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Abstract

Single cells are the building blocks of tissue systems that determine organ phenotypes, behaviors, 

and function. Understanding the differences between cell types and their activities might provide 

us with insights into normal tissue functions, development of disease, and new therapeutic 

strategies. Although -omic level single cell technologies are a relatively recent development that 

been used only in laboratory studies, these approaches might eventually be used in the clinic. We 

review the prospects of applying single cell genome, transcriptome, epigenome, proteome, and 

metabolome analyses to gastroenterology and hepatology research. Combining data from multi-

omic platforms and rapid technological developments could lead to new diagnostic, prognostic, 

and therapeutic approaches.
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During the last decade, significant technological advances occurred in the biomedical 

sciences due to rapid development of next-generation sequencing and mass spectrometry 

(MS) technologies. Today, we can easily generate comprehensive data on the genomic, 

epigenome, metabolome/lipidome, and proteome from patient specimens.1-3 This 

information, generated at sample level, enables studies of pathogenesis and identification of 
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disease subtypes.1, 2, 4 Although bulk approaches have enabled discoveries based on inter-

patient or inter-sample variation, intra-sample heterogeneities carried by individual cells 

over time are lost.5 This information is critical in understanding disease mechanisms; 

different tissue functions are carried out by specific cell types, and disease progression, such 

as in cancer relapse or metastasis, are usually mediate by small populations of cells.6, 7

To address cellular level heterogeneities, researchers developed new methods and techniques 

to generate high-throughput and multi-dimensional data at the single cell resolution (Fig. 1). 

The emerging single cell biology field is revolutionizing basic sciences by addressing 

sophisticated biological questions in developmental biology.8 In the clinic, single cell level 

metrics such as the Immunoscore9 can affect decisions about management of patients with 

cancer. Furthermore, in patients with gastrointestinal malignancies, tumors with increased 

cellular heterogeneity tend to respond poorly to treatment.10, 11 Increasing our understanding 

of these phenomena and obtaining higher resolution single cell data, especially from 

patients, might improve care. We review single cell technologies and how they can be used 

to study digestive diseases. However, we emphasize that single cell -omics level 

technologies have only been applied in a research setting, including translational research, 

and cannot yet be used to make actionable clinical decisions.

Candidate-based Approaches

Analyses of molecular features of individual cells are not new to clinical research—

pathologists have been using microscopy, immunohistochemistry, and in situ hybridization 

for decades to identify cells, such as infiltrating lymphocytes, in human tissues. Flow 

cytometry is used to perform immunophenotype analyses of blood cells in patients with 

immune-mediated and other diseases. These techniques are known as candidate-based 

approaches, because they require probes to detect specific molecules.

Advances have mainly focused on exceeding the limitations of spectral overlap in 

fluorescence to enable highly multiplexed (such as multi-analyte) analyses at the single cell 

level, such that machines can potentially identify cells from multivariate measurements in 

lieu of a human expert.12 There are 2 main ways by which multiplexing is achieved. First, 

elemental isotope labeling of antibodies enable mass spectrometric deconvolution of probes 

with minimal spill over. Metal antibody labeling results in flow cytometry (mass cytometry, 

also known as CyTOF)13 and microscopy modalities (imaging mass cytometry, multiplex 

ion beam imaging)14, 15 capable of analyzing 30–40 analytes at single cell resolution.

Mass cytometry has been optimized to study signaling within the intestinal epithelium16, 

and immune cells in the lamina propria.17 For example, Chuang et al studied immune cells 

infiltration in lamina propria samples from patients with Crohn’s disease using CyTOF; they 

found monocytes that carried a frameshift mutation in CSF2RB had reduced responses to 

granulocyte-macrophage colony stimulating factor.18 Martin et al also used CyTOF to 

identify unique fibroblasts and immune cells in ileal tissues from patients with Crohn’s 

disease that contribute to resistance to tumor necrosis factor antagonists.19
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Iterative schemes can be used with microscopy, such that different probes are applied in 

different imaging rounds even though the same detection labels are used. With advanced 

registration approaches20, multi-channel images, analogous to standard 3- or 4- channel 

fluorescence images, are produced. Iterative schemes can be used to detect protein21-25 or 

transcripts12, 26, with differences between these schemes being the detection method (for 

example, direct conjugate vs tagged nucleic acids) affecting iteration times. Gerdes et al 

stained 61 protein antigens in tissue microarrays comprising 747 samples from patients with 

colorectal cancer (CRC); they found extensive heterogeneity among tumors that corresponds 

to specific signaling pathways.27 Using multiplex protein imaging, Ligorio et al found that 

cancer-associated fibroblasts contribute to heterogeneity within pancreatic tumors.28 

Algorithms to analyze multi-dimensional images can be segmentation-based to produce 

single cell resolution data similar to mass cytometry29, 30, or pixel based31. The unifying 

theme behind these studies revolves around the discovery of new, unexpected cell 

populations that associate with disease processes. These efforts are made possible by 

labeling tissues with multiple probes that can detect a wide variety of cell types, and for 

combinatorial labeling to define unexpected cell types or states. The experiment therefore 

acts a screen for unexpected cell populations that correlate to phenotype, which fulfills a 

fundamentally different goal than single-target approaches, such as immunohistochemistry, 

which a single marker to query a single cell population.

