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Abstract

Background: Posttraumatic stress disorder (PTSD) is characterized by hyperarousal, avoidance, 

and intrusive/re-experiencing symptoms. The periaqueductal gray (PAG), which generates 

behavioral responses to physical and psychological stressors, is also implicated in threat 

processing. Distinct regions of the PAG elicit opposing responses to threatening or stressful 

stimuli: the ventrolateral PAG (vlPAG) evokes passive coping strategies (e.g., analgesia), whereas 

the dorsolateral PAG (dlPAG) promotes active responses (e.g., fight or flight). We investigated 

whether altered PAG resting state functional connectivity (RSFC) prospectively predicted PTSD 

symptoms.

Method: Forty-eight trauma-exposed individuals underwent a RSFC scan two-weeks post-

traumatic injury. Self-report measures, including the Visual Analogue Scale of Pain and Impact of 

Event Scale, were collected at two-weeks and six-months post-trauma. We analyzed whether acute 

bilateral PAG RSFC was a marker of risk for total six-month symptom severity and specific 

symptom clusters. In an exploratory analysis, we investigated whether dlPAG RSFC predicted 

PTSD symptoms.
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Results: After adjusting for physical pain ratings, greater acute post-trauma PAG-frontal pole 

and PAG-posterior cingulate cortex connectivity was positively associated with six-month total 

PTSD symptoms. Weaker dlPAG-superior/inferior parietal lobule connectivity predicted both 

higher hyperarousal and intrusive symptoms, while weaker dlPAG-supramarginal gyrus RSFC was 

only associated with hyperarousal symptoms.

Conclusions: Altered connectivity of the PAG two-weeks post-trauma prospectively predicted 

PTSD symptoms. These findings suggest aberrant PAG function may serve as a marker of risk for 

chronic PTSD symptoms, possibly by driving specific symptom clusters and more broadly, that 

connectivity of specific brain regions may underlie specific symptom profiles.
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1. Introduction

Up to 90% of American adults will experience a traumatic event (1, 2). A minority of 

trauma-exposed individuals (8–10%) will develop posttraumatic stress disorder (PTSD; 2, 

3). PTSD is characterized by a constellation of symptoms, including hyperarousal, 

avoidance of trauma-related stimuli, negative alterations in mood and cognition, and 

intrusive thoughts (4). Functional magnetic resonance imaging (fMRI) studies suggest 

distinct patterns of brain activity differentiate individuals with PTSD from trauma-exposed 

controls. PTSD is linked with aberrations in neural substrates mediating threat processing 

and fear learning, including the amygdala (5, 6, 7), medial prefrontal cortex (8, 9, 10), and 

hippocampus (11, 12, 13, 14, 15).

Establishing early neural markers of PTSD is critical as it would allow for preventive 

interventions to minimize the risk of PTSD development (16, 17). However, identifying 

sensitive and specific markers of risk is challenging (18, 19). Although factors including 

education, marital status, and gender, as well as peritraumatic psychological processes (e.g. 

peritraumatic dissociation) confer vulnerability to PTSD, these are estimated to 

independently predict only 30% of cases (20, 21). Thus, research exploring potential early 

biomarkers may provide more specific process-based markers of risk. Acute post-trauma 

studies indicate structural, resting-state, and task-based functional imaging may be useful in 

identifying biomarkers of PTSD (22, 23, 24).

Consistent with the overarching neurobiological model of PTSD, which suggests fear-

learning circuitry is disrupted (25, 26, 27, 28), greater amygdala reactivity is predictive of 

future PTSD (22, 23) and treatment response (29). Amygdala resting-state functional 

connectivity (RSFC) is disrupted acutely post-trauma (30). In general, greater RSFC 

between regions in the salience network, including the amygdala (30) and insula (24, 31), is 

associated with current, and predictive of future, PTSD symptoms. Importantly, widespread 

disruption of RSFC in parietal, occipital, and prefrontal regions predicts PTSD symptoms 

(32). Thus, there is evidence that regions not traditionally defined in neurobiological 

frameworks of PTSD (e.g. medial prefrontal cortex, amygdala), may be involved.
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The periaqueductal gray (PAG), a small structure in the midbrain with a critical role in 

generating behavioral responses to threat, has emerged in theoretical models of PTSD (33, 

34). Essential for pain modulation (35), the PAG is comprised of four columns: dorsolateral 

(dlPAG), dorsomedial, ventrolateral (vlPAG), and lateral (36, 37). Stimulation of the dlPAG 

evokes active behavioral responses (e.g. fight/flight; 38), whereas the activation of the 

vlPAG elicits passive behavioral strategies (e.g. analgesia; 39). The human PAG is 

functionally connected to numerous brain regions, including the thalamus, hypothalamus, 

prefrontal cortex, amygdala, and insular cortex (40). Previously identified as part of the 

salience network (41), the PAG appears to have a role in rapidly generating a response to 

threat (42).

