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Abstract

Purpose: Recent papers have shown the utility of deep learning in detecting hip fractures with 

pelvic radiographs, but there is a paucity of research utilizing deep learning to detect pelvic and 

acetabular fractures. Creating deep learning models also requires appropriately labeling x-ray 

positions and hardware presence. Our purpose is to train and test deep learning models to detect 

pelvic radiograph position, hardware presence, and pelvic and acetabular fractures in addition to 

hip fractures.

Material and Methods: Data was retrospectively acquired between 8/2009 to 6/2019. A subset 

of the data was split into 4 position labels and 2 hardware labels to create position labeling and 

hardware detecting models. The remaining data was parsed with these trained models, labeled 

based on 6 fracture patterns, and fracture detecting models were created. A receiver operator 

characteristic (ROC) curve, area under the curve (AUC), and other output metrics were evaluated.

Results: The position and hardware models performed well with AUC of 0.99 – 1.00. The AUC 

for proximal femoral fracture detection was as high as 0.95, which was in line with previously 

published research. Pelvic and acetabular fracture detection performance was as low as 0.70 for 

the posterior pelvis category and as high as 0.85 for the acetabular category.

Conclusion: We successfully created deep learning models that can detect pelvic imaging 

position, hardware presence, and pelvic and acetabular fractures with AUC loss of only 0.03 for 

proximal femoral fracture.
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Introduction

Hip fractures are a significant cause of morbidity and mortality in the world with a high 

economic cost[1,2]. Among elderly patients older than 65 years old, nearly a third will suffer 

a fall each year with approximately 10–15% of the cases resulting in a fracture[3]. Up to a 

third of the patients are admitted to nursing facilities within a year of hip fractures, and in 

these cases, the one year fatality rate exceeds 20%[4,5]. Although not as common, pelvic 

fractures account for approximately 3% of musculoskeletal injuries with mortality rates of 

approximately 13%[6,7]. Acetabular fractures are rare, only accounting for about 3 fractures 

per 100,000 trauma patients, with about 80% occurring after high energy trauma and another 

10% occurring from falls in elderly patients[8,9]. Pelvic radiographs are often the initial 

imaging modality of choice in evaluating fractures, but miss rates have been estimated at 

approximately 10%[10,11]. Advanced imaging such as computed tomography (CT) and 

magnetic resonance imaging (MRI) scans can be used to reduce misses, but they cost more, 

take longer, and are less available[12].

A variety of prior research has described the effectiveness of deep learning in evaluating 

orthopedic radiographs for extremity fractures[13–15] and bone age[16,17]. In terms of 

pelvic radiographs, some studies have explored using deep learning for osteoarthritis 

evaluation[18] and forensic age estimation[19]. Furthermore, several other papers have 

demonstrated the utility of deep learning with pelvic radiographs for hip fracture detection, 

specifically evaluating proximal femoral and intertrochanteric fractures[20–23]. By isolating 

the proximal femur using bounding boxes, one study achieved an AUC of 0.98 for proximal 

femoral fractures, but without a visualization method such a saliency map or heat map to 

show the site of abnormality [23]. One study obtained a proximal femoral fracture AUC of 

0.98 without using bounding boxes, but only included 100 cases in the test dataset[20]. 

Another study using bounding boxes demonstrated a proximal femoral fracture AUC of 0.97 

but used a vaguely described heat-map visualization method[24]. Finally, one other study 

obtained an AUC of 0.99 for hip fracture detection with bounding boxes, but did not have 

any images or visualization methods in the manuscript[21]. Despite several studies assessing 

deep learning for hip fracture detection, there is a lack of studies evaluating deep learning 

for pelvic and acetabular fracture detection.

In building a pelvic, acetabular and hip fracture classification deep learning model, initial 

data cleaning would require a fair amount of effort. Hip x-rays are often acquired with pelvic 

x-rays, but they are difficult to sort based on the Digital Imaging and Communications in 

Medicine (DICOM) headers of archival data, as they are often mislabeled or incomplete. 

