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Abstract

Healthy peripheral nerves encounter, with increased frequency, numerous chemical, biological, 

and biomechanical forces. Over time and with increasing age, these forces collectively contribute 

to the pathophysiology of a spectrum of traumatic, metabolic, and/or immune-mediated peripheral 

nerve disorders. The blood-nerve barrier (BNB) serves as a critical first-line defense against 

chemical and biologic insults while biomechanical forces are continuously buffered by a dense 

array of longitudinally orientated epineural collagen fibers exhibiting high-tensile strength. As 

emphasized throughout this Experimental Neurology Special Issue, the BNB is best characterized 

as a functionally dynamic multicellular vascular unit comprised of not only highly specialized 

endoneurial endothelial cells, but also associated perineurial cells, pericytes, Schwann cells, 

basement membrane, and invested axons. The composition of the BNB, while anatomically 

distinct, is not functionally dissimilar to that of the well characterized neurovascular unit of the 

central nervous system. While the BNB lacks a glial limitans and an astrocytic endfoot layer, the 

primary function of both vascular units is to establish, maintain, and protect an optimal 

endoneurial (PNS) or interstitial (CNS) fluid microenvironment that is vital for proper neuronal 

function. Altered endoneurial homeostasis as a secondary consequence of BNB dysregulation is 

considered an early pathological event in the course of a variety of traumatic, immune-mediated, 

or metabolically acquired peripheral neuropathies. In this review, emerging experimental 

advancements targeting the endoneurial microvasculature for the therapeutic management of 

immune-mediated inflammatory peripheral neuropathies, including the AIDP variant of Guillain-

Barré syndrome, are discussed.
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INTRODUCTION

The anatomical composition and physiologic uniqueness of the blood-nerve barrier (BNB) 

has been the subject of many excellent review articles, (Kanda, 2013; Reinhold and Rittner, 

2017; Richner et al., 2018) including those within this Experimental Neurology Special 
Issue. In contrast to the neurovascular unit of the blood-brain barrier (BBB), the BNB 

neurovascular unit is associated with two relatively distinct anatomical sites (i) a concentric 

multilayered restrictive physical barrier consisting of perineurial epithelioid myofibroblasts 

concentrated within the innermost layers of the perineurium and (ii) an endoneurial 

microvascular functional unit consisting of pericytes and non-fenestrated tight-junction 

forming endothelial cells each enveloped by a continuous basement membrane. Despite 

being anatomically distinct from the BBB, previous experimental studies have demonstrated 

that the BNB exhibits molecular and biophysical mechanisms that exquisitely serve to 

maintain peripheral nerve endoneurial homeostasis (reviewed in (Greathouse et al., 2016; 

Ubogu, 2013)). Early permeability studies demonstrate qualitatively similar properties of the 

BNB to that of the BBB and include (i) restricted passage of IgG antibodies and of albumin 

and (ii) selective transport of insulin, transferrin, and nerve growth factor (Olsson, 1966; 

Poduslo et al., 1994). Recent studies have raised awareness that reciprocal crosstalk between 

peripheral neurons and adjacent endoneurial blood vessels occurs not only during fetal and 

postnatal development but throughout adulthood and during neural repair (Wild et al., 2017). 

These findings support the emerging concept of a functional neurovascular unit operating 

within the peripheral nervous system and must be taken into account when considering novel 

therapeutic approaches for the management of the diverse array of peripheral neuropathies.

Whereas the perineurium presents a formidable restrictive barrier to systemic therapeutic 

strategies, the endoneurial microvasculature is the penultimate interface between the 

arteriole blood supply and that of the endoneurial microenvironment (Kanda, 2013). By 

limiting recruitment and paracellular passage of activated monocytes/leukocytes, emerging 

therapeutic strategies targeting the endoneurial microvasculature tight-junctions are 

considered promising and potentially effective adjuncts to current standard of care treatment 

of inflammatory disorders (Getter et al., 2019; Langert and Brey, 2018; Upadhyay, 2014). 

This is particularly relevant when considering immune-mediated inflammatory neuropathies 

(Shimizu and Kanda, 2015).

Transendothelial migration (paracellular trafficking) of leukocytes into peripheral nerves is 

recognized as an early pathologic hallmark of acquired inflammatory demyelinating nerve 

disorders (Greathouse et al., 2016; Kieseier et al., 2018; Maiuolo et al., 2019; Ubogu, 2015; 

Zhang et al., 2019). Often acting in concert with cellular adaptive immunity, many 

inflammatory peripheral neuropathies (eg., Guillain-Barré Syndrome and it’s clinical 

subtypes; chronic inflammatory demyelinating polyradiculoneuropathy; multifocal motor 

neuropathy; MGUS neuropathy) also involve pathologic humoral adaptive immune 

responses (Lawlor et al., 2002; Querol et al., 2017; Sarkey et al., 2007; Schafflick et al., 

2017; Zhang et al., 2019). Exactly how pathogenic antibodies gain access to the 

endoneurium remains a matter of debate. An intact BNB would be expected to restrict 

access of circulating immunoglobulins. However, it well documented that endothelial cells 
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of the BBB are not entirely impermeable to macromolecules, including IgG antibodies. In 

contrast to utilizing clathrin-dependent receptor-mediated transcellular transport (Villasenor 

et al., 2019), recent studies suggest that IgG immunoglobulins cross central endothelial 

barriers using a mechanism involving nonspecific fluid-phase transcytosis while transport of 

IgG across peripheral endothelial barriers is dominated by a mechanism involving caveolae-

dependent receptor-mediated (FcRn) transcellular transport (Ruano-Salguero and Lee, 

2020). Although it remains unclear whether endoneurial endothelial cells are capable of IgG 

transcytosis, a recent characterization study of the human BNB transcriptome reported the 

presence of an Fc IgG receptor and transporter transcript (Palladino et al., 2017).