In preclinical studies, the PAG is implicated in threat detection (43), estimating threat 

probability (44, 45), and initiating defensive behaviors (46). As threats transition from distal 

to more imminent, brain activity appears to shift from top-down processing to greater 

bottom-up control. As threat becomes closer, activity transitions from the ventromedial 

prefrontal cortex to the PAG (47). Although both the amygdala and PAG appear to be 

sensitive to threat, the PAG is especially responsive to approaching threatening stimuli (i.e. 

“looming threat”; 48). After a threatening encounter, fear learning circuitry, including the 

hippocampus, amygdala, and subgenual anterior cingulate cortex, are recruited (49). In the 

context of PTSD neurobiology, the PAG is well-positioned to drive symptoms from the 

bottom-up.

Individuals with PTSD demonstrate greater connectivity between the dlPAG and motor 

regions, potentially driving symptoms by perpetually preparing for a defensive behavioral 

response (50). Effective connectivity studies have suggested PTSD is characterized by 

bottom-up connections between the PAG and vmPFC (51). A neural circuit comprising the 

amygdala, PAG, frontal cortex, and pons, may indeed underlie behavior strategies in 

response to threat and stress (52). The PAG relays information to the amygdala to initiate 

fear responding (53), whereas activation of prefrontal projecting neurons decreases 

sensitivity to pain, potentially reducing defensive behavior (54).

As a heterogeneous disorder, unique neural correlates may characterize specific features of 

PTSD (55, 56, 57, 58). A small number of studies suggest that, while there are common 

neural correlates of PTSD, distinct neural patterns underly specific symptom profiles (56, 

57). The PAG has been particularly insightful in distinguishing PTSD from its dissociative 

subtype, which is characterized by depersonalization or derealization and conceptualized as 

an “overmodulation of affect” (30; 33). Beyond dissociation, however, few studies have 

proposed the PAG as a potential driver of specific symptoms. The PAG is particularly well-

positioned to underlie both avoidance and hyperarousal (50, 51). Hyperarousal can be 

conceptualized as hypervigilance to potential threats and may facilitate the behavioral 

responses (e.g. startle response) often presented in individuals with PTSD.

Using a prospective, longitudinal design, this study examined the role of the PAG in PTSD. 

We investigated whether PAG RSFC in the early aftermath of a traumatic injury (two-weeks 

post-trauma) would uniquely predict PTSD symptom severity six-months post-trauma. 

Based on previous studies, we hypothesized greater acute PAG-prefrontal cortex 
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connectivity would predict six-month post-trauma PTSD symptoms (47). We also expected 

increased PAG-cingulate cortex connectivity would be predictive of symptom severity (50). 

Considering the PAG is widely recognized as responsible for descending pain modulation 

and has been extensively implicated in fMRI studies on pain (59, 60, 61), we also analyzed 

whether PAG RSFC was associated with physical pain. PTSD is highly co-morbid with 

chronic pain (62) and patient-perceived injury severity is a significant predictor of PTSD 

development (63). To our knowledge, no previous studies have considered physical pain 

when investigating the PAG in the context of PTSD (50, 51).

Finally, using a method similar to Harrricharan and colleagues (2016), we conducted an 

exploratory analysis investigating the relationship between the dlPAG and specific symptom 

clusters. Based on Harrricharan and colleagues (2016) and considering the dlPAG’s crucial 

role in coordinating active defensive strategies (38), we hypothesized altered dlPAG 

connectivity with the dorsal anterior cingulate cortex would prospectively predict both 

hyperarousal and avoidance symptoms. Hypervigilance may increase the brain’s 

preparedness for the “fight or flight” response by specifically priming the dlPAG. Broadly, 

we anticipated increased dlPAG RSFC with brain regions responsible for “fight or flight” 

responses, including the premotor areas.

