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Abstract

Acute myeloid leukemia (AML) results from the enhanced proliferation and impaired 

differentiation of hematopoietic stem and progenitor cells. Using an ex vivo functional screening 

assay, we identified that the combination of the BTK inhibitor ibrutinib and BCL2 inhibitor 

venetoclax (IBR+VEN), currently in clinical trials for chronic lymphocytic leukemia (CLL), 

demonstrated enhanced efficacy on primary AML patient specimens, AML cell lines, and in a 

mouse xenograft model of AML. Expanded analyses among a large cohort of hematologic 

malignancies (n=651 patients) revealed that IBR+VEN sensitivity associated with select genetic 
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and phenotypic features in both CLL and AML specimens. Among AML samples, 11q23 MLL-

rearrangements were highly sensitive to IBR+VEN. Analysis of differentially-expressed genes 

with respect to IBR+VEN sensitivity indicated pathways preferentially enriched in patient samples 

with reduced ex vivo sensitivity, including IL-10 signaling. These findings suggest IBR+VEN may 

represent an effective therapeutic option for patients with AML.

Introduction

The identification of effective therapies based on targeted interventions for human cancers 

faces the challenges of genetic and epigenetic heterogeneity underlying the disease. Large-

scale sequencing efforts have uncovered a spectrum of mutations in many hematologic 

malignancies, suggesting that combinations of agents will be required to treat these diseases 

effectively. For patients with acute myeloid leukemia (AML), the long-standing frontline 

chemotherapy consisting of cytarabine and anthracyclines, has a 5-year overall survival rate 

of 25%1. Outcomes in older patients, who represent the majority of patients with this 

disease, are poor with a median survival of 5 to 10 months. Due to their inability to tolerate 

intensive chemotherapy, many older patients do not receive any anti-leukemic therapy2.

Although molecularly targeted drugs offer substantial promise as treatment options, the 

effectiveness of individual inhibitors has been limited by resistance mutations and activation 

of compensatory signaling pathways. Resistance to targeted agents in AML is further 

complicated by substantial disease heterogeneity and rescue signals from the 

microenvironment, underscoring the need for combinations of targeted therapies to achieve 

durable responses.

Recent reports demonstrating the efficacy of combinations of oral, targeted drugs for several 

adult leukemias establish their potential for improved and durable clinical responses, and 

shift treatment options away from cytotoxic chemotherapy. The BCL2 inhibitor, venetoclax, 

has demonstrated single-agent efficacy in patients with AML3, and the combination of 

venetoclax plus a hypomethylating agent was recently approved as a therapeutic strategy for 

elderly, treatment-naïve AML patients4, 5. However, responses are of short duration, 

justifying exploration of additional therapeutic strategies. For chronic lymphocytic leukemia 

(CLL) and mantle cell lymphoma (MCL), combinations of the BTK inhibitor ibrutinib with 

the BCL2 inhibitor venetoclax have shown dramatic response in patients with high rates of 

minimal residual disease negativity6–9. Both ibrutinib and venetoclax as single agents are 

highly effective in CLL, though their primary mechanisms of action are different; while both 

drugs induce direct killing, ibrutinib also induces CLL cell egress from the nurturing lymph 

node microenvironment resulting in redistribution into the peripheral blood10. Tumor cells 

isolated from patients receiving ibrutinib for mantle cell lymphoma also show venetoclax 

sensitivity11. Notably, the effectiveness of this combination is anticipated from prior studies 

showing tumor cells isolated from CLL patients on ibrutinib monotherapy are highly 

sensitive to venetoclax12, 13.

Efforts to identify new targeted combinations for AML have been aided by the use of ex 
vivo functional screening of primary patient leukemia cells14. Using this approach, the 

recent publication of functional and genomic data for a large cohort of AML patient samples 
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described a significant association between samples with FLT3-ITD, NPM1 and DNMT3A 
mutations and sensitivity to ibrutinib15. This observation prompted us to test the 

combination of ibrutinib with venetoclax on AML patient samples, given the emerging 

success of this combination in CLL.