Clinical and preclinical studies further suggest that the innate immune response in the form 

of macrophage lineage cell endoneurial infiltrates also plays a pivotal role at eliciting nerve 

injury in inflammatory nerve disorders. Although seemingly distinct, innate and adaptive 

immune responses are not mutually independent, but rather are functionally linked in part by 

binding of immune complexes to cellular Fc-gamma receptors (FcγRs) expressed on 

infiltrating macrophages/monocytes (Hogarth, 2002; Nimmerjahn and Ravetch, 2008; Takai, 

2002). Given that both innate and adaptive immune responses play key roles in the 

pathogenesis of inflammatory nerve disorders, strategies reviewed below that selectively 

target and disrupt paracellular trafficking or transcytosis into peripheral nerves offers new 

and promising options for improved therapeutic management of affected patients (Figure).

Alternatively, whereas strategies designed to restrict transcytosis of harmful autoantibodies 

or paracellular trafficking of autoreactive leukocytes may prove beneficial to patients with 

inflammatory disorders, the management of other neurologic disorders need to consider 

strategies that are designed to open, rather than restrict, endothelial barriers (Figure). 

Delivery of certain classes of hydrophilic analgesics (e.g. opioid peptides) for the 

management of intractable peripheral nerve pain, for example, can be particularly 

problematic in patients with an intact BNB. To address this challenge, several distinct 

strategies designed to transiently open the BNB are currently under intense experimental 

investigation (for a recent review, see (Reinhold and Rittner, 2017)). Early studies showed 

that hypertonic solutions could transiently breach the BBB (Rapoport, 2000). Approximately 

a decade later, perineural injection of hypertonic saline was shown to transiently open the 

BNB, not by mechanical disruption but by a receptor-mediated mechanism leading to 

reduced expression of tight-junction proteins (Hackel et al., 2012a; Hackel et al., 2012b). 

Experimental studies specifically targeting tight-junction proteins using siRNA (Hackel et 

al., 2012a), peptidomimetics (Staat et al., 2015), or miRNAs (Yang et al., 2016) have also 

proved effective at transiently opening the BNB without eliciting detectable peripheral nerve 

damage. Exploitation of transcytosis represents an attractive alternative by which to deliver 

hydrophilic therapeutic agents/therapeutic antibodies across an intact BNB. This, however, 

remains currently speculative, as additional studies demonstrating functional relevance of 

transcytosis at the BNB are currently lacking. Despite pre-clinical advancements, there 

appears to be a paucity in clinical trials that are designed to evaluate the blood-nerve barrier 

as a targetable strategy for the management of neuropathic pain. Out of 2908 currently 

registered (ClinicalTrials.gov) clinical trials that address chronic pain, and 1055 trials that 

specifically address neuropathic pain, none appear to be exploring strategies that transiently 

breach the BNB. Similarly, none of the 964 clinical trials registered with the European 
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Union Clinical Trials Register that address chronic pain, and 253 trials that specifically 

address neuropathic pain, utilize this potential strategy. There is, however, a single non-

interventional observational clinical trial registered with the German Clinical Trials Register 
(DRKS00017731) that is investigating the role for tight junction proteins, including 

claudin-5, as potential biomarkers for inflammatory and non-inflammatory 

polyneuropathies. Alternatively, emerging pre-clinical advancements in bioengineering 

strategies are showing promise as a way to facilitate local, controlled targeted delivery of 

therapeutics to peripheral nerves as a function of underlying BNB integrity, as recently 

reviewed (Langert and Brey, 2018).

ENDONEURIAL ENDOTHELIAL CELLS

Within a given species, endoneurial endothelial cells of the peripheral nerve 

microvasculature are uniquely distinct from endothelial cells that establish the 

microvasculature of the epineurium and perineurium. Endothelial cells of the precapillary 

arterioles that form the vasa nervosum, which courses lengthwise along the external surface 

of the epineurium, exhibit numerous fenestrations while lacking tight- or adherens-junction 

proteins (Ubogu, 2013). As these vessels branch and penetrate the concentric layers of the 

perineurium they emerge as capillaries within the endoneurium. The endothelial cells of 

these endoneurial capillaries are quite different from those of the precapillary arterioles. 

Endoneurial endothelial cells exhibit properties uniquely characteristic of a functional blood 

barrier, having lost their fenestrations and now are more prominently connected to adjacent 

endothelial cells by expressing a continuous array of tight- and adherens-junction proteins. 

