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Abstract

Background: Periodontal disease results from the pathogenic interactions between the tissue, 

immune system, and microbiota; however, standard therapy fails to address the cellular mechanism 

underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T-cell fate, and 

biomaterials that recruit and program DC locally can direct T-cell effector responses. We 

hypothesized that a biomaterial that recruited and programmed dendritic cells toward a tolerogenic 

phenotype could enrich regulatory T-cells within periodontal tissue, with the eventual goal of 

attenuating T-cell mediated pathology.

Methods: The interaction of previously identified factors that could induce tolerance, 

granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin 

(TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC 

migration was explored in vitro using time-lapse imaging. Finally, regulatory T-cell enrichment in 

the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF 

was examined in vivo in mice using immunohistochemistry and live-animal imaging.

Results: The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF 

enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-

CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T-cells locally. 
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Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC 

and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue.

Conclusion: Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and 

FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.

Summary Sentence:

This study describes a biomaterial approach to tune the periodontal microenvironment locally by 

enriching and evoking tolerogenic responses in DC to promote regulatory T cells with the ultimate 

goal of preventing pathogenic inflammation in periodontal disease.
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INTRODUCTION

Periodontitis is an inflammatory disease of the tissues surrounding the tooth, including the 

cementum, periodontal ligament, alveolar bone, and gingiva, which leads to the destruction 

of periodontal tissue1. The majority of the adult population has periodontitis with 5–15% 

having severe generalized periodontitis2. More generally, periodontitis has been associated 

with systemic illnesses including cancer3. It results from the pathogenic interactions 

between bacterial flora, host immunity, and periodontal tissue and can lead to tooth loss. The 

pathophysiology of the disease is complex and the T cell effector response defies 

straightforward Th1, Th2, and Th17 subtype classification4. Synthesizing the results from 

the clinic as well as preclinical animal models reveals many seemingly contradictory 

reports5, suggesting that numerous cells, cytokines and other bioactive factors often have 

protective or pathogenic roles depending upon their type, timing, quantity, duration, and 

localization. Thus, the development of curative immunomodulatory therapies has been slow. 

The current mainstay of treatment, antibiotics and mechanical disruption of the bacterial 

biofilms6, can limit disease progression, but does not treat the underlying chronic 

inflammation.

Therapies that target dendritic cells have been broadly explored to activate or attenuate 

innate and adaptive immunity by directing T cell fate, including strategies that enrich for 

regulatory T cells (Treg) that are able to dampen pathogenic Th1, Th2, and Th17 immunity7. 

In the setting of periodontal disease, Treg have been shown to reduce disease severity8–11. 

Granulocyte macrophage colony stimulating factor (GM-CSF) is a potent dendritic cell 

enrichment factor that, depending upon the dose, location, and kinetics of its delivery, may 

either evoke immunity or tolerance12–14. Controlled delivery of GM-CSF has been used 

widely to enhance the number of DC locally, and to potentiate vaccine efficacy15, 16. The 

function of thymic stromal lymphopoeitin (TSLP) is diverse, as it acts on DC to elicit a Th2/

Treg inducing phenotype, but also in certain circumstances has been found to inhibit or have 

no effect on regulatory T cell function17–21. In the NOD diabetes mouse model, treatment of 

dendritic cells with TSLP followed by adoptive transfer has been used to prevent 
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autoimmunity via the induction of regulatory T cells17. In another study, TSLP enhanced 

Treg expansion through the effects of dendritic cells21.

Biomaterials may be useful in the development of immunotherapies against periodontitis. To 

date, biomaterials have mainly been used in periodontal disease as physical barriers or 

devices to augment tissue regeneration22; however, they have been used more recently to 

increase local Treg cell numbers23, 24. In general, biomaterials can be used to recruit and 

program DC in situ to direct T effector responses without the limitations of adoptive transfer 

and may provide an additional level of control that cannot be achieved through T cell 

targeting alone. Biomaterials can release bioactive agents at a controlled rate over a specified 

period of time, and create a tailored local microenvironment, shielding cells from a 

pathogenic milieu while providing signals to direct cell fate15. Alginate based biomaterials 

are commonly used in dentistry as an impression material and have been used in the clinic as 

components of FDA approved therapies25. Alginate hydrogels can be injected in a minimally 

invasive manner and are biocompatible, modifiable, and capable of delivering a wide variety 

of drugs locally over a sustained period of time26, 27. For example, a single injection of an 

alginate hydrogel containing VEGF led to increased levels of VEGF in the surrounding 

tissue for 15 days, with minimal cytokine present in the serum27.