Rarely, a completely different study, such as a chest x-ray, may even be associated with the 

accession of a pelvic x-ray. Finally, depending on the study design, an investigator may want 

to exclude cases with existing hardware, whether they are arthroplasties or fixation devices.

Therefore, we decided to investigate whether a deep learning model can be constructed to 

automatically identify pelvic x-ray positions, identify hardware, and detect pelvic and 

acetabular fractures in addition to hip fractures.
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Material and Methods

An institutional review board approval was obtained for this retrospective study with waiver 

of consent secondary to minimal risk. The case query was between 8/2009 to 6/2019 for 

patients over 18 years old in the emergency and inpatient setting. All images were obtained 

consecutively from a vendor-neutral archive after querying pelvic x-rays for the term 

“fracture” in the impression section of radiology reports. A total of 7440 patients were 

identified with 14,374 images. Images and radiology reports were evaluated by the Board-

certified musculoskeletal Radiologist first author with 3.5 years’ experience as of date of 

writing. The funding source was only used to obtain the data and had no other role in the 

study.

For the pelvic position and hardware identification portion of the study, to maximize the 

proportion of positive hardware cases, we first queried our dataset for hardware terms in the 

impression of the radiology report, identifying 168 patients, then randomly selected 1009 

additional patients for a total of 1177 patients with 2852 images. After manually evaluating 

the images, 27 images were excluded due to suboptimal quality due to technical factors, 

ending up with 1175 patients and 2825 images. In our institution, the most commonly 

mingled study with pelvic radiographs is a chest x-ray, as a trauma series encompasses both 

chest and pelvic x-rays; therefore, 200 frontal chest x-ray images were also acquired from 

200 unique patients. Four position labels were created: pelvis, hip, fail, and chest (CXR). 

The pelvis label included frontal, oblique, inlet and outlet views of the pelvis. The hip label 

accounted for frontal, frog-leg lateral, and cross-table lateral views of the hip. The fail 

position accounted for suboptimal images which did not adequately image the pelvis or hip. 

Each image was marked as either no hardware or positive hardware. Positive hardware labels 

were assigned to images with any type of pelvic or hip hardware including arthroplasties, 

external fixation pins, and internal fixation hardware. A total of 2006 pelvic, 801 hip, and 18 

fail positions along with 200 chest x-rays were available. Regarding hardware presence, 

2507 had no hardware and 318 had positive hardware. Approximately 70% of the images 

were used for training and 30% of the images were held out of training as the test set. Equal 

proportions of each category were allocated to the training and testing datasets, and there 

was no patient overlap between the training and testing datasets.

For the fracture detection portion of the study, we utilized the remaining 6263 patients and 

11522 images. We used the trained position model (which will be described in the Results 

section) to extract pelvic radiographs from our fracture dataset, resulting in 7520 pelvic 

radiographs. We then excluded any remaining hardware cases by passing these 7520 pelvic 

x-rays through the trained hardware model (which will be described in the Results section), 

ending up with 7357 pelvic x-rays without hardware.

Once the 7357 pelvic x-rays were checked by the first author, an additional 20 cases were 

excluded due to suboptimal quality. The final 7337 cases were categorized into one of 6 

“separate” fracture categories by the first author: normal, anterior pelvis, posterior pelvis, 

proximal femur, acetabular, and complex. The anterior pelvis category included pubic 

symphysis diastasis and pubic rami fractures. The posterior pelvis category encompassed 

posterior iliac fractures, sacroiliac joint diastasis, and sacral fractures. The proximal femur 
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category included femoral neck, intertrochanteric and subtrochanteric fractures. The 

acetabular category comprised of acetabular fractures and femoral dislocations. A case was 

assigned the complex category when it demonstrated more than one type of fracture pattern. 

There were 3428 normal, 713 anterior pelvis, 123 posterior pelvis, 1902 proximal femur, 

410 acetabular, and 761 complex cases. For each of these ” different fracture categories, 

70% of the cases were assigned to the training dataset and 30% were assigned to the test 

dataset. There was no patient overlap between the training and testing datasets.