Early ultrastructural studies of endoneurial microvessels within biopsy specimens from 

patients with immune-mediated neuropathies, however, exhibit fenestrations or intercellular 

gaps along with a loss of tight-junctions (Kanda et al., 2004; Lach et al., 1993; Meier et al., 

1984). Breakdown of the BNB is considered a critical event in the pathophysiology of 

inflammatory demyelinating polyradiculoneuropathies, allowing pathogenic autoantibodies 

access to the normally restricted endoneurium (Abe et al., 2012; Maiuolo et al., 2019; 

Mathey et al., 2015; Shimizu and Kanda, 2015). However, despite circumstantial evidence 

from biopsy and serological studies showing antibody deposition on the outer surface of 

Schwann cells and compact myelin in some affected patients (Dalakas and Engel, 1980; 

Hays et al., 1988), there remains much contention surrounding the pathogenicity of myelin-

directed autoantibodies (Liu et al., 2018). By comparison, ultrastructural studies of nodal 

and paranodal regions of affected nerves show abnormalities in Schwann cell microvilli and 

paranodal glial loops (Cifuentes-Diaz et al., 2011), with between 10–30 percent of CIDP 

patients exhibiting serum IgG antibodies binding to either nodal or paranodal regions 

(Devaux et al., 2012). Regardless of causality, the most effective strategies currently 

approved for the clinical management of GBS patients are limited and restricted to the use of 

nonselective immune-modulating therapies (intravenous immunoglobulin or plasma 

exchange).

Although the pathologic mechanism responsible for immune-mediated disruption of 

endoneurial endothelial tight-junction integrity remains unclear, the use of cultured primary 

or immortalized endoneurial endothelial cell lines has implicated several endogenous 

mediators (humoral, inflammatory cytokines, VEGF) as potential therapeutic targets (Gironi 
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et al., 2010; Kanda et al., 2003; Reddy et al., 2013; Shimizu et al., 2011). Given that 

breakdown of the BNB plays a key role in the progression of peripheral nerve injury and 

ensuing long-term neurologic deficits, elucidating the molecular mechanisms that regulate 

the BNB integrity is anticipated to facilitate the development of novel therapeutic strategies 

for the management of immune-mediated inflammatory neuropathies.

As an established first-line treatment for most inflammatory neuropathies (Muley et al., 

2008), it is interesting to note that corticosteroids have been shown to promote marked 

expression of the tight-junction proteins in cultured endothelial cells (Felinski et al., 2008; 

Firestone and Kapadia, 2014; Kashiwamura et al., 2011). Not all cultured endothelial cells 

are, however, phenotypically alike. Endothelial cells from different vascular beds within a 

given species exhibit organ-specific structural and functional heterogeneity (Feng et al., 

2007; Yano et al., 2007). Early morphometric studies suggest that minor interspecies 

differences may even exist between endoneurial microvessels (Bell and Weddell, 1984a, b). 

A recent molecular study characterized the transcriptome from human endoneurial 

microvessels as consisting of 12881 unique transcripts expressed by endoneurial endothelial 

cells inclusive of an impressive array of transporters (509), chemokine and chemokine 

receptors, as well as over 100 junctional complex proteins (22 tight junction/JAMs; 45 

adherens junction/associated; 52 cell-junction/adaptor proteins) (Palladino et al., 2017). 

Primary endoneurial endothelial cells isolated from different species by different 

laboratories (Abe et al., 2012; Argall et al., 1994; Kanda et al., 1997; Kanda et al., 2000; 

Kanda et al., 2003; Langert et al., 2013b; Sano et al., 2007; Ubogu, 2013; Yosef and Ubogu, 

2013; Yosef et al., 2010) appear to have, however, remarkably similar cellular and molecular 

characteristics (Table 1). One notable distinction, however, is with observed transendothelial 

electrical resistance (TEER), a widely accepted quantitative measure of tight-junction 

integrity. Depending on the experimental conditions employed, cultures of human primary 

endoneurial endothelial cells exhibit a 7–10 fold increase in TEER (Ubogu, 2013) compared 

with cultured human brain primary capillary endothelial cells (Davidson et al., 2009) or with 

human or rat primary endoneurial endothelial cells (Abe et al., 2012; Langert et al., 2013b). 

While these findings suggest the possibility of an interspecies difference, it is well 

established that peripheral nerve pericytes maintain BNB function by releasing mitogens 

(Oishi et al., 2019; Ubogu, 2013), including basic fibroblast growth factor (bFGF), which 

has been shown to enhance the expression of endothelial tight-junction proteins (Shimizu et 

al., 2010). Moderate concentrations (0.5–5 ng/ml) of bFGF-2 were reported to enhance BBB 

tight-junction protein expression ex vivo in organotypic cortical slice cultures (Bendfeldt et 

al., 2007). A recent in vitro study further demonstrated that bFGF-induces upregulation of 

tight-junction proteins in cultured human brain microvascular endothelial cells (Wang et al., 

2016). Culturing human primary endoneurial endothelial cells in the presence of 

recombinant human bFGF may, thus, account for some of the differences in observed TEER 

values between these two species. Collectively, pre-clinical findings support a role for 

certain mitogens at preserving or restoring BNB integrity. Reported limitations of targeted 

mitogen therapy in peripheral neuropathies/chronic pain, however, warrants due caution with 

regards to any localized therapeutic application of these agents.
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TARGETING INTRACELLULAR MEDIATORS OF BNB INTEGRITY

G-Proteins Modulators—Monomeric GTP binding proteins (G-proteins) belonging to 

the Rho family of GTPases are actively engaged at regulating transendothelial paracellular 

trafficking of leukocytes across endoneurial endothelial microvessel interfaces (Infante and 

Ridley, 2013; Sarkey et al., 2007; Wang et al., 2016). As a result, interest in isoprenylated G-

proteins as potentially novel therapeutic targets for the management of immune-mediated 

neuropathies is growing (Langert et al., 2017; Langert et al., 2014; Langert et al., 2013a; 

Sarkey et al., 2007). Belonging to the Ras superfamily of monomeric G-proteins, the Rho 

family consists of over 20 members which have been categorized into eight distinct 

subfamilies. Among these subfamilies, Rho, Rac1, and Cdc42 are best studied and largely 

regulate cytoskeletal dynamics affecting a diverse array of intracellular processes including 

cell polarity, intracellular vesicle trafficking, endocytosis, cell cycle progression, cell 

contractility, and the formation of stress fibers or focal adhesions (Burridge and Wennerberg, 

2004; Mackay and Hall, 1998).