This study was based on the hypothesis that a single injection of an alginate hydrogel 

containing GM-CSF and TSLP could recruit and program DC in the periodontal tissue, 

enrich for regulatory T cells, and a create a local immunosuppressive milieu. In order to test 

this hypothesis, GM-CSF and TSLP were encapsulated into alginate hydrogels that could be 

readily injected into tissues using a needle and syringe, and the hydrogels were administered 

into the dermis and periodontal tissue of healthy mice. In vivo therapeutic validation was 

assessed by quantifying DC and T cell numbers, as well as local IL-10 production.

MATERIALS AND METHODS

In silico network analysis

The GM-CSF, TSLP, and periodontal disease associated protein network was constructed 

using Ingenuity Pathway Analysis software.* Specifically, TSLP, GM-CSF, and periodontal 

disease related molecules were combined to create a new pathway. Chemical compounds 

were then removed (trimmed) from the selected periodontal disease related molecules. Next, 

the Path Explorer tool in Ingenuity Pathway Analysis and the underlying literature database 

were used to create connections between GM-CSF or TSLP and the periodontal associated 

genes and proteins.

In vitro alginate release of GM-CSF and TSLP and atomic force microscopy

Hydrogels were fabricated as previously described27. In short, hydrogels (50–100 µl) were 

composed of 2% ultrapure MVG alginate† consisting of 75% low molecular weight and 

25% high molecular weight oxidized alginate (both 1% oxidized with NaIO4), and were 

allowed to gel with either 3 µg of GM-CSF or 1 µg of TSLP with trace 125I radiolabeled 

*Qiagen, Germantown, MD.
†Novamatrix, Sandvika, Norway.

Sands et al. Page 3

J Periodontol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GM-CSF or TSLP, respectively‡. The gels were incubated at 37°C on a rocker in PBS 

supplemented with 0.1 g/L MgCl2·6H2O and 0.132 g/L of CaCl2·2H2O. In the GM-CSF 

study the media was also supplemented with 1% BSA. Media was collected at predefined 

intervals and the release was quantitated with a gamma counter (WIZARD Automatic 

Gamma Counter§) and normalized to the total amount of compound encapsulated. Atomic 

force microscopy (AFM) images of alginate hydrogel disks were obtained in tapping mode 

using a Multimode Scanning Probe microscope with a Nanoscope IIIa controller at the 

Eastern Regional Research Center of the Agricultural Research Service Imaging Core 

Facility following an adapted protocol of Fishman28.

Studies involving mice

All animal studies were conducted according to an IACUC approved animal use protocol 

that followed institutional guidelines for the husbandry, care, and use of animals. The 

animals were purchased as specific-pathogen free animals and underwent routine testing per 

the supplier and animal care facility. The animals were housed in standard caging with a 12 

hour light and dark cycle and fed standard irradiated chow typically with an automatic 

waterer and otherwise housed per institutional protocols. Given studies were completed by 

multiple investigators at different institutions, animals were bred for portions of this 

research, and protocols had to be established for this and other studies it is difficult to 

ascertain the direct number of animals attributed to this work. With these caveats we 

estimate approximately 65 mice were used for this study.

BMDC culture

DC were obtained from day 7–12 cultures following precursor isolation from tibia and 

femur bone marrow isolates from C57BL/6J** mice29. Typical purity was greater than 85% 

as observed with flow cytometry staining with anti-CD11c antibodies. Reagents were 

obtained from Sigma†† and consumables were obtained from VWR‡‡ or Thermo Fisher§§ 

unless otherwise noted. In brief, bone marrow isolates were obtained from mice, washed, 

and re-plated in RPMI-1640 supplemented with 10% fetal calf serum, penicillin (100 U/ml), 

streptomycin (100 μg/ml), 2-mercaptoethanol (50 μM), and 20 ng/ml GM-CSF*** in 100 

mm bacteriologic cell culture plates at a concentration of 0.2 x 106 cells/ml (10 ml). On day 

3, 10 ml of additional media was added. On days 6 and 8, 10 ml of media was gently 

aspirated from the wells, centrifuged down, and to the pellet 10 ml of fresh media was added 

prior to re-plating. On day 10 the procedure was repeated, except that media with 10 ng/ml 

of GM-CSF was added per the reference protocol. Non-adherent cells were used in 

subsequent assays.

