA), Hitachi EUB-6500 (Hitachi Medical Systems, Chiyoda, 

Japan), Philips iU22 (Philips Healthcare, Amsterdam, Netherlands), and Siemens ACUSON 

S2000 (Siemens Healthineers Global, Munich, Germany). GE VIVID 7 and Hitachi 

EUB-6500 were used for collecting ultrasound images at Harbin Medical University, GE 

LOGIQ E9 and Philips iU22 were used at Qingdao University, and Siemens ACUSON 

S2000 was used at Hebei Medical University. Image annotation related to the segmentation 

and delineation of tumors in images was initially performed by three experienced 

radiologists, followed by voting and creating a single segmentation mask per image on 

which all three medical professionals agreed. Afterward, the annotations were reviewed by a 

senior radiologist expert, who either approved, or if needed, applied corrections and 

amendments to the segmentation boundaries (Xian et al. 2018a).

Network Architecture

The proposed network is based on the well-known U-Net architecture (Ronneberger et al. 

2015), which consists of fully convolutional encoder and decoder sub-networks with skip 

connections. The layers in the encoder employ a cascade of convolutional and max-pooling 

layers, which reduce the resolution of input images and extract increasingly abstract 

features. The decoder comprises convolutional and up-sampling layers that provide an 

expanding path for recovering the spatial resolution of the extracted feature maps to the 

initial level of the input images. A unique characteristic of the U-Net architecture is the 

presence of skip connections from the feature maps in encoder’s contracting path to the 

corresponding layers in the decoder. The features from the respective encoder’s and 

decoder’s layers are merged via concatenation that allows to recover the spatial accuracy of 

the objects in images and improves the resulting segmentation masks. Namely, although the 

central layer of the network offers high-level features with semantic rich data representation 

and a large receptive field, it also has low level of spatial context detail due to the down-

sampling max-pooling layers along the contracting path, and impacts the localization 

accuracy around the object boundaries in the predictions. The skip connections provide a 

means to transmit low-level feature information from the initial high-resolution layers in the 

encoder to the reconstructing layers in the decoder, thereby restoring the local spatial 

information in predicted segmentations. Despite the introduction of deeper and more 

powerful models for image segmentation in recent years, the U-Net architecture has 
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remained popular especially in medical image segmentation, where datasets have small size 

and large models can overfit on the available sets.

A graphical representation of the proposed model is presented in Figure 1. Besides the main 

input consisting of BUS images, the network has an auxiliary input consisting of the 

corresponding salient maps. Attention blocks introduce salient maps with reduced scale in 

all layers on the contracting path of the encoder in the form of an image pyramid. This 

enforces the network to focus the attention onto regions in the saliency maps with high 

intensity values. More specifically, the introduced attention blocks put more weights on 

areas in the extracted feature maps at each layer that have higher levels of saliency in the 

salient maps. Thus, the topology of the salient maps influences the learned feature 

representations.

The images and saliency maps are grey-scale 8-bit data resampled into floating point with 

normalization. Resized images and saliency maps to pixels are used as inputs to the model. 

The number of convolutional filters per layer in the network is (32, 32, 64, 64, 128), which is 

reduced in comparison to the original U-Net, to account for the relatively small dataset. The 

output segmentation probability maps have the same spatial dimension as the inputs. The 

proposed network is trained in an end-to-end fashion; however, the saliency maps are 

precomputed and used at both training and inference.

Attention Blocks

A block diagram of Attention Block n is depicted in Figure 2. The input feature maps to the 

attention block are denoted Fn = {f1, f2,…,fkn}, where each feature map has horizontal and 

vertical spatial dimensions of 256⁄2(n–1)×256/2(n–1) pixels for the block in the layer level 

n ∈ 1, 2, 3, 4 . The symbol kn is the channel dimension of the feature maps in block n, i.e., 

kn ∈ 32, 32, 64, 64 . For example, the input Feature Maps in Fig. 2 related to the output 

activations of the convolutional ‘Conv 64’ layer entering Attention Block 4 in Fig. 1 have 

dimensions of 32 × 32 × 64 (i.e., for n = 4, the size of the feature maps F4 is 256/23 × 256/23 

× /k4 = 32 × 32 × 64).