The participation of Rho family of G-proteins in the regulation of leukocyte paracellular 

trafficking across endoneurial endothelial barriers first emerged from experimental studies 

using statins, well-tolerated inhibitors of the cholesterol biosynthetic pathway (Adamson and 

Greenwood, 2003; Greenwood and Mason, 2007). By limiting the endogenous production of 

bioactive sesquiterpene (farnesyl) and diterpene (geranylgeranyl) isoprenoids, statins prevent 

post-translational prenylation of G-proteins, including members of the Rho subfamily. 

Although the biochemical consequences of post-translational prenylation remains to be fully 

elucidated, one biophysical attribute is to enhance the hydrophobicity of nascent G-proteins 

thereby facilitating intracellular membrane localization and subsequent activation of these 

key biomolecular switches (Stubbs and Von Zee, 2012). Early observational studies provided 

the first functional evidence that a short-term high-dose course of statins markedly restricts 

transendothelial trafficking of autoreactive leukocytes into peripheral nerves and safely 

attenuates the development and progression of experimental autoimmune neuritis (EAN), a 

well-established animal model of AIDP/GBS (Sarkey et al., 2007). Follow-up mechanistic 

studies demonstrated that statins limit transendothelial migration of autoreactive leukocytes 

into peripheral nerves by inhibiting TNF-α mediated Cdc42-faciliated secretion of 

endoneurial endothelial cell-expressed CCL2, a chemokine implicated in GBS (Langert et 

al., 2014; Langert et al., 2013a). These reported findings agree well with previous studies 

documenting CCL2 chemokines, in addition to CCL5, CXCL8, and CXCL10 chemokines, 

as well-known mediators of leukocyte migration across endothelial barriers (Oppenheim et 

al., 1991; Subileau et al., 2009). While rare, but serious, adverse side effects associated with 

chronic systemic statin use currently prohibit their therapeutic application for the 

management of inflammatory peripheral neuropathies (Aiman et al., 2014; Golomb and 

Evans, 2008), selective localized targeting of endoneurial endothelial cell chemokine release 

remains a potentially effective therapeutic strategy by which to limit the recruitment and/or 

migration of autoreactive leukocytes across cytokine-activated endoneurial microvessels 

(Figure 1). Given that CC-chemokines are also known to promote inflammation-driven 

angiogenesis, specific inhibition of CC-chemokine signaling are being currently explored as 

a novel therapeutic strategy for the management of angiogenesis associated pathological 

diseases (Ridiandries et al., 2016; Ridiandries et al., 2017). Experimental studies have 
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further identified various chemokines as key mediators of communication between neurons 

and neighboring non-neuronal cells (Ramesh et al., 2013). In addition to limiting leukocyte 

paracellular recruitment across the BNB, therapeutic approaches that further disrupt 

chemokine-mediated communication between neurons and infiltrating or resident non-

neuronal cells are being evaluated for the management of chronic inflammatory pain (Akgun 

et al., 2015; Montague and Malcangio, 2017; Ubogu, 2011; White et al., 2007). Despite 

showing promise in early preclinical trials, the systemic use of chemokine antagonists as a 

therapeutic strategy for the management of chronic inflammatory disorders, including pain, 

has yet to be realized in phase clinical trials (Horuk, 2009a, b; Yekkirala et al., 2017).

An alternative mechanism by which statins may limit leukocyte trafficking across 

endothelial barriers is by direct enhancement of endothelial cell tight-junction formation. By 

suppressing endogenous isoprenylation of Rap1A (a member of the Ras oncogene family of 

small G-proteins), statins indirectly stimulate mitogen activated protein (MAP) kinase ERK5 

in cultured human cardiac microvascular endothelial cells (Wilkinson et al., 2018). ERK5 is 

one of four major mitogen activated kinases (Buschbeck and Ullrich, 2005) and is critically 

needed to preserve vascular integrity in adult mice. Growth factor-stimulated activation of 

MAP kinases, including ERK5, typically results in nuclear translocation of this kinase and 

subsequent transcriptional regulation (Kondoh et al., 2006). However, statin-mediated 

activation of ERK5 in endothelial cells uniquely promotes translocation of this MAP kinase 

to the plasma membrane. Whether ERK5 is expressed by endoneurial endothelial cells and, 

if so, exactly how ERK5 enhances endothelial barrier integrity at this subcellular domain 

remains to be determined but may involve facilitating localized accumulation of zonula 

occludens-1 (Tornavaca et al., 2015) scaffolding proteins to subcortical F-actin tight-junction 

domains. The effect of statins on BNB integrity are not without precedence, as similar statin-

mediated increases in tight-junction formation have been observed with cultured primary 

endothelial cells from human pulmonary artery (Chen et al., 2014) or from rat brain 