‡Lofstrand Labs, Gaithersburg, MD.
§PerkinElmer, Waltham, MA.
**Jackson Laboratories, Bar Harbor, ME.
††Millipore Sigma, Darmstadt, Germany.
‡‡VWR, Radnor, PA.
§§Thermo Fisher, Waltham, MA.
***Peprotech, Rocky Hill, NJ.
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In vitro BMDC migration

Alginate gels with or without 1 µg GM-CSF were excised from molds using a punch 

biopsy27. The gel disk was then placed into a glass bottom petri dish and a liquid collagen 

solution containing 1 x 106 fluorescent transgenic BMDC/ml was then circumferentially 

aliquoted around the disk to fully cover it with collagen solution. The gels were allowed to 

mature for 1 hour and then covered in media. Petri dishes containing gels were then placed 

in a microscopic viewing chamber at 37°C and 5% CO2. An arbitrary spatial coordinate 

within the collagen gel was selected as the imaging window for each alginate/collagen gel 

system (n = 3) and its radial and tangential orientation with respect to the inner alginate gel 

was noted. Snapshots at these locations were acquired over the course of 8 hours using an 

Olympus IX81 inverted microscope. Imaris software††† was used to capture and analyze the 

motion of the cells. Average velocity was determined as the final minus the initial position of 

the cell’s path divided by the overall time the path was traced (an individual cell that came in 

and out of the plane of focus may have generated multiple paths).

Injection of alginate hydrogels and quantitation of DC and regulatory T cells

The alginate hydrogels and the bioluminescent CD11c+ cells recruited to the hydrogels were 

imaged using the IVIS Spectrum imaging system.‡‡‡ To image the hydrogels, 40 µl of 2% 

alginate hydrogels as described above were labeled with trace PE-Cy7 microbeads§§§ and 

injected into the dermis of euthanized mice. To image the cells, blank control or GM-CSF (3 

μg) containing 2% alginate hydrogels were injected into the dermis of C57BL/6J CD11c-

Cre-EGFP x FVB Stop/loxP Luc mice.**** Seven days later the animals were injected i.p. 

with 150 mg/kg luciferin†††† and imaged during the signal plateau phase to quantitate 

radiance, and therefore CD11c cellular localization. A paired student’s t-test was completed 

with InStat statistical software‡‡‡‡ to compare the bioluminescence between GM-CSF and 

blank hydrogels seven days after injection.

Control blank alginate hydrogels or hydrogels containing 3 µg GM-CSF were injected i.d. 

into C57BL/6J mice. Seven days later the gels were resected, fixed, sucrose-infiltrated, 

frozen, embedded in OCT, cut, and stained with DAPI and/or antibodies against CD11c and 

MHC II30. In a similar manner, alginate hydrogels containing 3 µg GM-CSF alone or 3 µg 

GM-CSF and 1 µg of TSLP and FOXP3. Image analysis was completed using ImageJ and a 

student’s t-test was performed using InStat.

Periodontal injection of alginate hydrogels and quantitation of DC, regulatory T cells, and 
IL-10 elaboration

C57BL/6 mice received no injection (control) or a 1.5 µl injection of an alginate hydrogel 

containing 1 µg of GM-CSF and TSLP into their periodontal tissue. Seven days later the 

animals were sacrificed and the periodontal tissue was stained with anti-CD11c and anti-

†††Bitplane, Zurich, Switzerland
‡‡‡Caliper Life Sciences, Hopkinton, MA.
§§§Invitrogen, Carlsbad, CA.
****Jackson Laboratories, Bar Harbor, ME.
††††Gold Biotechnology, Olivette, MO.
‡‡‡‡GraphPad, San Diego, CA.
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IL-10 antibodies. Similarly, FOXP3-EGFP-KI mice on the C57BL/6J background were 

injected with alginate gels containing 1 µg GM-CSF or 1 µg of both GM-CSF and TSLP. 