The input Salient Map in Fig. 2 is denoted S and it is down-sampled through a max-pooling 

layer, resulting in Sn, which matches the spatial dimension of the input feature maps Fn in 

Attention Block n. Next, 1 × 1 convolutions followed by ReLU activation functions are used 

to increase the number of channels of the saliency map Sn to 128. An element-wise sum 

block performs addition of Fn and Sn producing intermediate maps of In size 256/2n × 

256/2n × 128. The intermediate maps In are further refined through a series of linear 128 × 3 

× 3 and 1 × 1 × 1 convolutions, followed by nonlinear ReLU activations. A sigmoid 

activation function normalizes the values of the activation maps into the [0, 1] range. The 

produced output is the attention map A = (αi) with a spatial size of 256/2n × 256/2n × 1, 

where the attention coefficients αi have scalar values for each pixel i. Next, soft attention is 

applied via element-wise multiplication of the attention map A with the max-pooled features 

Pn, i.e., On = A * Pn. The activation maps On with size 256/2n × 256/2n × /kn are the Output 

of Attention Block n, and they are further propagated to the next layer, as depicted in Fig. 1.
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The design of the attention block was inspired by the attention gates in (Oktay et al. 2018b) 

and (Jetley et al. 2018). Differently from these two works, where the attention blocks 

employ activation maps from the intermediate layers in the model as saliency maps for 

enhancing the discriminative characteristics of extracted intermediary features, the proposed 

attention block in this work utilizes precomputed saliency maps that point out to target 

spatial regions. If the attention block in this work applies directly the self-attention blocks 

described in (Abraham and Khan 2018; Jetley et al. 2018; Oktay et al. 2018b), the 

segmentation performance of the model would not improve. The reason for that lies in the 

distribution of salient regions in the used maps, since in many images background non-

tumor areas have certain level of saliency in the salient maps; consequently, placing equal 

attention weights on all salient regions leads to higher level of false positive errors and 

degraded performance. The introduction of additional 3 × 3 and 1 × 1 convolutional layers 

for feature refinement in the proposed salient attention block was conducive toward 

improved segmentation outputs, which was confirmed via empirical validation of the 

proposed layers design.

Saliency Maps

Visual saliency estimation is an important paradigm for automatic tumor diagnosis in BUS 

images, where the aim is to model the level of saliency of image regions in correspondence 

to the capacity to attract radiologists’ visual attention (Shao et al. 2015; Xie et al. 2017). For 

an input image, the output of such models is a visual saliency map with assigned saliency 

values in the [0, 1] range to every image pixel. High saliency value indicates a high 

probability that the pixel belongs to a tumor.

The adopted approach for generating saliency maps of BUS images is based on our previous 

work (Xian et al. 2016; Xian 2017; Xu et al. 2016; Xu et al. 2018; Xu et al. 2019). In 

particular, the task of visual saliency estimation is formulated as a quadratic programming 

optimization that integrates high-level image information and low-level saliency 

assumptions. The model assigns a saliency value si to each superpixel region i in an image. 

The objective function of the model optimizes several terms, as follows. First, one term is a 

function of a foreground map that calculates the probability that the ith image region belongs 

to a tumor, and the distance between the ith region and the center of the foreground map of 

the image. Second, another term defines the cost of assigning zero saliency to an image 

region, and it employs the connectedness to the boundary regions to calculate the probability 

of the ith region belonging to a non-tumor image background. A third term applies a penalty 

if similar regions in the image have different saliency values. The formulation of the above 

functions is based on our Neutro-Connectedness (NC) approach (Xian, 2017; Xian et al., 

2016) that exploits the information of the degree of connectedness and confidence of 

connectedness between the image regions. The complete set of formulas for derivation of the 

optimization model can be found in (Xu et al., 2019) and (Xu et al., 2018).