(Morofuji et al., 2010). Although it remains to be determined whether G-proteins play a key 

role in regulating BNB tight-junction formation, mitogen (bFGF)-mediated upregulation of 

tight-junction protein expression in human brain microvascular endothelial cells occurs, in 

part, through a mechanism that involves Rac1-dependent inhibition of RhoA (Wang et al., 

2016). Localized application of inhibitors of G-protein signaling (Langert et al., 2017) 

represent an attractive experimental alternative to the therapeutic management of not only 

immune-mediated but also metabolic peripheral neuropathies (Shah and Singh, 2006). While 

the development and clinical application of inhibitors that target small GTPases is not 

exactly novel (Prieto-Dominguez et al., 2019), additional studies are warranted before 

translational value of this strategy can be fully realized for the management of acquired 

peripheral nerve disorders.

Claudin Modulators—In contrast to strategies designed to protect the endoneurial 

microenvironment by enhancing BNB integrity, there are some neurologic disorders such as 

chronic pain that may be best managed clinically by transient relaxation of BNB integrity. 

This is particularly necessary when considering the targeted delivery of hydrophilic 

therapeutics (e.g., opioid receptor peptidomimetics, voltage-activated sodium channel 

blockers) which, unlike hydrophobic compounds, do not readily diffuse across an intact 
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BNB. Targeted disruption of the BNB is neither novel nor particularly difficult to 

experimentally achieve. Early studies showed that peripherally administered hypertonic 

saline elicits a transient breach of the BNB thereby enhancing antinociceptive properties of 

applied opioid peptides (Rittner et al., 2009; Stein, 2013). Mechanistic studies revealed that 

hypertonic saline relaxes the BNB integrity through a matrix metalloperoteinase-9 (MMP-9) 

facilitated, LDL receptor-related protein-1 (LRP-1) stimulated, ERK1/2-dependent down-

regulation of claudin-1, a tetraspanin barrier-forming tight-junction protein expressed within 

the perineurium (Hackel et al., 2012b). Alternatively, upregulation of MMPs following nerve 

injury may alter BNB integrity through degradation of various endothelial tight junction 

proteins (Chernov et al., 2015; Qin et al., 2016; Wang et al., 2018; Yu et al., 2016). In 

contrast, tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) is similarly upregulated in 

response to peripheral nerve injury (Chernov et al., 2015; Kim et al., 2012; Remacle et al., 

2018) which may serve to temporally and spatially regulate MMP-induced changes in BNB 

integrity. Given the pro-algesic properties of multiple MMPs, local inhibition of these 

extracellular zinc proteases with exogenous TIMP therapy has been reported in preclinical 

studies to exhibit potent analgesic beneficial properties (Kawasaki et al., 2008). However, 

while MMPs have been the focus for inhibitor design for many decades, MMP inhibitors 

have failed in various clinical trials owing to a lack of isoform specificity thus necessitating 

further development (Arkadash et al., 2017).

An analogous approach by which to down-regulation of perineurial claudin-1 expression 

includes the use of the LRP-1 agonist tissue plasminogen activator (tPA), which upregulates 

in an ERK1/2-dependent manner the expression of transcriptional repressors microRNA-29b 

or microRNA-183 (Yang et al., 2016). Advancements using specific siRNAs to target 

perineurial expression of tight-junction proteins, including claudin-1, also shows 

experimental promise (Hackel et al., 2012a; Rittner et al., 2012). Alternatively, perineurial 

application of a claudin-1 peptidomimetics (C1C2), which binds to the first extracellular 

loop of claudin-1, has been shown to selectively and safely relax the BNB integrity allowing 

access of hydrophilic analgesics to axonal nociceptors (Sauer et al., 2014; Staat et al., 2015).

In contrast to localized expression of claudin-1 at the perineurial barrier, claudin-5 is a 

tetraspanin tight-junction protein that is largely localized to junctional contacts between 

endoneurial endothelial cells and is considered a key regulator of both peripheral and central 

paracellular permeability (Lux et al., 2020; Wang et al., 2018). Most recently, regulated 

expression of claudin-5 has been proposed as a novel therapeutic strategy by which to better 

manage a variety of disparate CNS neurologic disorders including Alzheimer’s disease, 

multiple sclerosis, depression and schizophrenia (Greene et al., 2019). Previous studies, 

however, have raised concerns regarding the functional role of claudin-5 at regulating BNB 

permeability, and thus its role in BNB permeability remains controversial. 

Immunohistochemical studies of sural nerve biopsy specimens from patients with chronic 

inflammatory demyelinating polyradiculoneuropathy (CIDP, n=10) showed a ~35% 

reduction in claudin-5 expression within endoneurial microvessels compared with disease-

control nerves from patients with Churg-Strauss syndrome (n=6), hereditary neuropathy 

(n=6), or with nutritional (B1-deficient, n=4) neuropathy (Kanda et al., 2004). As a 

ubiquitously expressed tight-junction protein, reduced expression of endoneurial endothelial 

claudin-5 might be expected to enhance BNB permeability. However, the loss of claudin-5 
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immunoreactivity did not correlate with endoneurial/sub-perineurial edema in sural nerves 

from CIDP patients. Another tetraspanin protein implicated in the maintenance of BNB 

integrity is occludin. Levels of occludin immunoreactivity in endoneurial microvessels did 

not change appreciably in inflammatory neuropathies (Kanda et al., 2004). These findings 

would suggest that, unlike CNS expressed claudin-5, molecular strategies designed to 

selectively alter endoneurial endothelial claudin-5 / occludin expression may not be as 

effective at altering the BNB integrity.