After seven days the periodontal tissue from the injected animals and wild-type, naïve, 

controls was resected, processed, and imaged using fluorescent confocal microscopy. The 

cervical lymph nodes were also harvested, purified through a nylon column, and enumerated 

by flow cytometry.

RESULTS

Periodontal disease and TSLP and GM-CSF interacting network

To assess whether TSLP and GM-CSF could potentially attenuate periodontitis, proteins 

associated with periodontal disease were identified using Ingenuity Pathway Analysis. 

Interacting terms between GM-CSF (CSF-2) or TSLP and the proteins associated with 

periodontal disease were then generated using Ingenuity pathway analysis (Figure 1). 17 

possible interactions between GM-CSF or TSLP and the periodontitis associated proteins are 

observed, suggesting likely interactions between the cytokines and the proteins involved 

with periodontitis and GM-CSF/TSLP signaling.

Hydrogel delivery of GM-CSF and TSLP

Alginate consists of linear polysaccharides composed of (1,4)-linked α-L-guluronic and β-

D-mannuronic acid monomers (Figure 2A), and creates nanoporous gels following addition 

of calcium (Figure 2B). These nanopores serve to entrap factors present during gelation. 

These gels can be injected in a minimally invasive manner using a large gauge syringe 

(Figure 2C). Drug release from the gels in vitro is biphasic, with 90 percent of the GM-CSF 

(2D) and TSLP (2E) delivered within the first 24 hours, and the remainder released within 

one week. This is occurring in the setting of prior in vitro biodegradation studies that 

demonstrate approximately 50% degradation of the gels by day 627.

GM-CSF impact on DC migration in vitro

In order to evaluate the effects of GM-CSF released from gels on DC motility, an in vitro 
model was designed to track DC movement. This 3D system was intended to mimic the 

implantation of a hydrogel containing GM-CSF into tissue containing DC (Figure 3). The 

speed of DC in the collagen abutting the control alginate hydrogels was approximately one-

half that found in the samples with GM-CSF releasing hydrogels (1.12 + 0.08 μm/min vs. 

2.09 + 0.03 μm/min, respectively; p < 0.01). However, the mean velocity for the control and 

GM-CSF hydrogels was equivalent (−0.02 + 0.06 and 0.01 + 0.05 μm/min in the radial 

direction and 0.00 + 0.02 and 0.01 + 0.07 μm/min in the tangential direction for the control 

and GM-CSF containing hydrogels, respectively). For both the control and experimental 

conditions, the net average velocity of zero was reflected in the symmetry of the plots 

(Figures 3B and 3C). These results suggest minimal chemotactic, but a pronounced 

chemokinetic effect of GM-CSF on DC in this model system at these GM-CSF 

concentrations.
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DC and regulatory T cell accumulation in the dermis

The effects of alginate hydrogels containing GM-CSF and TSLP on DC and regulatory T 

cell numbers in vivo were next examined in dermal tissue. First, either blank control or GM-

CSF releasing alginate hydrogels were injected into the dermis of transgenic mice that 

express luciferase under the control of the CD11c promoter (Figure 4A, B, and E) or wild 

type C57BL/6J mice (Figure 4C–D). At day 7, gels releasing GM-CSF exhibited 

approximately 20% higher radiance at the site of the hydrogel injection, in comparison to 

blank controls. The number of local FOXP3+ cells was also evaluated. Alginate gels that 

released both GM-CSF and TSLP led to qualitatively higher number of FOXP3+ cells 

adjacent to gels, in comparison to GM-CSF alone (Figure 4F–G).