2. Methods and Materials

2.1 Participants

Participants were recruited from a Level 1 Trauma center emergency department (ED) in 

southeastern Wisconsin. Prospective participants were identified via the ED’s discharge 

database and telephonically screened. Eligible participants were between the ages of 18–65, 

right-handed, able to lay flat on their back for two hours, less than 300 pounds, and could 

schedule an appointment within two weeks of the traumatic event. Individuals were 

excluded if they scored below 13 on the Glasgow Coma Scale upon ED arrival, experienced 

head injury with loss of consciousness, or had contraindications to MRI (e.g., pregnancy, 

irremovable metal in body). Importantly, the recruitment of individuals who were deemed 

“MRI-safe” may have excluded those with more serious injuries (e.g. gun-shot wounds, 

injuries that required surgical implants). Moderate to severe cognitive impairment, an 

intentional self-inflicted injury, antipsychotics prescription(s), and a history of seizures were 

also exclusionary criteria. Two-weeks post-trauma, participants underwent a resting state 

fMRI scan and completed self-report measures of PTSD symptom severity and pain. In 

addition, participants reported current medication use (pain and psychotropic). Six-months 

post-trauma, individuals completed the same self-report measures. Sample characteristics 

are reported in Table 1.

All participants provided written informed consent to partake in the study and were 

compensated with cash payment for their participation. This study was approved by the 

Medical College of Wisconsin Institutional Review Board. Four individuals were removed 

from analysis due to poor neuroimaging data quality (i.e., excessive motion), and 11 

participants were lost to follow-up. Forty-eight participants were included in the final 

analyses.
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2.2 Self-Report Measures

At approximately two-weeks and six-months post-trauma, participants completed the Visual 

Analogue Scale for Pain (VAS; 64) and the Impact of Events Scale-Revised (IES-R; 65) 

inventories to assess posttraumatic stress symptoms and physical pain severity. The VAS is 

widely used to evaluate one’s subjective experience of pain (64). Participants rated their 

physical pain using a numbered line with labels ranging from 0 (no pain) to 10 (worst 
possible pain). The IES-R consists of 22 questions rated on a scale from 0 (not at all) to 4 

(extremely; 65). The items covered three distinct symptom clusters: hyperarousal, 

avoidance, and intrusive symptoms. Total symptom severity was calculated by taking the 

sum of all 22 items, while separate scores for each symptom cluster were calculated by 

averaging the responses to sub-scale specific questions. Although the IES-R is not widely 

used to diagnosis PTSD, a total score of 24 or higher reflects clinical concern (66).

2.3 Imaging Acquisition

Within two-weeks post-trauma, individuals completed a structural and resting state fMRI 

scan. During image acquisition, participants were instructed to keep their eyes open and a 

view a blue screen. All functional images were acquired using a T2* weighted gradient-

echo, echoplanar pulse sequence. fMRI data was collected using an interleaved slice 

acquisition order in a sagittal orientation.

Twenty-one participants completed a six-minute resting state scan on a 3.0 Tesla (3T) long 

bore Signa Excite MRI system. Thirty-eight slices were acquired with the following 

parameters: Time Repetition (TR)/Echo Time (TE)= 2000 ms/25 ms, Field of View (FOV) = 

24 mm, Matrix = 64 × 64, Slice Thickness = 3.7 mm, Flip Angle (FA) = 77°, voxel size = 

3.45 × 3.75 × 3.7. For registration of functional data, high-resolution T1-weighted 

anatomical images were also obtained (TR/TE = 8.2ms/3.2ms, FOV = 240mm, Matrix = 

256×224, FA = 12°, voxel size = 0.9375 × 0.9375 × 1 mm3).

Twenty-seven participants completed a five-minute resting state scan on a 3T short bore 

Signa Excite MRI system. Forty-one slices were acquired with the following parameters: 

TR/TE = 2000 ms/25 ms, FOV = 24 mm, Matrix = 64 × 64, Slice Thickness = 3.5 mm, FA = 

77°, and voxel size = 3.75 × 3.75 × 3.5. High-resolution T1-weighted anatomical images 

were obtained with the parameters described above.