Additional mixtures of the data were also created from the different” labels. A “pelvis 

consolidated” category was created combining the anterior and posterior pelvis categories 

into a pelvic ring class. A “femoral/acetabular consolidated” category combined the 

proximal femur and acetabular groups into a femur/acetabular class. A “femoral vs. non-

femoral” category combined the anterior pelvis, posterior pelvis, and acetabular classes into 

a non-femoral class. Finally, a “binary split” was also created encompassing all abnormal 

cases.

We trained different models, one for each label and an additional one using the binary split.. 

For each of the models except the “binary split”, we also evaluated the test dataset as a 

binary output by grouping all fracture types as abnormal and summing the probabilities to 

compare against the normal cases. In addition, to compare our study to previously published 

studies, we also trained a model evaluating normal vs. femoral fracture only. Finally, we 

evaluated each trained model with a test dataset only containing normal and proximal 

femoral fracture cases to compare performance among the models.

Deep learning models were created based on the Densenet-121 architecture[25] using 

Tensorflow version 1.12[26] and Python 3.6.2. The ImageNet weights were loaded to the 

model, the initial learning rate was set to 0.001, and an Adam optimizer was selected to 

decay the learning rate. A dropout layer was not incorporated. Data parsing was done using 

SciPy version 1.1.0[27] and Scikit-learn version 0.20.0[28]. Imaging data was extracted 

using Pydicom[29]. Each image was initially resized to 238 by 238 pixels, then augmented 

with random brightness, random contrast, random horizontal flipping, and random cropping 

to the final size of 224 by 224 pixels. Pixel intensity normalized to [−1,1] range. Training 

was monitored using the softmax cross-entropy loss and terminated when the loss no longer 

decreased after 100 batch-steps (Fig. 1). Training took approximately 1 day for each model. 

The models were trained on a GeForce 1080 GTX Graphical Processing Unit (GPU) on a 

Linux cluster.

Performance of the models were evaluated using a receiver operator characteristic (ROC) 

curve and area under the curve (AUC) of the held-out test data. Confidence intervals (CI) 

were set at 95% and noted as ± or +- value. Chi-square was used to evaluate sex distribution 

and a t-test was used to compare ages. AUC[30] and output metrics, including sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV)[31], were 

compared between models. Visual evaluation of the test set was done by comparing output 

probabilities of each class and checking for concordance between the images and the 

proposed labels. Both Grad-CAM and guided Grad-CAM heatmaps[32] were created for 

each fracture class to visualize the model attention.
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Results:

As can be seen from the ROC curves of the position and hardware model (Fig 2), the models 

performed exceptionally well at classifying pelvic imaging position and hardware presence, 

with an AUC of 0.99 ± 0.01 and 1.00 ± 0.01, respectively. A sample of images with their 

probability outputs can be seen in Fig 3. The model’s performance at detecting the 6 “fail” 

cases was expectedly low, only correctly labeling one of the cases; the “fail” images with 

their output probabilities is shown in Fig 4. Finally, we evaluated both models using an 

intersection of the position and hardware test dataset, resulting in an AUC of 0.99 ± 0.01 for 

both the models. The high AUC of both the position and hardware models allowed us to use 

these models to subsequently parse our fracture dataset as noted in the Material and Methods 

section.

The demographic of the fracture dataset is noted on Table 1; there was no statistical 

difference in age, but there was a statistical difference in sex distribution between the two 

groups. The ROC curves for the various models created for fracture detection, along with the 

AUC and 95% CI, are shown in Fig 5 and Table 2. The models performed the best with 

proximal femoral fracture classification, with an AUC between 0.93 and 0.95; the model 

trained only on normal vs. femoral fracture demonstrated the best performance with an AUC 

of 0.95. When each of the fracture classification models were evaluated as a binary output of 

normal vs abnormal cases, they performed as well as a model initially trained on a binary 

split, demonstrating an AUC between 0.85 and 0.86. For the fracture model, non-hip fracture 

detection performance was as low as 0.70 for the posterior pelvis category and as high as 

0.85 for the acetabular category.

Output metrics of each trained model evaluated using a test dataset containing only normal 

and proximal femoral fracture cases are noted in Table 3. Sensitivity, specificity, PPV and 

NPV were calculated using the threshold value at the upper left corner of the ROC curves. 