DC and regulatory T cells in periodontal tissue and local lymph nodes

To determine if GM-CSF and TSLP could enrich for DC and regulatory T cells in 

periodontal tissue, alginate hydrogels delivering GM-CSF and TSLP were injected into the 

periodontal tissue of mice (Figure 5). Similar to what was observed in the skin, the number 

of CD11c+ cells was enhanced at the injection site, as was the elaboration of IL-10 by cells 

in animals that received an injection of the hydrogel containing GM-CSF and TSLP, as 

compared to control animals (Figure 5 B, C, L and M). Next, alginate hydrogels were 

injected into the periodontal tissue of FOXP3-EGFP-KI mice, and the effects on regulatory 

T cells was evaluated. A marked infiltration of FOXP3+ cells was observed in the mice 

receiving alginate hydrogels containing GM-CSF or GM-CSF and TSLP at 7 days, while 

few FOXP3+ cells were detected in the tissue of control mice (Figure 5 D–M). Interestingly, 

FOXP3+ cells and DC appeared to co-localize in the periodontal tissue of animals that 

received alginate hydrogels containing both GM-CSF and TSLP (Figure 5 M, yellow 

staining).

To examine if the effects extended beyond the local site of gel injection, FOXP3+ cells in the 

draining lymph nodes were enumerated. An increase in the proportion of FOXP3+EGFP+ 

regulatory T cells was observed in the cervical lymph nodes of mice that received hydrogels 

releasing GM-CSF and TSLP, whereas no increase was seen with alginate gels releasing 

GM-CSF alone, compared to the control blank hydrogels (Figure 5: N–P).

DISCUSSION

In this report we demonstrated that controlled delivery of GM-CSF and TSLP could enrich 

for DC and regulatory T cells locally and elicit regulatory responses. In vitro GM-CSF 

enhanced DC migration and in vivo it increased recruitment. When alginate hydrogels 

delivering GM-CSF and TSLP were injected into the skin or periodontal tissue of mice, 

increased numbers of regulatory T cells were observed locally and in the draining lymph 

nodes in concert with elevated IL-10 expressing cells in the periodontal tissue.

This work builds upon previous studies that demonstrate the tolerogenicity of TSLP and 

GM-CSF in certain contexts while extending past results to the murine periodontal tissue 

model. The combination of TSLP and GM-CSF likely elicit the Th2/Treg phenotype in DC 

reported previously17, 18, 31. Of note, murine allergy and asthma models have shown that 
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TSLP can elicit pathogenic Th2 mediated immunity18, 19, 32 and controlled delivery likely 

functions as a rheostat to modulate dendritic cells and therefore T cells. The effects of GM-

CSF are similarly complex and depending upon the dose and kinetics of GM-CSF delivery 

either immunity or tolerance can be evoked12, 13, 33. Although Th2 immunity is not directly 

investigated here, by delivering TSLP and GM-CSF from a material system the location, 

dose, duration, and kinetics of delivery can be tightly controlled, potentially making it 

possible to design a system that promotes regulatory T cells while reducing unwanted Th2 

type immune responses, increasing the overall specificity and reducing off-target effects. 

This delivery approach may also allow for TSLP to be used as a tolerogenic factor in 

humans, where TSLP appears to direct a more Th2 biased response34. Still, the 

inflammatory milieu in periodontitis is complex and more biomarker assays and functional 

studies are necessary to fully demonstrate tolerance induction or immunosuppression and the 

overall benefit of this approach, particularly given the possibility of a negative feedback loop 

inducing the tolerogenic milieu. This would also include deep quantitative phenotyping of 

the enriched DC and T cell populations including subsets and deep cytokine profiling.

GM-CSF is known to influence the migration of neutrophils, eosinophils monocytes and 

DC35–37. To our knowledge this is the first time that chemokinesis has been demonstrated 

for murine DC in response to GM-CSF. In the current study, cellular migration was 

examined in vitro over the course of 8 hours. During most of this period, the rapid release of 

GM-CSF may lead to local concentrations greater than the (presumed) Kd of the GM-CSF 

receptor, which could inhibit chemotaxis as the receptors would be saturated (and 

theoretically limit cellular enrichment). If the experimental duration was changed, lower 

doses of GM-CSF were incorporated into the alginate, GM-CSF release kinetics were 

slowed, or an alternative experimental setup (e.g. transwells or a microfluidics) was used, 

chemotaxis may also have been observed. The in vitro migration studies and the GM-CSF 

release assays together suggest that delayed GM-CSF release kinetics may enhance dendritic 

cell recruitment. Alginate systems can be facilely modified to deliver drugs with a range of 

kinetics and additional studies correlating DC migration and enrichment with a range of 

delivery kinetics is an important next step for pre-clinical optimization.