Our most recent work on this topic (Xu et al., 2019) introduces additional constraints in the 

model related to the breast anatomy by decomposing the images into four anatomical layers: 

skin, fat, mammary, and muscle layers. The four layers have different appearances in BUS 

images, and the fact that tumors are present predominantly in the mammary layer is used in 
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our framework as an anatomical prior for saliency estimation. Two low-level saliency 

assumptions are utilized in the framework as well: 1) adaptive-center bias assumption forces 

the regions nearer the adaptive center to have higher saliency values; 2) the region-

correlation assumption forces the similar regions to have similar saliency values. The 

extensive experiments in (Xu et al. 2019) showed the new model with anatomical knowledge 

generated improved performance than other models in related works on the dataset (Xian, 

2018b). Another advantage of the approach proposed in (Xu et al. 2019) is the capability to 

interpret images without tumors, whereas many related approaches assume the presence of 

tumors in each image. Full implementation details can be found in the respective 

publications.

Examples of breast images and corresponding saliency maps are presented in Figure 3. The 

top row in the figure shows five BUS images, and the middle row displays the ground truth 

segmentation masks provided by radiologists. The bottom row displays the saliency maps 

for the images. One can note that the saliency maps assign a value to every pixel regarding 

the probability of belonging to a tumor, and differently from the ground truth masks, 

saliency values are assigned to background regions in images as well. Furthermore, the 

saliency maps are generated in an unsupervised manner, i.e., the information of the ground 

truth is not used by the saliency estimation model.

The incorporation of saliency maps into a deep learning model as complementary prior 

information is based on an assumption that the areas in images with high saliency values 

correspond to a high probability of tumor presence. Therefore, it is important that the 

saliency maps are of adequate quality and provide reliable information regarding the tumor 

locations. Otherwise, poor quality saliency maps can degrade the model performance.

The selected five examples of saliency maps depicted in Figure 3 have different levels of 

quality. More specifically, a map is considered of satisfactory quality when the location and 

intensity of the tumor region are clearly discernable in the saliency map. The example in the 

middle column in Figure 3 with moderate quality indicates the tumor location correctly, but 

the tumor shape and boundary do not match very well the ground truth, which may cause 

errors in the edge segmentation when applied to a deep network. For the case with low 

quality in Figure 3 there are several regions with similar area and saliency values, and it is 

not clear which of these regions may be tumors. Lastly, the saliency map with poor quality 

in Figure 3 assigns zero saliency values to the tumor region and completely misses the 

tumor.

In order to account for the cases with lower quality of saliency maps, we devised an 

algorithm that calculates the level of confidence in the saliency maps, and subsequently, 

eliminates the maps with low confidence. The approach is based on the following 

parameters: contour area Ac = ∑j pj is the number of pixels of a contour c in an image with a 

saliency value per pixel pj greater than a threshold value; cumulative intensity Ic = ∑jS pj
calculates the sum of the saliency values for the pixels in contour c; and, mean intensity 

Mc = ∑jS pj /Ac of a contour c is calculated as the ratio of the cumulative intensity and the 

area. The first rule in Algorithm 1 states that if the contour with the largest cumulative 

Vakanski et al. Page 9

Ultrasound Med Biol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intensity Iargmax I1:c  has similar cumulative intensity to the second-largest contour and its 

mean intensity Margmax I1:c  is not the highest of all contours (see Figure 4, left column), 

then eliminate the saliency map from the set. The second rule is similar to the first rule, and 

takes into account cases with larger ambiguities in the cumulative intensity and mean 

intensity of contours (Figure 4, middle column). The third rule considers the cases when a 

contour has high mean saliency intensity but smaller cumulative intensity than other 

contours in the image (see Figure 4, right column). The parameters in the algorithm are 

empirically set to a1 = 2, a2 = 3, a3 = 0.2, anda4 = 0.55. In total 52 saliency maps satisfied the 

given conditions and were removed from the original set of 562 images, resulting in a 

reduced set of 510 images. That is, approximately 91% of the saliency maps are with high 

level of confidence. Having a low level of confidence for a saliency map does not necessarily 

mean that the saliency map is not correct: e.g., one can argue that the saliency for the 

example in the middle column in Figure 4 is correct. Rather, the proposed algorithm is 

designed to identify saliency maps with ambiguities regarding the spatial regions for tumor 

existence. The algorithm takes as inputs only the saliency maps, and it does not use the 

knowledge of the ground truth in estimating the level of confidence.