Candidate-based approaches are most ready to be adopted for human research due to their 

congruence with traditional pathology analyses, and machine learning on large sets of 

histological images has already been explored.32, 33 However, candidate-based approaches 

require accurate probes—it is a challenge to determine specificity and sensitivity of 

detection for probes (such as antibodies) in human tissues, due to lack of control samples. 

Furthermore, measurements of preselected markers provide only a narrow scope of new 

insights into factors that contribute to disease development.

Single-Cell Analysis of Transcriptomes from Cell Suspensions

Untargeted sequencing does not depend on candidate probe quality, because sequencing data 

are mostly categorical in nature (4 nucleotides- ACGT). Single-cell RNA sequencing 

(scRNA-seq) is one of the most mature single cell genomics tools for studying cell 

heterogeneity.34 Since 2016, there has been a large increase in studies using scRNA-seq 

analysis, due to the advent of droplet-based techniques that enable high-throughput analyses 

of thousands of cells instead of hundreds.35-37 Different protocols provide different aspects 

of transcriptomic information (Supplemental Table 1), such as isoform information from 

full-length analysis38 and differential gene expression based on 3’ poly(A) capture transcript 

counting.39 For a review on scRNA-seq, see refs34, 40. We focus on aspects most relevant to 

human research.

Single-cell RNA sequencing involves isolation, containment, and processing of single cells 

into nucleic acid libraries for sequencing. An important pre-analytical variable lies in tissue 

collection and handling. Ischemic conditions and dissociation of single cells can introduce 

significant artefacts to cell transcriptomes. Fresh specimens collected from accessible 

surgical or biopsy samples, immediately delivered for processing, yield the highest quality 
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data. Single cells are dissociated by exposure to enzymes such as trypsin or collagenase, 

followed by mechanical trituration. Optimization in fresh tissue processing, such as cold 

protease dissociation, enables minimized perturbation during single cell isolation.41 For 

tissue types where dissociation is challenging or situations in which times of ischemia 

cannot be controlled, tissues can be flash frozen, so quality of nucleic acids can be preserved 

and nuclei can be isolated for single nuclei (sn) RNA-seq.42, 43 snRNA-seq has the 

advantage of being amendable to retrospectively collected frozen archive specimens, but it 

should be noted that nuclei possess less material compared with what is in an entire cell, 

with marked differences in representation in transcripts.44 Regardless of protocols used, 

relative abundances of particular cell types might be artificially changed due to selective 

filtering and retrieval during tissue preparation steps.

A variety of methods, from plates to microdroplets35, 36, exist to contain single cells such 

that cDNA libraries from individual cells can be prepared (Table 1). The most technically 

amenable methods are droplet based35-37 or nanowell based.45-47 These are high-throughput 

approaches that require less manual handling due to barcoding (Fig. 1), miniaturization, and 

automation, and commercial counterparts exist for turnkey applications. Although there are 

nuances to library preparation downstream that results in different coverage48-51, all scRNA-

seq libraries require amplification, due to the low amount of starting material. From small 

amounts of RNA, technical noise arises due to Poisson sampling, especially for less 

abundant transcripts.39 Researchers should balance the cost benefit of using exponential 

amplification (such as PCR) and linear amplification (such as in vitro transcription).51-53 

Exponential amplification is easy and requires less technical skills and awareness, but results 

in amplification bias of highly abundant transcripts that requires more sequencing (and 

therefore, higher costs) to overcome. Linear amplification allows low abundance transcripts 

to be represented but is a multi-day process requiring multiple steps in handling RNA. 

Ziegenhain et al and Wang et al performed comparative analyses of different scRNAseq 

methods that could be informative for choosing particular methods for particular 

applications.54, 55

There are several alternatives for downstream processing and analysis of sequencing data 

(see ref56). Mapping of FASTQ data can be achieved via a variety of mapping algorithms 

including TopHat, STAR, and Kallisto Bustools57. Popular data analysis packages such as 

Seurat58 or Scanpy59 can be used for downstream analyses. These software tools already 

incorporate dimension reduction algorithms for visualization of multi-dimensional data in 

lower dimensional space, such as t-distributed stochastic neighbor embedding (t-SNE)60, 

and uniform manifold approximation and projection (UMAP).61

These tools allow data points, and therefore cells with similar expression profiles, to be 

grouped, enabling identification and analysis of cell types and states. One significant 

challenge, however, is the quality of single cell level data that results from incomplete 

sampling of the transcriptome. These noisy data require additional attention paid to quality 

control regarding the filtering of low quality cells 62, as well as non-reliant and irrelevant 

gene features63. Of note for scRNA-seq applications in human studies is the eventual 

acquisition and analysis of datasets from large cohort of patients (Fig. 2). Researchers have 
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developed tools64, 65 that can compare entire single cell landscapes that can be used for 

subtyping samples and patients.