TARGETING EXTRACELLULAR MEDIATORS OF BNB INTEGRITY

Pericytes, Basement Membranes, and Integrin Modulators—Molecular details 

responsible for cell-surface tethering, rolling, adhesion and paracellular/transcellular 

diapedesis of activated leukocytes out of circulating blood, across endothelial barriers, and 

into the perivascular space are well documented and have been the subject of many excellent 

reviews (Ley et al., 2007; Liu et al., 2004; Mamdouh et al., 2009; Muller, 2011, 2014). Less 

clear, however, are details on how transmigrating leukocytes subsequently traverse basement 

membranes, which physically encase endoneurial endothelial cells and associated abluminal 

pericytes and functionally serve as a potentially rate-limiting protective barrier to the 

endoneurium.

Pericytes are perivascular mural cells that extend along nearly every capillary in the human 

body and are embedded in the vascular basement membrane of microvasculature (Armulik 

et al., 2011a; Armulik et al., 2011b; Zhao and Chappell, 2019). They are particularly 

enriched in endoneurial microvessels and are now recognized as key cellular contributors of 

BNB integrity (Shimizu and Kanda, 2015; Shimizu et al., 2008). Recent studies support the 

existence of pericytes subtypes (ensheathing, mesh, and thin-strand) that correspond to their 

physical location on any given microvascular network (Zhao and Chappell, 2019). The 

influence of the local neurovascular microenvironment together with phenotypic subtypes 

may very well contribute to the unique phenotype of peripheral nerve pericytes. In addition 

to serving as a local source of essential neurotrophic factors (NGF, BDNF, GDNF), 

peripheral nerve pericytes are largely responsible for establishing and maintaining the 

biochemical composition of endothelial basement membranes through their synthesis and 

release of several prominent extracellular matrix constituents including collagen type IV, 

fibronectin, vitronectin, and TIMP-1 (Richner et al., 2018; Shimizu et al., 2010; Zhao and 

Chappell, 2019). An additional major functional component of basement membranes 

produced by pericytes include glycoproteins belonging to the laminin family. Three distinct 

laminin chains (cell binding domain α, β, γ) combine to form up to twelve different 

heterotrimeric isoforms. Of these isoforms, only laminin 411 (α4β1γ1 or laminin 8) and 

laminin 511 (α5β1γ1 or laminin 10) are found in endothelial basement membranes (Frieser 

et al., 1997; Sixt et al., 2001). Post capillary venule endothelial cell expression of laminin 

511 appears variable while expression of laminin 411 is ubiquitous. Venules lacking laminin 

511 are permissive to leukocyte diapedesis, while in vitro studies show that laminin 511 

selectively inhibits transmigration of autoreactive T cells (Wu et al., 2009). These findings 

suggest that differential expression of laminin isoforms may play a role in directly regulating 

leukocyte transendothelial trafficking (Fujikawa et al., 2017; Sixt et al., 2001).
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The mechanism by which laminins are able to enhance BNB integrity and limit leukocyte 

diapedesis was recently elucidated and involves stabilization of endothelial cell adherens 

junctions (Song et al., 2017). Paracellular transmigration of leukocytes across endoneurial 

endothelial cell-cell interfaces is governed by junctional localization of both tight junction 

and adherens junctions (cadherens) proteins. Localization of VE-cadherin to junctional 

compartments appears to contribute to the regulation of leukocyte diapedesis, as reduced 

junctional localization of these adherens proteins enhances leukocyte transmigration (Wessel 

et al., 2014). A major class of extracellular matrix binding receptors expressed on the 

surface of endothelial cells are the β1 integrins. These heterodimeric transmembrane 

proteins consist of one α- and one β-subunit that binds with, and adheres to, several classes 

of extracellular matrix proteins, including collagen IV, perlecan, and laminins (Henry et al., 

2001). Endothelial cell expression of β1 integrins are required for junctional localization of 

VE-cadherens (Yamamoto et al., 2015). In preclinical studies using cultured mouse brain-

derived endothelial cells (bEND.5), β1 (and β3) integrin binding to laminin 511 is shown to 

selectively elicit RhoA-mediated localization and stabilization of VE-cadherens to cell-cell 

interfaces which correlated with increased TEER and reduced leukocyte paracellular 

transmigration (Song et al., 2017). Whether endoneurial endothelial cells cell-cell interfaces 

are similarly influenced by integrin signaling remains to be determined, but once again we 

see a penultimate role of small monomeric GTPases participating in the regulation of the 

BNB integrity. In this case, however, local targeted disruption of RhoA signaling (e,g., 

statins) in endoneurial endothelial cells would be anticipated to disrupt laminin-dependent 

stabilization of adherens junctions and thereby transiently alter BNB integrity. In addition to 

influencing endothelial cell VE-cadherin junctional localization, disrupting β1 integrin 

signaling also decreases claudin-5 expression in cerebral endothelial cells and increases the 

permeability of cerebral microvessels (Osada et al., 2011). While these preclinical findings 

are encouraging, development/application of localized therapeutic strategies designed to 

disrupt endoneurial endothelial cell β1 integrin signaling may be of limited clinical value 

given (i) the controversial functional role of claudin-5 at regulating the BNB permeability 

and (ii) restricted abluminal accessibility of therapeutic agents to the site of integrin-basal 

lamina matrix.