Algorithm 1:

Confidence level calculation for saliency maps

For saliency map i = 1:N

 Find all fully connected contours with threshold > 0.3

 For contour c = 1:C

  

ifIargmax I1:c < a1Iargmax I1:c − 1andMargmax I1:c < Margmax M1:c
orifIargmax I1:c < a2Iargmax I1:c − 1andMargmax I1:c + a3 < Margmax M1:c
orifMargmax M1:c > a4andargmax M1:c ≠ argmax I1:c

  Remove saliency map i from the set

Evaluation Metrics

We used Dice similarity coefficient (DSC), Jaccard index (JI), true positives ratio (TPR), 

false positives ratio (FPR), and global accuracy (ACC) to evaluate the model performance:

DSC = 2 Ag ∩ Ap
Ag + Ap

(1)

JI = Ag ∩ Ap
Ag ∪ Ap

(2)

TPR = Ag ∩ Ap
Ag

(3)
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FPR = Ag ∪ Ap − Ag
Ag

(4)

ACC = Ag ∩ Ap + Ag − Ag ∪ Ap
Ag + Ag

(5)

In the above equations, Ag is the set of pixels that belong to a tumor region in the ground 

truth segmented images Ag is the set of pixels that belong to the background region without 

tumors in the ground truth segmented images, Ap and is the corresponding set of pixels that 

are predicted to belong to a tumor region by the segmentation method. It is important to note 

that FPR is calculated as the ratio divided by the number of positives (i.e., pixels in tumor 

regions in the ground truth masks), as opposed to a ratio divided by the number of negatives 

(i.e., pixels in the background regions in the ground truth masks) as it is often defined in 

related tasks. Since the positive regions are smaller in BUS tumor segmentation, the selected 

formulation for FPR is more descriptive for this task. Additional metrics that we used for 

performance evaluation are the area under the curve of receiver operating characteristic 

score (AUC-ROC), Hausdorff distance (HD), and mean distance (MD). For most of the 

above metrics, the values are in the [0, 1] range, where higher values indicate improved 

performance (except for FPR, HD, and MD, where low values are preferred).

The differences in the values of the metrics obtained by different models are evaluated with 

a paired-comparison statistical hypothesis testing. A null hypothesis assumes that the 

metrics values are drawn from the same distribution and have a median value equal to zero.

Implementation Details

The proposed approach is validated on the described dataset of BUS images. We used five-

fold cross-validation, where four folds (80% of images) are used for training, and one fold 

(20% of images) is used for testing. Validation during training is performed on 20% of the 

training set of images. All images in the dataset are first resized to a 256 × 256 pixels 

resolution. Since we focus on understanding the impact of the introduced salient attention on 

the model performance, we did not apply image augmentation.

The proposed model is trained with randomly initialized weights using Xavier normal 

initialization (Glorot and Bengio 2010). Dice loss function was used for training, defined as

ℒ = 1 − DSC = 1 − 2 Ag ∩ Ap
Ag + Ap

(6)

where the same notation is preserved, i.e., Ag and Ap denote the ground truth and predicted 

masks, respectively.

The models were implemented using TensorFlow (Google, Menlo Park, CA, USA) and 

Keras (Francois Chollet, Menlo Park, CA, USA) libraries on the Google Colaboratory cloud 
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computing services, which employ Tesla K80 GPUs. The network was trained by using 

adaptive moment estimation optimizer (Adam) with a learning rate of 10−4, and a batch size 

of 4 images. The training was stopped when the loss of the validation set did not improve for 

20 epochs.

Results

Evaluation and Comparative Analysis

The experimental validation of the proposed approach is based on a comparative analysis of 

the following three models:

1. U-Net;

2. -Net-SA. It applied the proposed salient attention approach; and

3. U-Net-SA-C. It is a model with salient attention applied to a modified version 

where only one contour with the highest saliency is extracted in each salient 

map.

Examples of input BUS images, ground truth masks, saliency maps, and output 

segmentation maps by the models are presented in Figure 5. The values of the performance 

metrics are provided in Table 1. For the BUS images displayed in Figure 5, the segmentation 

outputs by the U-Net model are inferior in comparison to the predicted masks produced by 

the models with salient attention U-Net-SA and U-Net-SA-C. One particular aspect of 

improved performance entails the false positive predictions by U-Net (see rows A-G in 

Figure 5). In these cases, U-Net produces positive predictions of tumor presence for image 

regions that don’t belong to a tumor. The attention models U-Net-SA and U-Net-SA-C 

benefited from the information in the salient maps, which led to a reduced rate of false 

positive predictions in A-G. This is especially noticeable in rows B, E, and G that have high 

quality salient maps, resulting in great improvement over the predictions by the basic U-Net 

model.