Slide-based Spatial Transcriptome Analyses

Transcriptomic analysis is routinely performed on single cell suspensions where spatial 

context is lost. The location of cells determines their interactions with other cells, via short- 

and long-range signaling mechanisms66, and their identities and behaviors as a function of 

environment (such as hypoxia or normoxia).67 Furthermore, cells in tissues, especially in 

patients with diseases, are spatially heterogeneous. For instance, Crohn’s disease intestinal 

tissues contain pathological skip lesions that are interspersed amongst uninflamed areas.68 

Suspension-based scRNA-seq in this case produces data on admixtures of healthy and 

affected tissues, blending out disease-specific signals. In situ analysis does not require 

dissociation nor single cell retrieval, thus should maintain accurate representation of cell 

types of the native tissue. To produce spatially resolved analyses, researchers rely on 

candidate-based approaches for targeted analyses. To scale these approaches to the genome 

level, seqFISH+12 and MERFISH26 use temporal fluorophore barcoding with hamming 

distance correction to extend the number of mRNA measured to the scale of 10,000. For 

temporal barcoding to work, individual molecules of mRNA must be resolved, which limits 

the volume of tissue that can be profiled. These approaches are therefore best for high-, sub-

cellular resolution imaging with high-end microscopes that are not always accessible outside 

of research settings. As such, recent studies have combined seqFISH+ with expansion 

microscopy to visualize gene expression at deeper, organelle levels.69

At the other end of the spectrum, genome-scale data can be obtained when single cell 

resolution is not needed. For instance, laser capture microdissection can be used in a low-

throughput manner, even with fixed specimens, to profile transcriptomes of a few to 10s of 

cells.70, 71 For lower-resolution tissue profiling, multiple groups have developed techniques 

that involve spatial barcoding in lieu of single cell barcoding.72, 73 In general, these 

approaches immobilize barcoded oligonucleotides73 or oligonucleotide-conjugated beads 

onto slides72; tissue sections are then cut and permeabilized, enabling mRNA capture by the 

underlying oligos. The oligos are then released, pooled, and prepared as a library in a similar 

manner to scRNA-seq. The spatial barcode that was incorporated into the cDNA during 

capture could be mapped back to the original position in the tissue section.

These methods couple spatial information for analysis of tissue architecture and global 

transcriptome profiling; they have been used to characterize infiltration of immune cells into 

tumors during immunotherapy.73 The resolution of these approaches is on the order of 50–

100 microns, such that each barcoded pixel contains information about dozens of cells. 

Improved protocols with fewer than 10 micron resolution are being developed, although data 

quality, in terms of number of transcripts detected, is compromised.74 Nevertheless, slide-

based digital pathology and scRNA-seq have become more common, so these combined 

approaches could be rapidly advanced for analysis of tissues from patients.
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Application of Single-cell Transcriptome Analyses to Gastroenterology

scRNA-seq can be used to evaluate tissue heterogeneity, and the cell types responsible for a 

particular function or disease in the gastrointestinal tract75-77 and liver78, 79 is a direct 

application of scRNA-seq. In a basic science setting, scRNA-seq has been used for finding 

new populations of endocrine80, 81 and tuft cells75, 82 in the gut epithelium, as well as 

immune83 and stromal cells.84 Because scRNA-seq is an endpoint assay where insights are 

derived from a snapshot in time when tissue is collected, it can applied to range of 

specimens from model organisms to human patients.85 scRNA-seq forms the basis of the 

next stepping stone towards precision medicine, akin to prior efforts such as TGCA and 

CPTAC. Large national and international consortia are being formed, utilizing scRNA-seq to 

characterize large cohorts of healthy and diseased tissues. Here, we will highlight studies 

utilizing scRNA-seq on human patient specimens.