Vascular Endothelial Growth Factor—A major early hallmark in the pathogenesis of 

inflammatory peripheral neuropathies involves elevated circulating levels of BNB-disrupting 

pro-inflammatory cytokines. Among these, pericyte-produced vascular endothelial growth 

factor (VEGF) is particularly effective at enhancing central and peripheral paracellular 

permeability in association with its pro-angiogenic properties (Shimizu et al., 2010; Shimizu 

et al., 2011; Shimizu et al., 2008). By activating tyrosine kinase receptors (VEGFR1, 

VEGFR2), VEGF isoforms potently reduces the endothelial cell-cell junctional expression 

of the junctional proteins occludins and VE-cadherins thereby increasing vascular 

permeability of endoneurial microvessels (Gale and Yancopoulos, 1999; Kevil et al., 1998). 

As a key mediator of neovascularization, several anti-VEGF related therapies are currently 

used in clinical settings for the management of various neoplasms as well as several ocular 

disorders involving pathologic neovascularization (Khanna et al., 2019; Sitohy et al., 2012). 

Recently, the role of VEGF isoforms and its two neuropilin co-receptors (NRP-1, NRP-2) in 

the pathophysiology of chronic pain has been reviewed and discussed in the context as a 
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potentially druggable target for the management of painful neuropathies (Llorian-Salvador 

and Gonzalez-Rodriguez, 2018). While preclinical studies support VEGF/VEGFR blockade 

as a successful strategy to alleviate nociceptive responses in various animal models (CCI, 

sciatic nerve ligation, diabetic neuropathy) of neuropathic pain, a retrospective cohort study 

found that neutralization of VEGF-A exacerbated paclitaxel-induced neuropathy (Matsuoka 

et al., 2016). The possibility that different VEGF isoforms exhibit distinct pro- or anti-

nociceptive properties (Hulse, 2017) further complicates the use of anti-VEGF therapies for 

the management of neuropathic pain. Thus, the application of localized anti-VEGF therapies 

for the management of immune-mediated inflammatory neuropathies should be viewed with 

extreme caution as VEGF itself has been shown to be an effective mediator of central 

neurogenesis and neuroprotection (Li et al., 2017) and may be crucial for revascularization 

of injured peripheral nerves (eg, vasculitic neuropathy).

Integrin : Cell Adhesion Molecule Modulators—By their selective interactions with 

leukocyte expressed β1- or β2-integrins, several distinct endothelial cell surface expressed 

cell adhesion molecules (CAMs) play pivotal roles in the tightly regulated temporal and 

spatial “capturing” of activated leukocytes prior to transendothelial (paracellular) migration 

into the PNS (Mitroulis et al., 2015; Muller, 2011). Given its penultimate role of leukocyte 

recruitment and migration, disrupting integrin:CAM signaling remains a key therapeutic 

strategy for the management of inflammatory disorders (Archelos et al., 1994; Archelos et 

al., 1993; Archelos et al., 1999; Mitroulis et al., 2015).

In general, the leukocyte adhesion cascade begins with endothelial-expressed (E, P) and 

leukocyte-expressed (L)-selectin-dependent rolling followed by chemokine-induced 

leukocyte activation. Slow rolling allows for integrin-dependent firm adhesion/arrest of the 

“captured” leukocytes on the luminal surface of activated endothelium, ultimately enabling 

paracellular diapedesis. Both integrin affinity (integrin:ligand bond strength) and integrin 

valency (integrin receptor clustering) play a role in defining the overall avidity of integrin-

mediated cell adhesion. In mammals, multiple integrin α-subunit isoforms (18) and β-

subunit isoforms (8) have been described, forming a diverse functional array of 24 unique 

integrin heterodimers. Therapeutic strategies designed to limit pathogenic leukocyte 

paracellular migration across activated endoneurial endothelial barriers must therefore take 

into consideration the isoform specificity of localized leukocyte integrin:CAM interactions. 

Leukocyte-expressed integrins Lymphocyte Function-associated Antigen-1 (LFA-1; CD11a 

(αL)/CD18 (β2)) and Very Late Antigen-4 (VLA-4; CD49d (α4)/CD29 (β1)) both play 

essential roles in leukocyte recruitment/trafficking and in inflammatory disorders. 

Endothelial-expressed binding partners for these two integrins include ICAM-1 and 

VCAM-1, respectively. In addition, a second key β2-integrin:CAM interaction involved in 

recruitment of activated macrophages is Macrophage-1 Antigen (Mac-1; CD11b (αM)/

CD18 (β2)) integrin:ICAM-1 (Podolnikova et al., 2016).

Despite exquisite diversity among integrin:CAM cell-cell interactions (Archelos et al., 

1999), some progress has been made toward selective therapeutic application targeting 

integrin signaling. Blockade of leukocyte VLA-4: endothelial cell VCAM-1 interactions 

with the humanized monoclonal antibody natalizumab has proven clinically safe and 

effective at managing relapse-remitting multiple sclerosis (Brandstadter and Katz Sand, 
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2017). Preclinical studies suggest that blockade of αM-integrin:ICAM-1 signaling may also 

be an effective strategy by which to limit leukocyte trafficking across activated endoneurial 

endothelial cell barriers (Yosef and Ubogu, 2012). The targeting of α4-integrin receptors for 

the management of immune-mediated neuropathies, however, is less encouraging, as case 

reports of natalizumab for the treatment of CIDP are disappointing (Vallat et al., 2015; Wolf 

et al., 2010). These studies highlight anticipated differences in clinical responsiveness 

between central (BBB)- or peripheral (BNB)-targeted therapies and underscore the need to 

tailor therapeutic strategies towards leukocyte:endoneurial endothelial cell expressed 

integrin:CAM selective interactions.