Methods

Patient samples

All patients gave informed consent to participate in this study, which had the approval and 

guidance of the Institutional Review Boards (IRB) at Oregon Health & Science University 

(OHSU), University of Utah, University of Texas Medical Center Southwestern, Stanford 

University, University of Miami, University of Colorado, University of Florida, National 

Institutes of Health, Fox Chase Cancer Center and University of Kansas. Samples were sent 

to the coordinating center (OHSU IRB 9570 and 4422), where they were coded and 

processed. Primary bone marrow aspirates or peripheral blood draws from 651 unique 

patients with hematologic malignancies were collected and classified according to five 

general diagnostic groups: AML (n=325), CLL (n=152), acute lymphoblastic leukemia 

(ALL; n=100), chronic myeloid leukemia (CML; n=27), and myeloproliferative neoplasms 

or myelodysplastic syndromes (MPN or MDS/MPN; n=47). Samples were assayed for drug 

sensitivity within 24 hours of receipt. All samples were analyzed for clinical characteristics, 

with expanded, disease-specific panels of clinical, prognostic, genetic, cytogenetic, and 

surface antigen characteristics obtained from AML and CLL patient electronic medical 

records. Genetic characterization of AML samples included results of a clinical deep-

sequencing panel of genes commonly mutated in hematologic malignancies.

Cell lines

Human AML patient-derived MOLM14 (FLT3-ITD positive), HL-60, and GDM1 cells were 

obtained from DSMZ and maintained in RPMI1640 media supplemented with 10% fetal 

bovine serum (FBS), 100 U/mL penicillin/100 μg/mL streptomycin, and 2 mmol/L l-

glutamine (R10) at 37°C in 5% CO2. Cells were kept in culture no longer than a month at a 

time, and all cell lines were authenticated by extensive functional and genetic analysis in our 

lab.

Ex vivo functional screen

Small-molecule inhibitors, purchased from LC Laboratories (Woburn, MA, USA) and 

Selleck Chemicals (Houston, TX, USA), were reconstituted in DMSO and stored at −80°C. 

Inhibitors were distributed into 384-well plates prepared with single agents in a 7-point 

concentration series (10 uM to 0.0137 uM) and the combination of ibrutinib and venetoclax 

in a 7-point equimolar ratio concentration series identical to those used for single agents. 

The final concentration of DMSO was ≤0.1% in all wells, and all plates were stored at 

−20°C and thawed immediately prior to use. Primary mononuclear cells freshly isolated by 

Ficoll-gradient centrifugation were seeded into 384-well assay plates at 10,000 cells/well in 

RPMI-1640 media supplemented with fetal bovine serum (10%), L-glutamine, penicillin-

streptomycin and b-mercaptoethanol (10−4 M). After three days of culture at 37°C in 5% 
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CO2, methanethiosulfonate (MTS) reagent (CellTiter 96 AQueous One; Promega Madison, 

WI, USA) was added to each well and absorbance was measured at 490 nm.

Inhibitor dose-response curve analysis and effect-measure calculations

Raw absorbance values were adjusted to a reference blank value (average of positive-control 

wells containing a drug combination of flavopiridol, staurosporine and velcade), normalized 

to untreated control wells, and bounded at 0 and 100 to produce cell viability percentages. 

Normalized viability percentages16 at each dose of single agent or combination 7-point 

dilution series were analyzed for all patient samples that passed a quality control inspection 

(based on plate- and profile-specific expectations of drug-induced cell inhibition). A two-

parameter probit regression curve was fit to each 7-point log10-transformed dose-response 

profile using maximum likelihood estimation for the intercept and slope. This parametric 

model was chosen over a polynomial because the probit’s monotonic shape reflects a dose-

response curve typically seen in samples incubated with cytotoxic or inhibitory agents17. 

From the fitted probit curve for each sample-drug pairing, the half maximum inhibitory 

concentration (IC50) was defined as the lowest concentration to achieve 50% predicted 

viability and the area under the curve (AUC) was computed by integration of the curve 

height across the tested dose range. If the predicted cell viability (i.e., probit curve height) 

was ≤ 50% at the lowest tested dose or > 50% across the entire dose range, the IC50 was 

designated as the lowest dose or highest dose, respectively. For sensitivity profiles with 

100% normalized viability at all 7 dose points, the IC50 and AUC were designated as the 

highest tested dose and the maximum possible AUC, respectively. For sensitivity profiles 

with 0% viability at all 7 dose points, the IC50 and AUC were designated as the lowest tested 

dose and a value (0.01) just below the minimum probit-derived AUC, respectively.