2.4 Data Analysis

2.4.1 Image Preprocessing—Images were preprocessed using the CONN toolbox (67; 

http://www.nitrc.org/projects/conn). The first three TRs were discarded to allow for 

magnetic field stabilization. Preprocessing steps included motion correction using a six-

parameter linear transformation and normalization to Montreal Neurological Institute (MNI 

152). Images were spatially smoothed using a three-dimensional Gaussian kernel of 4-mm 

full-width at half-maximum (FWHM; 40, 50). ROIs were created with unsmoothed images. 

To reduce the signal-to-noise ratio a temporal band-pass filter was applied (0.01 to 0.1 Hz).

To address any confounding effects of motion, volumes with frame-wise displacement over 

0.3 mm were excluded from analysis (i.e. “scrubbed”). Nuisance covariates including head 
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motion parameters (and their first-order derivatives), white matter signal, and cerebrospinal 

fluid signal were regressed out during first-level analysis. Participants were excluded from 

analysis if more than 20% of the volumes were scrubbed.

2.4.2 Statistical Analysis—Seed regions-of-interest (ROIs) were created in MNI space. 

Based on average coordinates reported in a meta-analysis on neuroimaging of the PAG (40), 

two ROIs were defined as 5-mm radius spheres around the left (−4, 29, −12) and right (4, 29, 

−12) PAG. For analyses, the primary ROI was created by combining these ROIs (Figure 1). 

For the exploratory analyses, a box-shaped ROI was created for the dlPAG (0, −32, −8.5 plus 

6 × 2 × 1.5 mm extensions; 50, 51).

We investigated whether two-week post-trauma PAG RSFC predicted six-month self-

reported symptoms of PTSD. In an exploratory analysis, we examined whether acute dlPAG 

RSFC also predicted six-month self-reported symptoms of PTSD. Mean BOLD time series 

were extracted from each seed region and correlated with the time series of every other voxel 

in the brain to produce a three-dimensional correlation (r) map for each subject. For group 

analyses, correlations were normalized using a Fisher transformation. The statistical 

threshold for all analyses was set to p < .05. The height threshold was set at p < .001 

uncorrected and the cluster-size threshold was set to an adjusted p < .05 false discovery rate 

(FDR) corrected. To correct for multiple regressions for each seed, we applied the 

Benjamini–Hochberg procedure (69) using a p < .05 threshold. This correction did not alter 

our results, therefore only the cluster corrected p-value is presented.

First, a multiple regression analysis examined whether PAG RSFC was associated with two-

week or six-month post-trauma VAS scores. We then conducted a multiple regression 

analysis investigating whether PAG RSFC predicted IES total score, after adjusting for two-

week physical pain. Additional analyses (reported in Supplemental Material) examined 

whether PAG RSFC predicted hyperarousal, avoidance, and intrusion symptoms. Finally, we 

explored whether dlPAG RSFC predicted specific PTSD symptoms. As data were collected 

using two MR scanners, scanner was included as a covariate in all analyses.

3. Results

3.1 Self-report Measures

Correlations were computed amongst VAS pain ratings, IES total scores, and IES symptom 

subscales (Table 2). There was a significant positive correlation between six-month post-

trauma physical pain ratings and total six-month PTSD symptoms, r(46) = .54, p < .001; 

however, two-week VAS scores were not predictive of six-month PTSD symptoms, r(46) 

= .14, p = .353. Although none of the six-month IES subscales were associated with two-

week VAS scores (hyperarousal: r(46) = .16, p = .237; avoidance: r(46) = .15, p = .323; 

intrusive: r(46) = .19, p = .200), they were all positively associated with six-month pain 

ratings (hyperarousal: r(46) = .41, p = .003; avoidance: r(46) = .49, p < .001; intrusive: r(46) 

= .42, p = .003).

As expected, symptom clusters were highly intercorrelated. At six-months, avoidance 

symptoms were significantly associated with intrusive symptoms (r(46) = .67, p < .001) and 
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hyperarousal symptoms (r(46) = .61, p < .001), and intrusive symptoms were significantly 

correlated with hyperarousal symptoms, r(46) = .91, p < .001. Furthermore, the six-months 

subscales were highly correlated with six-month total IES score (hyperarousal: r(46) = .88, p 
< .001; avoidance: r(46) = .88, p < .001; intrusive: r(46) = .90, p < .001).

3.2 Resting-State Functional Connectivity

RSFC analyses can be sensitive to confounding factors, particularly head motion (70; 71). 