A major application of scRNAseq is in cancer biology where intra- and inter-tumor 

heterogeneity is a major challenge in rational therapy design.1, 11, 86 Our descriptions of 

cancer phenotypes and subtypes rely mostly on bulk sequencing or proteomic assays that 

mask the potentially important cell populations, such as those that are metastasis-capable, 

whereas scRNA-seq can be used to deconvolve cellular heterogeneity. Furthermore, a 

comprehensive characterization of tumor landscape by scRNA-seq, including immune and 

fibroblast infiltration within the microenvironment, can possibly be applied to describe 

different disease subtypes and predict patient prognosis .28 Some recent studies have already 

shown successful application of scRNA-seq to pre-cancers and cancers of the digestive 

system, where cancer cell genotypes, phenotypes, and the microenvironment are 

systematically dissected. Zhang et al discovered a dynamic relationship of T cells in CRC 

and identified subgroup of CRC that are likely going to show favorable responses to 

immune-checkpoint blockade.87 Bian et al dissected 10 CRC using multi-omics approaches 

that provide fundamental insights for understanding the molecular alterations that occur 

during primary CRC progression and metastasis.88 Another study examined the 

transcriptional dynamics of different gastric cancer subtypes using scRNA-seq where they 

identified OR51E1 as a marker for unique endocrine cells in the early-malignant lesion in 

gastric cancer.89 Owen et al studied Barrett’s esophagus, that progress to esophageal cancer, 

using scRNA-seq and found transcriptional similarity between Barrett’s and normal 

esophagus.90 A recent liver cell atlas identified the cellular composition of liver and 

unraveled the phenotypic changes that occur in hepatocellular carcinoma.78 Using 

scRNAseq, Zheng et al identified infiltrating T cells with distinct functions in liver cancer 

that provided valuable insights to understand the immune landscape and prognostic potential 

in this cancer.91 Immunotherapy is gaining traction in providing sustained responses in many 

cancer types. However, only a fraction of patients will respond to immunotherapy, as partly 

determined by the degree of immune cell infiltration into the intra-tumoral space of the naive 

tumor.92, 93 scRNA-seq can contribute to immunotherapy by deeply characterizing the 

immune microenvironment as to predict patient response.

Inflammatory bowel disease are characterized by the chronic inflammation of the intestines.
94 Complex conditions such as IBD where shifts in cellular ecosystem is correlated to 

disease phenotype can be dissected by scRNA-seq. Parikh et al performed a comparative 
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study between IBD and normal colon to identify specific cell type that drives IBD77 They 

found a pH sensing and proton channel OTOP2-expressing colonic absorptive cells at the top 

of the crypt that are often dysregulated in IBD as well as cancer. Using scRNAseq, they also 

dissect cell type-specific responses to colonic inflammation and find that WFDC2 secretion 

is required for mucus barrier integrity. scRNA-seq has also been used to characterize a 

network of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and 

stromal cells in patients with Crohn’s disease resistant to tumor necrosis factor antagonists.
19 Smillie et al generated a single cell atlas of ulcerative colitis to map the GWAS risk 

variants precisely to cell types and pathways where they characterized specific cell subsets 

responsible for inflammation and therapy resistance.95 Kinchen et al performed single cell 

profiling of colonic mesenchymal cells that revealed unexpected heterogeneity and 

mesenchymal remodeling associated with inflammation and barrier dysfunction in IBD.96 

Single-cell analyses can be used to study microenvironment communication mechanisms 

and increase our understanding of complex gastrointestinal disorders.

Although clinical decisions cannot yet be made based on scRNA-seq data, they can be used 

to determine patient prognoses and disease subtypes.97, 98 scRNA-seq data might also be 

used as a reference to deconvolve cell compositions from existing bulk RNA-seq data, with 

algorithms such as MuSiC, xCell, and CIBERSORTx.99-101 The promise here is for new 

patient categories to be defined with finer resolution, such that possible outcomes of new 

and formerly diagnosed patients can be predicted from a retrospective resource. Despite the 

promise and wide accessibility of single cell transcriptome analysis methods, there are 

limitations that preclude their use in the clinic. There are still many places in transcriptome 

analysis protocols where artefacts can be introduced, reducing reproducibility and 

interpretation—the technical and computational expertise required is quite high. The cost 

and turn-around required for interpretable results might be unacceptably high for clinical 

decision making. Lastly, the utmost need for accessible fresh tissue to generate the best 

quality scRNA-seq data is a challenge for many clinics. Combination of all these factors 

results in a high barrier of adoption, but many groups are moving toward solving these 

problems.

Single-cell Epigenetic Analyses

Layers of epigenetic information connect the genome to the transcriptome. 102, 103 

Microfluidic paradigms used to determine single cell transcriptomes have been expanded for 

studies of single cell epigenomes. These technologies have led to methods for investigating 

chromatin accessibility, protein–DNA interactions, chromosome conformation, and DNA 

methylation in single cells.

Single-cell assays for transposase-accessible chromatin using sequencing (scATAC-seq) 

target accessible genomic regions by exploiting the kinetic favorability of Tn5-mediated 

transposition reactions with DNA unincorporated by nucleosomes. These captured genome 

sequences can be cis-acting DNA elements poised for transcription or regulation by 

transcription factors. Borrowing the microfluidic platforms of single cell transcriptomics, 

several scATAC-seq methods have been established (see studies by Cusanovich et al, 

Buenrostro et al, and Lareau et al104-106). These methods isolate individual cells using plated 
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micro-wells, integrated fluidic circuits, and encapsulation into nanoliter droplets, 

respectively. Each nucleus therefore produces a single barcoded library of genomic 

fragments enriched for regions of accessible genomic loci.