In addition to its effects in vitro, GM-CSF has been used in many studies to increase the 

number of innate cells in vivo38 and a similar result is observed in this study following 

intradermal (i.d.) or periodontal injection of alginate gels containing GM-CSF (Figures 4 

and 5). GM-CSF also has immunostimulatory and immunomodulatory roles and local 

delivery via a material system may allow one to optimize its effects to further attenuate 

periodontal disease12, 13, 39–42. It is important to note that a variety of other factors, 

including Flt3L, MCP-1 (CCL2), MIP-3α (CCL20), fractalkine (CX3CL1), or CCL22 could 

be incorporated into this system as recruitment factors for DC, or in the case of CCL22, T 

regulatory cells23, 24, 43, 44. Further, in future studies it would be interesting to explore the 

effects of GM-CSF on gingival fibroblasts and the ECM given the expression of GM-CSFR 

on these cells45.

Co-delivery of GM-CSF and TSLP led to increased FOXP3+ regulatory T cells locally and 

regionally in the draining lymph node (Figure 5). Regulatory T cells have been found to play 

an important role in reducing inflammation in periodontal disease8 suggesting that a strategy 
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of locally recruiting and programming DC toward a regulatory phenotype in the periodontal 

tissue may attenuate disease severity and should be the subject of future investigations. A 

single dose and release kinetics for GM-CSF and TSLP were tested in these studies, and 

optimization of these variables through the design of more sophisticated delivery systems46 

may further enhance regulatory T cell accumulation. Also, future studies to evaluate whether 

a causal relationship exists between the increased number of local regulatory T cells and the 

elevated IL-10 concentration are warranted.

In summary, the results of this study demonstrated the ability of a locally administered, 

alginate based biomaterial to enhance DC number, promote immunosuppressive cytokines in 

periodontal tissue, and enrich for regulatory T cells. Quantitative and dynamic control of DC 

may allow one to dial in the correct balance between effector and tolerogenic pathways, and 

restore the balance required to relieve the chronic inflammation of periodontitis that cannot 

be achieved with standard immunotherapies. This approach could be combined in the future 

with bone regeneration strategies to not only slow/reverse inflammation, but also promote 

regeneration. More generally, we anticipate that this strategy of enhancing DC numbers 

locally and programming them to elicit a specific T cell response may be broadly applicable 

to many other inflammatory diseases.

CONCLUSION

Local, controlled delivery of GM-CSF and TSLP in an alginate hydrogel delivery platform 

can enrich DC and FOXP3+ regulatory T cells in periodontal tissue. These findings hold the 

promise for local immunotherapy to treat the pathologic inflammation of periodontal 

disease.
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Figure 1. Periodontal disease associated genes and proteins have multiple possible interactions 
with GM-CSF and TSLP.
Using Ingenuity Pathway Analysis, the genes and proteins associated with periodontal 

disease were combined with GM-CSF and TSLP nodes. Interacting terms between GM-CSF 

or TSLP and the periodontal associated protein network were generated and are depicted in 

the figure. AR, androgen receptor; CD200R1, CD200 receptor 1; CSF2, granulocyte 

macrophage colony stimulating factor; CTSC, cathepsin C; CXCL12, C-X-C motif 

chemokine ligand 12; DGKA, diacylglycerol kinase alpha; ELN, elastin; FERMT1, fermitin 

family member 1; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HYAL1, 

hyaluronoglucosaminidase 1;HYAL2, hyaluronoglucosaminidase 2; HYAL3, 

hyaluronoglucosaminidase 3; HYAL4, hyaluronoglucosaminidase 4; IL1, interleukin 1; 

IL10, interleukin 10; IL17A, interleukin 17A; IL18, interleukin 18; IL21, interleukin 21; 

MMP1, matrix metallopeptidase 1; MMP12, matrix metallopeptidase 12; MMP8, matrix 

metallopeptidase 8; ODAM, odontogenic, ameloblast associated; POSTN, periostin; PTGS1, 

prostaglandin-endoperoxide synthase 1; PTGS2, prostaglandin-endoperoxide synthase 2; 