We confirmed that average head motion was not correlated with two-week pain symptoms 

(r(46) = .16, p = .265) or six-month PTSD symptom severity (r(46) = .13, p = .398). 

Medication use had no effect on RSFC.

Altered PAG connectivity associated with physical pain ratings.—There was a 

significant association between PAG RSFC and two-week physical pain ratings. PAG RSFC 

with the precentral gyrus (42, −18, 65; cluster size k = 100; t(45) = 5.07, pFDR = .031) was 

associated with increased pain ratings (Figure 2). PAG RSFC did not predict six-month 

physical pain. Results of multiple regression analyses examining PAG and dlPAG RSFC are 

reported in Tables 3 and 4, respectively.

Altered PAG connectivity predicted six-month total PTSD symptoms.—After 

adjusting for two-week pain ratings, greater PAG RSFC with the frontal pole (0, 68, 0; 

cluster size k = 117; t(45) = 5.57, pFDR = .004; Figure 3A) and the posterior cingulate 

cortex (PCC; −8, −58, 36; cluster size k = 243; t(45) = 4.81, pFDR < .001; Figure 3B) 

prospectively predicted six-month PTSD symptoms. Altered PAG connectivity was also 

predictive of specific symptom clusters (results reported in Supplemental Material).

Altered connectivity of the dlPAG predicted symptom clusters.—Results of the 

exploratory analysis revealed weaker dlPAG RSFC with the superior/inferior parietal lobule 

(−24, −36, 54; cluster size k = 131; t(45) = 5.39, pFDR = .003) and the supramarginal gyrus 

(−50, −36, 34; cluster size k = 118; t(45) = 4.22, pFDR = .003) predicted hyperarousal 

symptoms (Figure 4A). Weaker dlPAG RSFC with the superior/inferior parietal lobule also 

predicted intrusive symptoms (−24, −36, 54; cluster size k = 147; t(45) = 4.68, pFDR = .002; 

Figure 4B). dlPAG RSFC did not predict Total PTSD symptoms nor avoidance symptoms.

DISCUSSION

We examined whether PAG RSFC acutely post-trauma predicted PTSD symptoms six 

months later. Greater PAG-frontal pole connectivity predicted total PTSD symptoms, adding 

to the growing body of literature indicating the PAG and frontal lobe are sensitive to threats 

(47,49). For individuals with PTSD, threat-related attentional bias may result in stimuli 

feeling increasingly threatening and imminent, even when stimuli are distal or non-

threatening (72). Increased PAG-frontal pole connectivity acutely post-trauma is likely 

capturing the transition from top-down to bottom-up control. Greater connectivity between 

the PAG and the PCC, a region that directs attention to information and drives states of 

arousal (73), also predicted symptoms. The PCC is responsible for getting “caught-up” in 

one’s own experiences and feelings (74). Increased PAG-PCC connectivity may reflect 

increased arousal to both internal negative affect and external trauma-related cues.
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Regarding the exploratory dlPAG analysis, weaker dlPAG connectivity with the parietal 

lobules (superior and inferior) and supramarginal gyrus (also an area of the parietal lobe) 

predicted hyperarousal symptoms, whereas intrusive symptoms were only predicted by 

weaker dlPAG-parietal lobules. These regions are involved with cognitive and attentional 

control (75, 76) and may be disrupted in PTSD (77, 78, 79). Individuals with PTSD 

demonstrate decreased recruitment of the parietal cortex (77, 80). The frontal-parietal 

network assists with controlling “emotional influence” on working memory and attention 

(80, 81). Although the PAG-parietal relationship has been understudied, PAG-parietal 

connections have been reported (82, 83).

Initiating active avoidance is a key function of the PAG (84); however, dlPAG RSFC did not 

predict avoidance symptoms. This may have been a limitation of the self-report measure 

selected. While the IES avoidance subscale includes some assessment of behavioral 

avoidance (e.g., “I stayed away from reminders about it.”), it more thoroughly assesses 

cognitive avoidance (e.g., “I tried not to think about it,” “I tried to remove it from my 

memory”) (65). Therefore, this cognitive avoidance may be weighed more heavily on the 

IES and less sufficiently capture behavioral avoidance, such as changing driving route to 

avoid crash site. Future work would benefit from utilizing the Clinician-Administered PTSD 

Scale for DSM-5 (85), which includes more comprehensive assessment of behavioral 

avoidance, and assessing the role of the PAG during behavioral tasks of avoidance in both 

trauma-unexposed and trauma-exposed individuals.