Each of the metric values was compared to the output of the model only trained on normal 

vs. femoral fracture cases. As can be seen in Table 3, there were some statistically 

significant differences in the output metrics, but the AUC values were generally similar 

except for the “femoral/acetabular consolidated” model, which had the lowest AUC at 0.92 

(p<0.001).

Discussion:

Initially, we successfully created deep learning models that can correctly categorize pelvic 

position and the presence of hardware, evidenced by a high AUC with the held-out test set. 

Understandably, the position model did not perform well with the “fail” cases since there 

was a paucity of training data with only 12 images. Increasing the performance of the “fail” 

class may be difficult since only a very small proportion of pelvic x-rays acquired are 

failures. Eventually being able to detect these “fail” cases reliably should aid in machine 

learning workflows by excluding malpositioned cases and may even aid Radiology 

workflow by providing real-time quality control by flagging cases that may need to be 

repeated.
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Regarding the fracture classification portion of the study, to be comparable to previous 

studies, one model was trained only on fractured proximal femoral cases vs. normal cases. 

Our AUC of 0.95 was slightly lower compared to previous studies with AUC’s of 0.97–0.99 

using bounding boxes[21,23,24], but showed that models can perform well without 

manually isolating the proximal femur. Furthermore, our femoral fracture test set (1274 non-

fractured and 620 fractured cases) was randomly selected from the total dataset with a 

significantly higher number of cases compared to a previous study with only 100 test 

cases[20]. In addition, unlike most of the other hip fracture machine learning research, we 

evaluated the demographics of our population. The only study that reported demographics 

was done by Cheng et al.[20], but there was a large demographic difference in the fractured 

cases (mean 45 years old and 68% males) versus the non-fractures cases (mean age 72 and 

42% males) with p<0.001. We did not have a statistical difference in age between the non-

fractured and fracture groups. Although the sex distribution was statistically significant, 

there was only a 2% difference between the two groups (40% vs. 38% with p=0.041). This 

analysis shows that our non-fractured and fractured groups were relatively similar, contrary 

to the other study.

Unlike any of the previous studies, we also evaluated pelvic and acetabular fractures in 

addition to hip fractures using deep learning. Detecting other types of fractures slightly 

lowered the AUC for proximal femoral fractures, from 0.95 to 0.93 with the “separate” 

model. Grouping the proximal femoral fractures together with acetabular fractures further 

lowered the AUC of fracture classification to 0.88, suggesting that machine learning models 

perform best at detecting proximal femoral fractures. Grouping the anterior and posterior 

pelvic ring fractures increased the AUC from as low as 0.70 to 0.81, which was 

understandable as the number of model classes decreases from 6 to 5. In nearly all data 

mixtures excluding the “separate” dataset, the complex class showed the lowest AUC 

between 0.61 to 0.77, which may be due to the model predicting the class based on the 

predominant fracture type rather than on a holistic view. In the future, a multi-label rather 

than a multi-class approach to tag the images to eliminate the complex class may improve 

performance. Clinically, our study implies that machine learning models may have utility as 

a general fracture detector for pelvic x-rays rather than a narrow hip fracture detector.

One point of emphasis from this study is the importance of image labeling. Current pelvic 

ring fracture types are largely divided into anterior-posterior compression, lateral 

compression, and vertical shear injuries[33–35], which directed our split of fractures into 

anterior and posterior pelvic categories and grouping them together as a pelvic ring class in 

the “pelvis consolidated” model. We also consciously grouped fractures in unconventional 

ways. For example, with the “femoral/acetabular consolidated” category, we understand that 

proximal femoral and acetabular fractures are very different in terms of biomechanics, but 

they are spatially in a similar location, and depending on the clinical need, may be to provide 

a fracture classification model should be enough. We also showed that initially training 

models on granular labels and outputting them as binary classes performed as well as 

models initially trained on binary data, indicating simply labeling images as normal vs 

abnormal is not worthwhile. Finally, when each of the trained models was evaluated using a 

test dataset only containing proximal femoral fractures and normal cases, the AUC value 

differences were mostly not statistically significant (Table 3), showing that increasing model 
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capabilities to detect other types of fractures on pelvic x-rays does not notably decrease 

proximal femoral fracture detection capabilities.