Furthermore, improved performance with respect to the true positive predictions by U-Net is 

displayed for rows H and I in Figure 5. The provision of salient maps for these two cases 

helps the model to focus on target regions with high saliency, leading to higher true positives 

rate of the segmentation masks by U-Net-SA over the basic U-Net model. In addition, rows J 

and K provide examples where the geometry of the salient regions in the saliency maps 

contributes to more accurate predictions of the proposed models in comparison to U-Net. 

Cases C and I are instances of BUS images with small size tumors, where the salient 

attention models successfully located the tumor regions. As explained earlier, the U-Net-SA-

C model employs salient maps with one contour with the highest saliency intensity, and in 

many images it further improves the segmentation outputs. This is noticeable in row A in 

Figure 5, where the false positives in the segmentation are reduced in comparison to U-Net-

SA. However, U-Net-SA-C model is based on an assumption that there is only one tumor in 

the images, which may not always be the case.

The results in Table 1 show the average and standard deviation (in parenthesis) per fold in 

the five-fold cross-validation procedure for the three deep models. The obtained values 
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indicate that the models with salient attention U-Net-SA and U-Net-SA-C outperform the 

basic U-Net network without attention blocks for all performance metrics. The model U-

Net-SA-C trained on the dataset with a single contour in the salient maps produced 

improved segmentation performance in comparison to U-Net-SA. The average training time 

per fold for the basic U-Net model was 7.58 minutes, whereas the corresponding times for 

training the salient attention models U-Net-SA and U-Net-SA-C were 8.54 and 8.08 

minutes, respectively. Segmentation of the testing set of images with a trained model took 

1.09, 1.26, and 1.37 seconds per fold (i.e., 102 images) for U-Net, U-Net-SA, and U-Net-

SA-C, respectively. This translates to processing times of 12 milliseconds per image for U-

Net-SA and 13 milliseconds per image for U-Net-SA-C.

A Wilcoxon signed rank test was adopted for statistical analysis, based on the distribution of 

the metrics values. The hypothesis testing results are presented in Table 2. The cells with 

asterisk indicate rejection of the null hypothesis with P-value < 0.05. ACC and AUC-ROC 

metrics are not included in the test since their values are calculated per a fold of 20% of the 

images, and not per individual images. Accordingly, for almost all metrics there is a 

statistically significant difference in the median values by the proposed models in 

comparison to U-Net. The exceptions are the TPR and HD values between U-Net and U-

Net-SA, for which there isn’t a statistically significant difference.

Next, a comparison of our salient attention model for tumor segmentation U-Net-SA and 

three respective deep models for image segmentation is provided in Table 3. The dataset 

with 510 images is used for training the models. For a fair comparison, all models are 

trained in the same manner as the proposed architecture, i.e., five-fold cross-validation, 

batch size of 4, Xavier normal weights initialization, dice loss, Adam optimizer, and a 

stopping criterion of 20 epochs of non-improved validation loss. Due to the relatively small 

size of the dataset, for the comparison we selected smaller versions of the models. For 

instance, DenseNet is based on a network with 26 layers, and for PSPNet (that requires a 

base model) the small residual model ResNet18 is employed. The learning rate is fine-tuned 

for the different models, where an initial learning rate is selected, and when the validation 

loss does not improve for 10 epochs, the learning rate is reduced by a certain step size. The 

procedure is repeated until a preset value for the learning rate is reached. The details 

regarding the used learning rates for the different models are provided in Table 3. Our 

proposed U-Net-SA model listed last in the table outperformed the other deep learning 

networks for image segmentation on most of the employed performance metrics.