Our results vary from previous research demonstrating extensive altered PAG connectivity in 

individuals with PTSD compared to healthy controls (50, 51). Harricharan and colleagues 

(2016) found widespread PAG connectivity with prefrontal and cingulate regions was 

associated with PTSD. In the present study, PAG RSFC with only the frontal pole and PCC 

significantly predicted PTSD symptoms. This likely reflects the temporality of the study 

design; participants completed scanning acutely post-trauma. We demonstrated altered PAG 

RSFC is not only present in individuals diagnosed with PTSD (50) but is also predictive of 

symptom development. Although studies have demonstrated a PAG-hippocampus-amygdala 

circuit, which is theorized to underlie the re-experiencing of traumatic memories (86, 87), 

we did not observe altered PAG-amygdala or PAG-hippocampus connectivity. Despite strong 

theoretical evidence and support from preclinical models, altered activation of the amygdala 

is surprisingly inconsistent in human studies on PTSD (88). We postulate investigations into 

the relationship between midbrain and cortical structures may offer explanation into these 

inconsistencies.

Despite pain modulation and PAG activity being nearly synonymous (84, 89) and high 

comorbidity between chronic pain and PTSD (90), most of the research on the PAG’s role in 

PTSD does not consider physical pain. We discovered a relationship between PTSD 

symptoms and pain ratings. Importantly, there was also a significant association between 

PAG-precentral gyrus connectivity and two-week pain. In healthy humans, the lateral PAG 

and vlPAG are functionally connected to the precentral gyrus, which is responsible for 

voluntary movements (68). In certain populations pain may be less relevant to PTSD 

development; however, pain has been demonstrated as a significant predictor of PTSD in 
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motor vehicle crash survivors (70% of our sample; 91). Our findings demonstrate pain is an 

important consideration when examining the PAG in the context of PTSD.

Several limitations are noteworthy. First, the scan length of both acquisitions was relatively 

short. In general, reliability of resting-state scans can be improved by increasing scan 

duration (92); however, the ideal scan length is disputed, with recommendations ranging 

from five minutes (93) to over an hour (94). Notwithstanding, if a proposed neural 

biomarker is unreliable and/or unstable across time, then it cannot be classified as a 

predictive risk indicator. Additionally, after one scanner was phased out for research, data 

were collected on two scanners. We cannot entirely rule out any effects of scanner on the 

current findings; however, consistent with previous work (95, 96), scanner was controlled for 

in all analyses. Moreover, other multisite studies with pooled neuroimaging data suggest 

minimal effects of scanner differences in RSFC (97). Our sample is relatively homogenous 

in nature. Seventy percent of participants were female and involved in a motor vehicle crash. 

In general, individuals in this sample had lower/sub-threshold symptoms: 14 individuals had 

a total score greater than 24 on the IES, with scores ranging overall from 0–83. This reduces 

the generalizability of our findings and future work should replicate this study with a larger, 

more heterogenous sample. Participants were excluded for antipsychotic medication use, but 

not prescription pain medication. Even after controlling for medication use, PAG RSFC 

predicted PTSD symptoms, suggesting our results do not reflect medication exposure. Still, 

future research should assess the effect of medication on PAG connectivity in PTSD. Finally, 

our analysis of dlPAG was exploratory. We did not have the optimal spatial resolution to 

explore the PAG subregions, therefore these specific results should be interpreted with 

caution. Nevertheless, even with these considerations in mind, our findings highlight the 

importance of examining regions outside the traditional neurobiological framework of 

PTSD.

Our results align with previous work demonstrating PAG RSFC is disrupted in PTSD. 