Mouse xenograft model

NSG mice were purchased from JAX Labs as 5 week old, females and allowed to acclimate 

form one week prior to the study. MOLM13 cells were injected into tail veins NSG mice 

(3×105 cells/mouse) and allowed to engraft for 48 hours. Thereafter, mice were treated daily 

by oral gavage with vehicle, venetoclax (25 mg/kg), ibrutinib (25 mg/kg), or the IBR+VEN 

combination (5 mice/treatment group) administered sequentially; i.e., venetoclax (25 mg/kg) 

followed 2 hours later with ibrutinib (25 mg/kg)). On day 17 (15 days of treatment), animals 

were euthanized and assessed for disease burden. A sample size of 5 animals in the vehicle 

and 5 animals in each of the drug arms provides >90% power for a comparison of each drug 

vs. vehicle, and 80% power for comparison of single agent vs. combination with 5% 

significance level. This study was approved by the Oregon Health & Science University 

IACUC.

Gene expression and pathway enrichment analysis

A differential expression (DE) analysis pipeline was applied to AML patient specimens with 

ex vivo IBR+VEN sensitivity data and RNA sequencing data available (collected under the 

Beat AML study; 15). Genes were removed for having >1 HGNC symbol or read counts <10 

in at least 90% of samples. Specimens whose median expression value (across all non-

filtered genes) was <2 standard deviations below the mean (for this AML sample set) were 

removed from consideration and the earliest specimen was chosen for patients with 
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multiples. Next, “sensitive” and “resistant” sample groups were identified as the lowest 25% 

and highest 25%, respectively, of specimens according to combination drug AUC. To 

account for differences in library size, GC content, and gene length, conditional quantile 

normalization (CQN)18 was applied to the remaining gene-by-sample matrix of read counts 

to generate (i) log2 normalized RPKM values for correlation analysis and visual clustering 

and (ii) normalization factors for DE analysis using the DESeq2 method19. Latent variables 

representing potential batch effects were identified by count-based surrogate variable 

analysis20, 21 and entered as covariates into the DESeq2 model to produce gene expression 

fold-changes (resistant group / sensitive group) and associated Wald test false discovery rate 

(FDR)-adjusted p-values22. Genes with adjusted p-values <0.01 were considered DE. For 

pathway topology analysis, reaction-based Reactome pathways23, 24 were converted to gene/

protein networks using the “graphite” R/Bioconductor package25 and, after mapping 

DESeq2 log2 fold changes from Ensembl IDs to Uniprot IDs, tested for significant 

enrichment of DE gene products using the Pathway Regulation Score (PRS) method26. The 

PRS algorithm, as implemented by the “ToPASeq” R package, returns normalized (by 

pathway size) enrichment scores and FDR-adjusted p-values, calculated from null 

distributions generated by repeatedly permuting the gene labels on the list of fold-changes.

IGHV Mutation status

Following RNA and cDNA isolation, IGHV mutations were analyzed using the IGH 

Somatic Hypermutation Assay v2.0 (Invivoscribe). Briefly, PCR was performed using the 

supplied master mixes and Amplitaq Gold DNA polymerase (Applied Biosystems) on a 

Veriti Thermal Cycler Model #9902 (Applied Biosystems) to amplify the IGH sequence 

fragment between the leader (VHL) and joining (J) regions as per the manufacturer’s 

instructions. To confirm amplification of a single clonal product in the expected size range, 

an aliquot of each sample was run on a 1.5% agarose gel and separated by gel 

electrophoresis. Samples were then submitted for DNA sequencing using the supplied 

sequencing primers. The NCBI IgBLAST tool was used to determine the % divergence of 

each clonal sequence. Samples which showed less than 2% divergence from germline 

sequence were deemed to have unmutated IGHV.

Assessment of plasma cytokine levels

Plasma isolated and banked from patient samples at the time of ex vivo assay evaluation was 

assayed for a panel of human inflammatory cytokines using the Luminex platform (R&D 

Systems) according to the manufacturer’s protocol. Cytokine values were normalized to total 

protein levels for each sample.