Single-cell chromatin conformation capture methods can be used to identify cis-acting DNA 

elements and determine their physical proximities to potential regulators. Topologically 

associated domains and long-range chromatin interactions mediated by loop structures can 

be probed by 3C methods; more recently, at single cell resolution. Hi-C, and its single cell 

variants like sc-Hi-C and sci-Hi-C, developed by Nagano et al and Ramani et al, combine 

chromatin crosslinking, restriction digestion, and proximity-based ligation to create libraries 

that capture spatially proximal DNA fragments.107, 108 sci-Hi-C, in particular, isolates nuclei 

in microwells and incorporates combinatorial indexing. These methods result in a single 

library per cell, containing fragments that represent pairs of proximally adjacent genomic 

loci. Although it is not exactly a single cell chromatin conformation capture method, a 

modified form of ATAC-seq, called ATAC-See, developed by Chen et al, permits covalent 

tagging of accessible chromatin with visualizable fluorophores. This allows for visualization 

by microscopy and subsequent high-throughput sequencing.109

Single-cell chromatin immunoprecipitation methods target protein–DNA interactions within 

single, isolated cells. These methods retain the same strategy as their bulk approaches, 

relying on specific antibody-protein interactions. Drop-ChIP, a method developed by Rotem 

et al, takes protein-associated genomic fragments generated from droplet-isolated single 

cells and tags them with unique DNA barcodes.110 These nanoliter droplets, which contain 

the contents of a single cell, are broken and aggregated for immunoprecipitation and library 

generation. This information can also be obtained using CUT&Tag, described by Kaya-Okur 

et al. This method uses protein-A-tethered Tn5 transposons to localize these elements to 

protein-bound antibodies.111 Target-localized transposons fragment the genome in a way 

that enriches target protein-associated loci. These reactions are amenable to nanowell-based 

single cell isolation systems, because antibody binding and transposon introduction can be 

performed at a bulk level before isolation. Both of these methods produce sequencing 

libraries that contain cis-acting regulatory elements associated with the antibody-targeted 

protein.

Single-cell methylation and hydroxymethylation (sc-5mc and sc-5hmc) assays measure 

covalent modifications on genomic cytosine residues. Often, these modifications are 

enriched in CpG islands—high concentrations can result in silencing or reversible 

downregulation of gene expression.112 These methods are classified by their sodium 

bisulfite dependence, where dependent methods convert cytosine residues into sequencing-

detectable uracil. Single-cell genome-wide and reduced-representation sequencing methods, 

which depend on bisulfite conversion, have been developed to capture varying breadths of 

the methylome.113, 114 In contrast, single cell CpG island methylation sequencing combines 

methylation-sensitive restriction digestions with multiple displacement amplification to 

generate a sequencing library enriched for loci associated with methylated CpG islands, 

while avoiding destructive bisulfite conversions.115 Other new methods include scAba-seq, 

which targets 5hmc and retains strand-specific information through bisulfite-independent, 

but glucosylation-dependent enzymatic reactions.116
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Like single cell transcriptomes, epigenetic data from single cells can be used in human 

research, possibly to determine patient prognoses or select therapy. Bormann et al examined 

the CpG island methylator phenotype along with cell of origin signatures in colorectal tumor 

tissues and identified epigenetically defined subtypes of tumors that correlated with patient 

survival.117 Other tumor types have epigenetic heterogeneity along with functional 

heterogeneity. Litzenburger et al used scATAC-seq to demonstrate that differences in 

chromatin accessibility associated with sensitivity of cancer cell lines to drugs.118

Despite promise of single cell epigenomics, there is no integrated epigenomic method that 

could capture all levels of epigenetic modifications simultaneously. Nevertheless, as 

approaches for epigenomic analyses of single cells develop, we expect applications for 

gastrointestinal tissues and diseases.

Single-cell Metabolomics

Metabolites are small molecules (typically fewer than 2000 Da) including amino acids, 

sugars, lipids, small peptides, and break down products of drugs. These molecules can 

regulate cell structure, fuel, signaling, enzyme regulation, and pathogenesis. 119 It is a 

challenge to analyze metabolites because they are highly dynamic, 120 with vast structural 

diversity and many isomers.121 Single-cell analysis introduces additional demands because 

metabolites cannot be amplified, necessitating ultrasensitive analytical assays.