To visualize the model attention, a gradient-weighted class activation mapping (Grad-CAM) 

technique was applied[32]. This technique emphasizes the important feature maps of a 

neural network layer for a given class. As can be seen from Figure 6, for each of the 

different fracture classes, the heatmap focuses on the fracture regions of interest/locations . 

To further refine the heatmap, a guided-Grad-CAM[32] technique is utilized to apply a high 

resolution visualization in addition to the class-discriminative heatmap. For each of the 

classes in Figure 6, the guided-Grad-CAM map shows a higher resolution localization to the 

bones, rather than simply to a region. Visualization methods help investigators get an idea of 

where the model is focusing and may increase the believability of the outputs.

Limitations of this study include broad position and hardware categories; in the future, we 

expect to tease out the pelvic and hip position and hardware to be more granular. For 

fracture detection, we did not employ any bounding boxes for the fracture site, which may 

improve the model performance for fracture detection. To accommodate the DenseNet 

architecture, we resized all images to 224 × 224 pixels; however, subtle fractures often only 

occupy a very small space in the image, and downsizing the images likely led to distorting 

these areas and lowering the classification performance. Image downsizing is performed due 

to computational limits, but evolving hardware and new architectures allowing a larger 

image input size may increase the detection of subtle fractures in the future. In addition, we 

only employed a single reader as the gold-standard, rather than a group of readers. 

Furthermore, we did not perform any hyperparameter tuning using a validation dataset; the 

test dataset was used to obtain a one-shot output metric to demonstrate the proof of the 

concept. Therefore, it is conceivable that with training iterations using a validation dataset, 

improved model performance could have been achieved. Finally, this was a single institution 

study, and we hope to eventually expand to a multi-institutional study to increase our dataset 

to create more robust and effective models.

Conclusion

In conclusion, we were able to successfully create deep learning models that can accurately 

categorize pelvic imaging position and hardware presence, which may aid in future machine 

learning projects or radiology workflow implementation. Regarding fracture detection, we 

created a model that can classify pelvic and acetabular fractures with very little performance 

loss for proximal femoral fracture detection compared to prior research. Though the AUC 

for the pelvic and acetabular fractures is not as high as the proximal femoral fracture, we 

hope that with continued research, we can get the values closer to proximal femoral values.
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Abbreviations:

DICOM Digital Imaging and Communications in Medicine

ROC receiver operator characteristic

AUC area under the curve

CT computed tomography

MRI magnetic resonance imaging

GPU Graphical Processing Unit

Grad-CAM gradient-weighted class activation mapping

CI confidence interval

PPV positive predictive value

NPV negative predictive value
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Highlights

• Deep learning is effective at classifying pelvic radiograph positions.

• Deep learning can accurately detect hardware on pelvic radiographs.

• Deep learning models can detect hip, pelvic and acetabular fractures.
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Fig.1. 
Losses of each model plotted against the epochs. With all models, training convergence is 

monitored as loss plateauing. By epoch 400, the loss of all models has stop decreasing and 

the model is considered converged.
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Fig.2. 
Receiver Operator Curve (ROC) curve for pelvic image position and hardware presence 

classification using the test dataset. The area under the curve (AUC) value for the pelvis, hip, 

and chest x-ray classification was nearly perfect at 1.0. We did not plot the “fail” class ROC 

since it only contained 6 cases and the curve would have been misleading. AUC values for 

hardware presence and absence were also very high at 0.99. The 95% confidence interval is 

noted.
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Fig.3. 
Sample images and their probability values for the positions or hardware using the test 

dataset. The output label can be compared with the actual image to confirm concordance.
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Fig.4. 
Images of the “fail” position cases from the test dataset. These are suboptimally positioned 

images that neither fit the pelvis or hip position. Only one of the images is accurately 

classified as “fail” based on the probability output.
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Fig.5. 
Receiver Operator Curve (ROC) curve for pelvic fracture detection and classification using 

the test dataset. The area under the curve (AUC) value for the fracture classes are noted in 

the bottom right corner for each graph. For the “Separate”, “Pelvis consolidated”, “Femoral/

Acetabular consolidated”, and “Femoral vs. Non-Femoral” models, the classes were 

evaluated separately on the top row and as a binary split of normal vs. abnormal on the 

corresponding bottom row. The far upper right graph shows the ROC curve for the model 

created using only proximal femoral fractures vs. non-fractured cases. Finally, the far bottom 

right plot is the ROC curve when a model was trained with an initial binary split. The 95% 

confidence interval is noted.