SCN10A, sodium voltage-gated channel alpha subunit 10; SCN1A, sodium voltage-gated 

channel alpha subunit 1; SCN1B, sodium voltage-gated channel beta subunit 1; SCN5A, 

sodium voltage-gated channel alpha subunit 5; SCN9A, sodium voltage-gated channel alpha 

subunit 9; TNFSF13, TNF superfamily member 13; TNFSF13B, TNF superfamily member 

13b; TSLP, thymic stromal lymphopoietin.
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Figure 2. Nanoporous alginate hydrogels rapidly release GM-CSF and TSLP.
(A) Chemical structure of alginate, m and n subscripts represent the guluronic and 

mannuronic acid monomers, respectively. (B) AFM height image of a peel-transferred 

alginate hydrogel layer. Scale bar = 100 nm. (C) Fluorescent image of two intradermally 

injected alginate hydrogels labeled with PE-Cy7 microbeads overlaying a photograph. (D) 

Release kinetics of GM-CSF (orange triangles with dashed line) and TSLP (green squares 

with solid line) in PBS at 37°C. (E) Magnified image of (D). Values in (D) and (E) represent 

mean and SD (n= 4 for GM-CSF or 7 for TSLP).
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Figure 3. GM-CSF mediated chemokinesis of bone marrow derived dendritic cells in vitro.
(A) Alginate gels with or without GM-CSF were placed in a petri dish and surrounded with 

collagen containing labeled murine bone marrow derived dendritic cells. The cartoon depicts 

a transverse section of the petri dish with the purple color representing the collagen and DC 

while the orange color denotes the alginate gel and the black square represents an imaging 

window as seen in (B). The imaging window was randomly selected. (B) Individual paths of 

cells in a representative experiment exposed to control (no GM-CSF) or GM-CSF containing 

alginate hydrogels viewed at 20x. The average velocity of the cells was calculated from 

initial and final position values and is plotted for control gels (C) and GM-CSF releasing 

gels (D). Chemotaxis toward the alginate is given as the positive radial coordinate. Each dot 

reflects the velocity of 1 cell and each plot is representative of three experiments.

Sands et al. Page 14

J Periodontol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. GM-CSF and TSLP delivery enriches DC and Treg cell numbers in the skin.
(A) Photograph and (B) radiant emission in p/s/cm^2/sr of a C57BL/6 CD11c-Cre-EGFP x 

FVB Stop/loxP Luc mouse after luciferin administration. Imaging was performed 7 days 

following injection of alginate gels containing 3 (left) or 0 μg (right) GM-CSF. (C,D) 

Immunofluorescent stain of sectioned skin 7 days after receiving an injection of blank (C) or 

GM-CSF containing alginate hydrogels (D), DAPI (blue), MHCII (green), and CD11c (red). 

White dotted lines indicate the border between the skin (left) and the alginate gels (right). 

(E) Normalized data comparing radiance surrounding GM-CSF containing hydrogels with 

blank control hydrogels. (F,G) Immunofluorescent imaging of sectioned skin staining for 

nuclei (blue) and FOXP3 (green) in animals treated 7 days earlier with alginate hydrogels 

containing GM-CSF alone (F) or in combination with TSLP (G). White dotted lines indicate 

the border between the dermal tissue (left) and the alginate gels (right). 

(immunohistochemistry n=3 animals / condition; live animal imaging n = 5); representative 

images and animals shown. Scale bars are 50um, *p < 0.04 (student’s t-test).
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Figure 5. Enhanced recruitment of DC, production of IL-10, and accumulation of FOXP3+ T 
cells in the periodontal tissue in mice treated with alginate gels containing GM-CSF and TSLP.
(A) Ventral view of the mouse calvarium; circle indicates target location of hydrogel 

injection. Immunohistochemical staining for IL-10 (red) and CD11c (green) in the 

periodontal cavity of naïve (B) or GM-CSF and TSLP treated mice (C) 7 days following 

injection. (D-P) FOXP3-EGFP-KI mice received no injection (E, I, L) or a periodontal 

injection of a control blank alginate hydrogel (L, N), alginate hydrogel with GM-CSF (F, J, 

O), or alginate with GM-CSF and TSLP (G, K, M, P). H&E, bright field, or fluorescent 

images of the maxillary jaws 7 days following injection (D-M). Flow cytometry plot of T 

cells isolated from the cervical lymph nodes (N-P).
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