MS is the most widely used technology for analysis of single cell metabolomes.122 MS is 

label-free, untargeted (it can detect thousands of molecules concurrently), sensitive (fM 

limits of detection), and specific (it can discriminate molecules that differ by less than 0.001 

Da).123 Single-cell MS analyses of metabolomes are typically performed as either profiling 

experiments, in which a single spectral signature is collected from each cell type, or as an 

imaging MS experiment to visualize metabolite distributions within a cell or across a tissue 

microenvironment (Figure 3A). In all cases, special care needs to be taken to ensure the 

metabolic profile of the cell is not perturbed during sample preparation because of the 

relatively high rate of turnover of some metabolites.124

Most metabolomic profiling experiments of single cell types are performed on cell cultures 

or isolates from tissue. Targeted cell populations are separated by manual manipulation,125 

fluorescence-activated cell sorting, microarray cell printing,126 or using microfluidic 

devices127 prior to MS analysis. There have been significant advances in development of 

technologies for rapid MS analysis of single cells in suspensions and on surfaces. For 

example, a single-probe MS sampling technology was developed to analyze live single 

cancer stem cells.128 The single-probe MS system uses a dual-bore capillary to deliver the 

lysis and extraction solvent to the cell surface and carry the molecular extract to the mass 

spectrometer for analysis by electrospray ionization. By bringing the single-probe tip 

directly in contact with individual cells, dispersed onto a glass slide, researchers were able to 

perform single cell metabolomic analyses of living cells with no sample preparation.

In a significant advancement in throughput, Neumann et al were able to perform MS lipid 

analysis on 30,000 individual cells using matrix-assisted laser desorption/ionization 
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(MALDI).125 They achieved this by dissociating cells onto a slide and using a multimodal 

imaging approach to identify cells for MS analysis. Fluorescence microscopy was used to 

determine locations of intact cells for MALDI data acquisition. Using this technology, 

researchers detected more than 500 lipid features and were able to determine 101 

significantly different cell clusters, using a combination of t-SNE and Louvain-Jaccard 

clustering. Others have been working to extend single cell metabolome profiling to more 

complex cell systems and tissues. For example, Portero et al coupled microsampling with 

capillary electrophoresis and electrospray ionization MS to enable in situ metabolite 

quantification in live cells and tissues.129

Recent advances in MS instrumentation and data processing have enabled imaging MS 

while maintaining spatial resolution.130, 131 The imaging MS experiment is typically 

performed on tissue sections, which were thawed and mounted onto MS compatible glass 

slides. Ions are produced at each position (pixel) within a designated region of the tissue 

resulting in the generation of a mass spectrum for each pixel. In a single imaging 

experiment, hundreds of metabolites are detected and are visualized as images by plotting 

the intensities for each molecule over array of pixels.

Although all imaging MS technologies are conceptually similar, in that they generate spatial 

molecular data, MALDI132 and secondary ion MS (SIMS)133, 134 are most commonly used 

for high spatial resolution of metabolomes. MALDI imaging is a laser-based surface 

analysis method in which the sample is coated with a light-absorbing matrix that assists in 

desorption and ionization of endogenous molecules. Spatial resolution is defined by the 

diameter of the focused laser beam at the sample surface. MALDI imaging is routinely 

performed at higher than 5 μm resolution; specialized setups can achieve 1 μm pixel sizes 

with good molecular coverage. SIMS imaging is similarly performed except that no matrix 

is used, and a tightly focused ion beam is used for surface sampling, allowing for pixel sizes 

down to 100 nm. However, SIMS typically induces molecular fragmentation during the 

sampling process, significantly complicating data interpretation.

Prentice et al used MALDI imaging MS to identify specific phospholipid and glycolipid 

isoforms in pancreatic islets.135 They performed serial imaging MS and 

immunofluorescence microscopy to correlate metabolite signals with specific cell types. 

Multimodal imaging studies have also been performed to combine MALDI and SIMS 

imaging for spatial metabolomics.136 This workflow was used to generate complimentary 

high spatial resolution SIMS and high molecular content MALDI images of human colon 

cancer tissue. The combination of SIMS and MALDI data can be used to determine 

localizations of lipids and cholesterol esters in regions of tumor cells, stroma, and necrosis.

Imaging and single cell metabolomic profiling are developing fields with rapidly advancing 

technologies focused on improving spatial resolution and molecular specificity. These 

innovations are leading to finer spatial fidelity, more complete molecular coverage, and 

ultimately a deeper understanding of the molecular characteristics and interactions between 

cells in tissue microenvironments.
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Single-cell Proteomics

Cell structure and function are largely determined by the proteome—the complement of 

proteins expressed within the cell at a given time.137 Yet, a corresponding technology for 

unbiased and broad profiling of the protein expression at the single cell level has been 

lacking. Single cells contain only picogram total amounts of protein, and as no amplification 

strategy is available, effectively analyzing these trace samples poses an enormous challenge. 

Consistent improvements in instrumentation (such as liquid chromatography, electrospray 

ionization, and MS) have extended protein detection limits to the single cell level138, but 

conventional sample processing is incompatible with single cells due to physical challenges, 

such as nonspecific adsorption of proteins to the surfaces of well plates and inefficient 

digestion kinetics.