Kitamura Page 16

Eur J Radiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.6. 
Model visualization of fractures. A representative image for each of the “separate” fracture 

types are shown with the highest probabilities denoting the appropriate fracture types in the 

top row. The second row shows the heatmap of the fracture class using the Gradient-

weighted class activation mapping (Grad-CAM) technique. The third row shows the guided-

Grad-CAM technique, illustrating a high resolution heatmap focusing on the part of the 

image contributing most to the fracture classification.
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Table 1:

The demographic for the fracture detection dataset.

Non-fractured Fractured p value

Total number 3428 3909

Mean age 66.9 67.8 0.062

% Males 40.4% 38.0% 0.041
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Table 2:

Area under the curve values with 95% confidence intervals for the various trained fracture detection models 

evaluating the different fracture categories.

Fracture 
category

Model

Separate Pelvis consolidated Femoral / Acetabular 
consolidated

Femoral vs. Non- 
Femoral

Normal vs. 
Femoral 
fracture only

Binary split

Normal 0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.02 0.86 ± 0.01 0.95 ± 0.01 n/a

Ant. pelvis 0.77 ± 0.04 n/a n/a n/a n/a n/a

Pos. pelvis 0.70 ± 0.09 n/a n/a n/a n/a n/a

Pelvic ring n/a 0.81 ± 0.03 0.80 ± 0.03 n/a n/a n/a

Prox. femur 0.93 ± 0.01 0.93 ± 0.01 n/a 0.94 ± 0.01 0.95 ± 0.01 n/a

Acetabular 0.85 ± 0.04 0.84 ± 0.04 n/a n/a n/a n/a

Femur/
Acetabular

n/a n/a 0.88 ± 0.02 n/a n/a n/a

Non-femoral n/a n/a n/a 0.86 ± 0.02 n/a n/a

Complex 0.80 ± 0.04 0.77 ± 0.06 0.77 ± 0.06 0.61 ± 0.10 n/a n/a

Binary output: 
Normal

0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.02 0.86 ± 0.01 n/a 0.85 ± 0.02

Binary output: 
Abnormal

0.86 ± 0.01 0.86 ± 0.02 0.85 ± 0.02 0.86 ± 0.01 n/a 0.85 ± 0.02
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Table 3:

Output metrics with 95% confidence intervals for the fully trained models when evaluated using a test dataset 

only containing proximal femoral fractures and normal cases.

Model Output Metrics and p values

Sensitivity p 
value

Specificity p 
value

PPV p 
value

NPV p 
value

AUC p 
value

Normal vs. 
Femoral 
fracture 

only
^

0.86±0.02* N/A 0.90±0.01 N/A 0.81±0.02 N/A 0.93±0.01* N/A 0.95±0.01* N/A

Separate 0.79±0.02 <0.001 0.94±0.01* <0.001 0.87±0.2* <0.001 0.90±0.01 <0.001 0.94±0.01 0.057

Pelvis 
consolidated

0.84±0.02 0.018 0.90±0.01 0.929 0.80±0.02 0.58 0.92±0.01 0.013 0.94±0.01 0.076

Femoral / 
Acetabular 
consolidated

0.77±0.02 <0.001 0.94±0.01* <0.001 0.85±0.02 0.007 0.89±0.01 <0.001 0.92±0.02 <0.001

Femoral vs. 
Non-
Femoral

0.83±0.02 0.004 0.92±0.01 0.017 0.84±0.02 0.042 0.92±0.01 0.008 0.94±0.01 0.192

*
highest output metric values

^
p-values are compared against the model trained only on normal vs. femoral fracture cases.
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