FUTURE TARGETING STRATEGIES

An alternative experimental strategy that is currently under intense investigation includes 

selective targeting of endoneurial endothelial cell expressed intercellular adhesion 

molecule-1 (ICAM-1) for local delivery of proven therapeutics using nanotherapy (Langert 

et al., 2017). Although ICAM-1 is expressed constitutively at low levels on most 

microvascular endothelial cells and on some lymphocytes and monocytes, its expression can 

be significantly increased in the presence of pro-inflammatory cytokines (Hubbard and 

Rothlein, 2000). Consistent with this observation, cultured endoneurial endothelial cells 

were found to robustly upregulate the cell surface expression of ICAM-1 in response to a 

TNF-α challenge (Langert et al., 2013b). By functionalizing PLGA nanoparticles with 

purified membrane fragments enriched in the ICAM-1 binding partner LFA-1, efforts are 

underway to determine whether systemically administer nanoparticle-encapsulated 

therapeutics will selectively deliver their payload to activated endoneurial microvessels that 

express increase levels of ICAM-1 (Langert and Brey, 2018). A challenge which currently 

limits the clinical application of any new therapeutic strategy, including translatable 

nanotherapies that target integrin:CAM interactions, is the possibility of off-target effects.

Depending on the clinical application, intracellular and extracellular targeted therapies that 

alter the BNB integrity are showing promise as the next generation of much needed 

clinically viable alternatives to the current standard of care for the management of traumatic, 

metabolic, or immune-mediated inflammatory neuropathies. It is hoped that the many 

exciting articles presented within, and referenced throughout, this Experimental Neurology 
Special Issue will renew interest and foster further enthusiasm for the development, testing, 

and ultimate clinical application of novel and innovative BNB therapeutics.
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Figure: 
Illustration of a serpentine junctional interface between two endoneurial endothelial cells 

emphasizing multiple putative intracellular and extracellular therapeutic molecular targets 

currently under intense investigation for the management of inflammatory peripheral 

neuropathies/neuropathic pain. Strategies include preclinical evaluation of inhibitors/

activators that are designed to either limit paracellular trafficking of leukocytes across 

perineurial/endothelial barriers or, in the case of neuropathic pain, transiently open 

restrictive perineurial/endothelial barriers. Shown is a partial selection of targets of interest 

which includes (a) the Rho family of small monomeric GTPases affecting chemokine 

release (b & c) mitogen-stimulated GTPase-dependent upregulation of tight junction protein 

expression (d) matrix metalloproteinases / TIMP-1 (e) tPA-LRP-1 dependent expression of 

claudin-specific miRNAs (f) ECM-integrin facilitated GTPase-mediated localization and 

stabilization of VE-cadherins (g) integrin-CAM signaling and (h) caveolae-dependent 

transcellular trafficking. Therapeutic strategies currently approved for the clinical 

management of inflammatory neuropathies include non-specific immune modulating 

corticosteroids, intravenous immunoglobulins, or plasmapheresis. Clinical strategies used for 

the management of neuropathic pain, while pharmacologically numerous, do not currently 

target the BNB.
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Table 1.

Cellular and Molecular Characteristics of Cultured Primary Endoneurial Endothelial Cells

Species Cellular Characteristics Molecular Characteristics

Rat • Spindle-like / Cobblestone 
appearance

• Contact-inhibited monolayer

• Diameter: 20.5 ± 3.2 μm

• Proliferative (doubling time 
~48h)

• Factor VIII/von Willebrand factor positive

• CD31 (PECAM) positive

• Claudin-5, Occludin, JAM-1, ZO-1 positive

• Thy 1.1 negative

• TNF-α responsive CCL2, ICAM-1

• TEER (transwell): ~15 Ω.cm2

• Transendothelial migration competent

Cow • Spindle-like / Cobblestone 
appearance

• Contact-inhibited monolayer

• Proliferative

• Factor VIII/von Willebrand factor positive

• GLUT-1 positive

• Gangliosides: GM1, GM3, GD1a, GD1b, GTb1, SLPG positive

Human • Spindle-like / Cobblestone 
appearance

• Contact-inhibited monolayer

• Diameter: 21.1 ± 4.3 μm

• Proliferative (doubling time 
~48h)

• Factor VIII/von Willebrand factor positive

• Scavenger-receptor positive

• α-L-Fucose (UEA-1 lectin) positive

• VCAM-1, CD34, P-selectin positive

• ICAM-1, E-selectin negative

• Claudin-1 & 5, Occludin, JAM-1, ZO-1 positive

• Enzymes: AP, γ-GT positive

• Carrier-Mediated Transporters: GLUT-1, LAT-1, p-glycoprotein, 
CRT, MCT-1 positive

• TEER (continuous electric cell imp.): >100 Ω.cm2

• Hydraulic Conductivity: 2.0 × 10−7 cm s−1 cm H2O−1
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