Recent innovations have helped us overcome this bottleneck, such than in-depth proteome 

profiling of single cells is now feasible. For example, a microfluidic approach to sample 

processing, called nanodroplet processing in 1 pot for trace samples (nanoPOTS),139 has 

reduced sample preparation volumes from 10s or 100s of microliters to approximately 200 

nanoliters, greatly reducing surface exposure and corresponding protein losses and 

increasing protein concentrations for efficient digestion kinetics. This is accomplished using 

a robotic nanopipetting system for liquid handling, which is capable of subnanoliter 

dispensing accuracy and submicrometer positioning control. The nanopipettor interfaces 

with a microfabricated glass nanowell chip, which replaces the conventional well plate and 

reduces surface exposure in each well to approximately 1 mm2 Coupled with evaporation 

controlling mechanisms, highly sensitive and miniaturized nanoflow liquid chromatography, 

and latest-generation MS instruments, the nanoPOTS platform enables several hundred to 

more than 1000 protein groups to be identified in label-free, single cell analyses.

In addition to miniaturizing sample preparation and increasing the sensitivity of analytical 

instrumentation, researchers have analyzed single cells using tandem mass tag (TMT) 

barcoding, which allows multiple single cell proteomes to be determined in 1 liquid 

chromatography-MS analysis. This approach can increase measurement throughput and 

proteome coverage. Budnik et al first applied TMT labeling to the analysis of single 

mammalian cells with the SCoPE-MS workflow,140 in which isobarically labeled single 

cells were analyzed in the presence of a larger carrier sample comprising hundreds of cells. 

The peptide signals from the combined carrier and single cell samples facilitated 

identification, and peptides from each cell were differentiated based on their corresponding 

reporter ion intensities following MS/MS fragmentation. Importantly, TMT workflows have 

recently been combined with miniaturized sample processing to take advantage of improved 

sample processing efficiency and multiplexing (Fig. 3B). These advances have been applied 

to studies of single cells140, 141 and trace samples139, 142, including those relevant to the 

digestive system. 139, 142 For example, liver tissues were profiled with 50 μm resolution142, 

and 10-μm sections of individual pancreatic islets were studied from patients with and 

without type 1 diabetes 139. Researchers were able to compare the 2 proteomes at the single-

islet level. Of the nearly 3000 proteins profiled from the islets, approximately 300 were 

found to differ significantly in level between the two groups.
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Compared with single cell immunoblotting143, which is an antibody-based assay designed to 

analyze a small number of proteins (approximately 10) per cell, MS-based single cell 

proteomics can quantify nearly 1000 proteins/cell in an unbiased, label-free analysis. 

However, every cell essentially occupies its own liquid chromatography-MS run, so single 

cell proteomic analysis requires more time, coupled to automation for analysis. This is one 

of the barriers to MS-based methods, and keeps them from being widely adopted.

Analyses of metabolomes and proteomes of single cells can identify differences in functions 

among seemingly identical cells; this information might be used in development of 

therapeutic agents. However, technologies for broad proteome and metabolome profiling at 

and near the single cell level are in their infancy; improvements in coverage, measurement 

throughput, and automation are needed before they can used routinely in human research.

Integration of Multi-omic Technologies

For a comprehensive picture of a cell, researchers require information on the genome, 

transcriptome, epigenome, and metabolome to be integrated (Fig. 4). Thus, comprehensive 

multi-omic profiling of single cells is the next frontier of development. Examples of current 

technologies include simultaneous profiling the transcriptome and chromatin-accessibility 

landscape144, 145, and the transcriptome plus a set of candidate protein markers.146 On the 

computational side, in silico multi-modal analytical frameworks permit exploration of 

phenomena indescribable by a single type of data alone and can often operate outside of the 

restrictions of multi-omic experimental methods. Frameworks such as Seurat v3 use 

distributions of cells collected by separate scRNA-seq and scATAC-seq experiments to co-

embed cells into the same low-dimensional space. Further examples borrow other principles 

of multi-modal analysis, based on, but are not limited to, Bayesian modeling, graph theory, 

or deep learning. Respective examples include BREM-SC147, iOmics-PASS148, and 

SAUCIE149. Combinatorial multi- omics approaches could reveal different layers of 

heterogeneities that govern biology and disease phenotypes, but their prospect of being 

implemented in human research remains in question.

Future Directions

Although none of technologies for -omic analysis of single cells are ready for routine use in 

the clinic, many are used in human research and provide information about disease 

development and treatment. The degree by which each technology is adopted into clinical 

studies depends on its ease of use, precision, and reproducibility in generating data from 

minute amounts of material (Fig. 5). Some technologies, such as single cell proteomics, 

require sophisticated instruments and will probably be limited to specialized use in near 

term. Others, such as droplet-based scRNA-seq, is already available widely. A recent case 

study reported use of data from scRNA-seq analysis to guide treatment of drug-induced 

hypersensitivity syndrome.150 The next few years will be an exciting time as various atlasing 

efforts will test the limit of these technologies in generating data that can illuminate basic 

scientific knowledge and inform biomedical decisions.