Table 4 provides the values of the performance metrics for the models on the original dataset 

of 562 images. In comparison to the values presented in Table 1 on the reduced dataset of 

510 images, the results in Table 4 indicate that the performances of the proposed attention 

enriched models U-Net-SA and U-NET-SA-C are reduced on the original dataset. Moreover, 

the basic U-Net model without salient attention has also reduced performance on the dataset 

of 562 images, which implies that the subset of 52 images that were removed from the 

original dataset contains breast tumors that are more challenging for segmentation in 

general. In conclusion, the algorithm for determining the level of confidence of the saliency 

maps contributed to improved performance on the reduced dataset of 510 images, by 

ensuring that the model predictions are not inhibited by poor data.
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Discussion

Based on the evaluation results presented in Table 1, the models with attention blocks 

outperformed the basic U-Net model. In addition, if only one contour with the highest 

saliency is extracted in the saliency maps (the U-Net-SA-C model), the performance 

improves further. This can be explained by the increasing spatial attention to a single salient 

region in the maps, resulting in reduced false positives in the outputs. As we mentioned 

earlier, this is based on an assumption that there is only one tumor in the images, which may 

not always be the case.

The design of the attention blocks has an impact on the segmentation output; therefore, we 

investigated several alternatives for the block layers and their parameters. Compared to 

similar attention blocks in deep models (Chen et al. 2016; Jetley et al. 2018; Oktay et al. 

2018b), the used block in this work requires additional feature refinement by using 

convolutional 3×3 and 1×1 layers. The refinement layers balance the impact of inaccurate 

boundaries of the regions in salient maps on the learned features. In other words, the 

saliency maps do not provide accurate local information of the edges and boundaries of 

tumors in images, but rather, they provide global information of the spatial probability 

regarding the presence of tumors. Larger values of the attention coefficients put more 

emphasis on the edges and boundaries in salient maps and can reduce the segmentation 

outputs. The use of additional refinement layers lessens the values of the attention 

coefficients and results in improved tumor segmentation.

The fact that the ultrasound images for validation of the approach were collected with 

various imaging systems is a strength of the paper, as it makes the dataset suitable for 

training data-driven models with enhanced robustness to variations across images from 

different sources.

One limitation of the presented approach is that it relies on the quality of saliency maps. 

Using low quality maps can at best not improve the results, or result in degraded 

performance. To deal with this shortcoming, we proposed an algorithm that calculates a 

confidence score and eliminates the saliency maps with low confidence in their level of 

quality. Whereas visual saliency estimation is not the focus of this work, improvements in 

the models for visual saliency estimation can lead to improved segmentation by the proposed 

approach.

Avenues for future work include investigation of custom loss functions in deep learning 

models for encoding prior information, and working with medical partners to obtain 

annotated images with breast tissue layers and afterward integrating such anatomical prior 

with salient maps in a unified segmentation model.

Conclusion

This paper proposes a novel deep learning architecture that incorporates radiologists’ visual 

attention for breast tumor segmentation. The proposed architecture consists of a variant of 

the basic U-Net model with attention blocks integrated along the contracting path in the 

layers of the encoder. The proposed attention blocks allow the deep learning model to 
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suppress spatial regions with low saliency values, and respectively, to focus on regions with 

high saliency values. The attention blocks use multi-scaled versions of the saliency maps. 

The approach is validated on a dataset of 510 images, and the results demonstrate improved 

segmentation performance. The importance of this work stems from the difficulties in 

incorporating priors into deep learning models for medical image processing, and in 

particular for segmentation of breast ultrasound images, where most of the traditionally used 

prior forms cannot be applied.
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Figure 1: 
Architecture of the proposed U-Net model with salient attention. The model uses BUS 

images and saliency maps as inputs, and produces segmentation probability maps as outputs.
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Figure 2: 
Attention Block n, for n ∈ 1, 2, 3, 4 . Inputs to the block are Feature Maps from layer n with 

a spatial dimension 256/2(n–1) × 256/2(n–1) with kn number of channels, and a Salient Map, 

whereas the Output is down-sampled weighted maps with a spatial dimension 256/2n × 

256/2n and kn number of channels.
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Figure 3: 
Examples of saliency maps with varying levels of quality. Top row: original BUS image; 

Middle row: ground truth mask; Bottom row: saliency map.
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Figure 4: 
Examples of eliminated saliency maps from the original dataset. Top row: original BUS 

image; Middle row: ground truth mask; Bottom row: saliency map.
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Figure 5: 
Segmentation results. First column: original BUS image; Second column: ground truth 

mask; Third column: saliency map; Fourth column: segmentation mask produced by U-Net; 

Fifth column: segmentation mask produced by U-Net-SA; Sixth column: segmentation mask 

produced by U-Net-SA-C.
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Table 1:

Performance evaluation metrics for models without and with salient attention. The shown values correspond to 

the average and standard deviation (in parenthesis) per fold in five-fold cross-validation.