Importantly, we demonstrated this connectivity prospectively predicts PTSD symptoms, 

suggesting it may be a useful biomarker of PTSD risk. Future work should continue 

disentangling the heterogeneity of PTSD, as knowledge of the distinct neural patterns 

underlying specific symptom profiles may aid in the development of more precise theoretical 

models and targeted therapeutic interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regions of interest. A bilateral PAG mask (yellow; left: −4, 29, −12; right: 4, 29 −12) and 

one subregion mask (dlPAG; red; x: 0; y: −32; z: −8.5 plus 6 × 2 × 1.5 mm extensions; 50) 

were created based on coordinates reported in a meta-analysis (40) and an atlas (50, 68), 

respectively. For reference, the vlPAG is also pictured (green; 50, 68).
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Figure 2. 
Higher physical pain ratings were associated with greater PAG RSFC (Fisher’s Z) with the 

precentral gyrus (42, −18, 65; t(45) = 5.07, pFDR = .031).
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Figure 3. 
Increased functional connectivity of the PAG with the (A) frontal pole (0, 68, 0; t(45) = 5.57, 

pFDR = .004) and (B) the posterior cingulate cortex (−8, −58, 36; t(45) = 4.81, pFDR 

< .001) predicted total posttraumatic stress symptom severity at six-months post-trauma.
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Figure 4. 
(A) Weaker functional connectivity of the dlPAG with the superior/inferior parietal lobule 

(−24, −36, 54; t(45) = 5.39, pFDR = .003) and supramarginal gyrus (−50, −36, 34; t(45) = 

4.22, pFDR = .003) predicted hyperarousal scores, whereas (B) weaker dlPAG RSFC with 

the superior parietal lobule (−24, −36, 54; t(45) = 4.68, pFDR = .002) predicted intrusive 

symptoms.
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Table 1.

Sample Characteristics.

Characteristics Mean (SD) or %

Age (years) 33.40 (11.99)

Sex

 Females 71.83%

Education

 Did not complete high school 4.17%

 High school/GED 33.33%

 Some post-secondary education/college 35.42%

 Completed secondary education or vocational degree 25.00%

 No information 2.08%

Race and Ethnicity

 African American/Black 47.92%

 White 43.75%

 Hispanic/Latino 2.08%

 Biracial 4.17%

 No information 2.08%

Mechanism of Injury

 Motor vehicle crash 70.83%

 Physical assault 18.75%

 Other 10.42%

Prescription Medication Use 43.75%

 Pain medication (e.g. opioids) 31.25%

 Psychotropics (e.g. SSRI) 22.92%

Past Psychiatric Diagnosis 22.92%

 Depression 10.42%

 Other 12.50%

Two-week assessment

 VAS Pain Rating 3.27 (2.39)

 IES Total 33.09 (19.02)

  Avoidance 1.44 (0.95)

  Hyperarousal 1.55 (0.87)

  Intrusive/Re-experiencing 1.53 (1.02)

Six-month assessment

 VAS Pain Rating 2.29 (2.68)

 IES Total 20.53 (21.89)

  Avoidance 0.97 (1.05)

  Hyperarousal 0.94 (1.20)

  Intrusive/Re-experiencing 0.81 (1.00)

Abbreviations: SSRI: Selective Serotonin Reuptake Inhibitor; VAS: Visual Analogue of Pain Scale; IES: Impact of Event Scale-Revised
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Table 2.

Pearson correlation matrix for self-report measures.

Measure VAS (2 week) VAS (6 month) IES Total (6 month) Avoidance Hyperarousal Intrusive

VAS (2 week) --

VAS (6 month) .40
b --

IES Total (6 month) .14 .54
a --

Avoidance .15 .49 
a

.88 
a --

Hyperarousal .16 .41
b

.88 
a

.61
a --

Intrusive .19 .42 
b

.90 
a

.67
a

.91
a --

a
p < .001;

b
p < .01
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Table 3.

Altered PAG functional connectivity associated with pain ratings and posttraumatic symptoms.

Contrast Symptom(s) Brain Region No. of voxels t(45) pFDR-corrected

Peak Coordinates (MNI)

X Y Z

Positive Pain Precentral gyrus 100 5.07 .031 42 −18 65

Total PTSD PCC 243 4.81 <.001 −8 −58 36

Frontal Pole 117 5.57 .004 0 68 0

Note. PCC, posterior cingulate cortex.
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Table 4.

Altered dlPAG functional connectivity associated with posttraumatic symptoms.

Contrast Symptom(s) Brain Region No. of voxels t(45) pFDR-corrected

Peak Coordinates (MNI)

X Y Z

Negative Hyperarousal SPL/IPL 131 5.39 .003 −24 −36 54

SMG 118 4.22 .003 −50 −36 34

Intrusive SPL/IPL 147 4.68 .002 −24 −36 54

SPL, superior parietal lobule; IPL, inferior parietal lobule; SMG, supramarginal gyrus.
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