Islam et al. Page 12

Gastroenterology. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Barcoding Scheme for High-throughput Genomics Analysis of Single Cells
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Figure 2. Potential Clinical Application of Single-cell -omic Technologies
Single-cell -omics profiles of digestive organs from cohort of patients may reveal single cell 

landscapes that predict clinical outcome.
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Figure 3. MS-based Technologies for Analysis of Single Cells
(A) Schematics of common single cell metabolomics profiling and imaging technologies.

(B) Workflow of the nanoPOTS-TMT-based single cell proteomics platform.
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Figure 4. 
Integration of Multi-omic Data
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Figure 5. Technical Maturity of Single-cell -omic Technologies
Technical maturity is the time it takes to run the samples, the equipment requirements for 

these techniques, and the personnel expertise necessary for successful application. 

Abbreviations and citations: STRT-seq (Single-cell Tagged Reverse Transcription, Islam et 

al (2011)); SMART-seq (Switching mechanism at 5′ end of the RNA transcript, Ramskold et 

al (2012)); CEL-seq (Cell expression by linear amplification and sequencing, Hashimshony 

et al (2012)); Quartz-seq (Sasagawa et al (2013)); Dp-seq (Designed Primer-based RNA-

sequencing strategy, Bhargava et al (2013)); MARS-seq (Massively parallel RNA single cell 

sequencing, Jaitin et al (2014)); SCRB-seq (single cell RNA barcoding and sequencing, 

Soumillon et al (2014)); Cyto-seq (Gene expression cytometry, Fan et al (2015)); SC3-seq 

(single cell mRNA 3-prime end sequencing, Nakamura et al (2015)); inDrop-seq (Indexing 

Droplets sequencing, Klein et al (2015)); Drop-seq (Individual cell in Droplets, Macosko et 

al (2015)); 10X Chromium (Zheng et al (2017)); Seq-well (Sequencing in nanowell, Gierahn 

et al (2017)); DroNc-seq (Droplet based single-nuclear sequencing, Habib et al(2017)); 

sciRNA-seq (single cell combinatorial indexing RNA sequencing, Cao et al (2017)); SpLiT-

seq (split-pool ligation-based transcriptome sequencing, Rosenberg et al (2017)); sc-Hi-C 

(Single-cell Hi-C, Nagano et al (2013)); sc-ATAC-seq (Single-cell assay for transposase-

accessible chromatin using sequencing, Buenrostro et al (2015)); sci-ATAC-seq (single cell 

indexing ATAC-seq, Cusanovich et al (2015)); Drop-ChIP (Droplet based single cell ChIP 

sequencing, Rotem et al (2015)); sc-RRBS-seq (Single-cell reduced-representation bisulfite 

sequencing, Guo et al (2015)); ATAC-see (Assay for transposase accessible chromatin with 

visualization, Chen et al (2016)); sc-Aba-seq (Single-cell 5hmC sequencing by AbaSI 

nuclease, Mooijman et al (2016)); sc-WGBS-seq (Single-cell whole genome bisulfide 
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sequencing, Gravina et al (2016)); sc-CGI-seq (CpG island (CGI) methylation sequencing 

for single cells, Han et al (2017)); sci-Hi-C (single cell combinatorial indexed Hi-C, Ramani 

et al (2019)); CUT&Tag (Cleavage Under Targets and Tagmentation, Kaya-Okur et al 

(2019)); dsc-ATAC-seq (droplet single cell assay for transposase-accessible chromatin using 

sequencing, Lareau et al (2019)); ST (Spatial Transcriptomics, Stahl et al (2016)); Slide-seq 

(Slide based spatial sequencing, Rodriques et al (2019)); HDST (High-Density Spatial 

Transcriptomics, Vickovic et al (2019)); NanoPOTS (nanodroplet processing in one pot for 

trace samples, Zhu et al (2018)); Scope-MS (Single Cell ProtEomics by Mass Spectrometry, 

Budnik et al (2018)).
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Table 1:

Cell Capture and Barcoding Methods for Genomic Analyses of Single Cells

Micropipetting Laser Capture 
Microdissection

Flow Sorting Droplet Nanowell Combinatorial 
Indexing

Input Material tissue in situ tissue in situ suspension suspension suspension suspension

Input Cell 
Requirement

No lower bound No lower bound ~10^5 ~10^4 ~10^2 ~10^6

Cell Output < 10^2 < 10^2 ~10^3 ~10^3 ~10^3 ~10^5

Cell Capture cell by cell picking cell by cell picking automated automated deposition by 
gravity

combinatorial 
scheme

Downstream Steps well by well well by well well by well pooled pooled pooled

Ease of Use hard hard moderate easy moderate moderate
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