Model DSC JI (IOU) TPR FPR ACC AUC-ROC HD MD

U-Net 0.894 
(±0.013)

0.821 
(±0.017)

0.903 
(±0.011)

0.107 
(±0.019)

0.978 
(±0.002)

0.951 
(±0.006)

4.346 
(±1.377)

0.224 
(±0.240)

U-Net-SA 0.901 
(±0.013)

0.832 
(±0.014)

0.904 
(±0.016)

0.092 
(±0.008)

0.979 
(±0.001)

0.955 
(±0.002)

4.326 
(±1.360)

0.209 
(±0.234)

U-Net-SA-
C

0.905 
(±0.013)

0.838 
(±0.014)

0.910 
(±0.011)

0.089 
(±0.012)

0.980 
(±0.001)

0.957 
(±0.004)

4.271 
(±1.326)

0.201 
(±0.218)
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Table 2:

Wilcoxon signed rank test of the performance metrics per image.

Model DSC JI (IOU) TPR FPR HD MD

U-Net and U-Net-SA P = 0.0011* P < 0.0001* P = 0.5822 P < 0.001* P = 0.2592 P < 0.001*

U-Net and U-Net-SA-C P < 0.0001* P < 0.0001* P = 0.0052* P = 0.0098* P = 0.0345* P < 0.001*

*
Statistically significant difference, P-value < 0.05.
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Table 3:

Values of the performance metrics for tumor segmentation by different models. The shown values correspond 

to the average and standard deviation (in parenthesis) per fold in five-fold cross-validation. LR represents the 

used learning rates for training the models.

Model Training Setting DSC JI (IOU) TPR FPR ACC AUC-ROC

Seg-Net
LR=8·10−4, decreased by 
0.5 after 10 epochs until 
1·10−4

0.889 
(±0.011)

0.811 
(±0.015)

0.877 
(±0.019)

0.088 
(±0.014)

0.977 
(±0.002)

0.957 
(±0.004)

DenseNet-26
LR=1·10−3, decreased by 
0.1 after 10 epochs until 
1·10−4

0.888 
(±0.016)

0.818 
(±0.017)

0.886 
(±0.019)

0.093 
(±0.025)

0.978 
(±0.002)

0.958 
(±0.005)

PSPNet-
ResNet18

LR=1·10−4, decreased by 
0.5 after 10 epochs until 
5·10−5, images size of 
384×384 pix.

0.886 
(±0.008)

0.808 
(±0.008)

0.884 
(±0.014)

0.107 
(±0.016)

0.976 
(±0.002)

0.953 
(±0.005)

Ours: U-Net-
SA LR = 1·10−4 0.901 

(±0.013)
0.832 

(±0.014)
0.904 

(±0.016)
0.092 

(±0.008)
0.979 

(±0.001)
0.955 

(±0.002)
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Table 4:

Performance evaluation metrics for the models on the original dataset of 562 images. The shown values 

correspond to the average and standard deviation (in parenthesis) per fold in five-fold cross-validation.

Model DSC JI (IOU) TPR FPR ACC AUC-ROC

U-Net 0.891 (±0.005) 0.817 (±0.008) 0.900 (±0.009) 0.120 (±0.027) 0.977 (±0.002) 0.950 (±0.006)

U-Net-SA 0.894 (±0.006) 0.824 (±0.008) 0.901 (±0.017) 0.111 (±0.032) 0.978 (±0.002) 0.952 (±0.012)

U-Net-SA-C 0.896 (±0.007) 0.825 (±0.010) 0.899 (±0.020) 0.106 (±0.025) 0.978 (±0.002) 0.955 (±0.010)
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