Statistical analysis

IBR+VEN efficacy was compared for all samples (n=651) across a panel of general clinical 

and disease-specific variables. Subgroups for all mutations, cytogenetic abnormalities, and 

cell surface antigens were defined as either positive or negative. Combination sensitivity (as 

measured by % of maximum AUC) for categorical variables was compared using a Mann-

Whitney or Kruskal-Wallis test. Comparisons of matched single-agent and combination 

treatment sensitivity were performed using Friedman test with Dunn’s post-hoc pairwise 

comparisons. Correlations between continuous clinical variables (e.g. WBC count) and drug 
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sensitivity values were evaluated with Spearman rank correlation coefficients. In vivo 

response data were compared between treatment groups using a one-way ANOVA test with 

Bejamini-Hochberg adjustment of p-values for pairwise group comparisons. Plasma 

cytokine data were compared between IBR+VEN sensitive and resistant samples using a 

Mann-Whitney test.

Results

AML cells are highly sensitive to ibrutinib combined with venetoclax (IBR+VEN)

Ex vivo screening of primary cells from patients with various hematologic malignancies 

(Supplemental File S1) including AML (n=325), CLL (n=152), ALL (n=100), MPN or 

MDS/MPN (n=47), and CML (n=27) revealed several interesting patterns of sensitivity. 

Sensitivities to the IBR+VEN combination are represented in the radar plot depicting IC50 

values across the 5 diagnostic groups (Figure 1A). Consistent with clinical data and previous 

literature, the IBR+VEN combination was highly effective in CLL specimens (median 

IC50=0.015 μM). Intriguingly, IBR+VEN also showed similar effectiveness on ALL and 

AML primary samples (median IC50: 0.018 and 0.054 μM, respectively). By contrast, 

samples from patients with CML or MDS/MPN were markedly less sensitive to the 

combination, with median IC50 values near or above 1 μM.

Among the three sensitive diagnostic subgroups, in each case the IBR+VEN combination 

demonstrated superior efficacy compared to either single agent by two different effect 

measures (IC50 and AUC; Figure 1B–D). For example, IBR+VEN was 38- to 118-fold more 

potent by AUC across AML patient specimens compared with ibrutinib and venetoclax 

alone, respectively (adjusted p<0.001).

We also tested this combination on primary cells from two healthy donors to evaluate 

potential broader toxicity. In contrast to our findings with AML patient specimens, healthy 

donor mononuclear cells showed little to no sensitivity to IBR+VEN (Figure 2A). To 

validate our AML findings and to establish whether the efficacy of the IBR+VEN 

combination represents a synergistic relationship, the combination was tested for sensitivity 

on the human AML cell lines MOLM14, HL-60 and GDM1 using a dose matrix, which 

included all possible concentration pairings for each drug’s 7-point dose series. MOLM14 

cells were modestly sensitive to both ibrutinib and venetoclax as single agents, but 

demonstrated enhanced efficacy when used in combination (Figure 2B and Supplemental 

Figure S1). Synergy scores were calculated using the zero interaction potency (ZIP) model 

for each dose pair of the 7×7 matrix; a positive score indicates synergy relative to the 

expected cell inhibition when assuming no interaction27. By this method, the IBR+VEN 

combination showed synergy in MOLM14, HL60, and GDM1 cells across the surveyed dose 

matrix (average ZIP score: +10.4, +3.5, and +20.1, respectively; Figure 2C and 

Supplemental Figure S1).

The IBR+VEN combination was also found to be effective in vivo, where it reduced tumor 

burden relative to either single agent as assessed by a decrease in human CD45-positive cells 

in peripheral blood of NSG mice injected with MOLM13 cells (Figure 2D&E). IBR+VEN 

also reduced spleen weight relative to either single agent, whereas neither hemoglobin levels 
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nor platelet counts were altered across the treatment groups (Supplemental Figure S2). 

Together, these findings suggest IBR+VEN is well tolerated and demonstrates enhanced 

efficacy in an in vivo AML xenograft model.

Genetic and clinical features associate with differential sensitivity to IBR+VEN ex vivo

To identify associations between relevant patient characteristics and combination sensitivity 

ex vivo, IBR+VEN efficacy (as measured by AUC) was broken down according to general 

clinical and disease-specific features for CLL and AML, our two largest diagnosis 

categories. For CLL samples, del(11q) was associated with increased sensitivity to IBR

+VEN (p=0.008), whereas samples with mutated IGHV had reduced sensitivity (p=0.040) 

(Figure 3A). Additionally, higher counts for WBCs and lymphocytes were correlated with 

increased sensitivity to the combination (Spearman r: −0.39 and −0.45, respectively; 

p<0.001). Conversely, and consistent with the latter, samples with higher percentages of 

monocytes were less sensitive (Spearman r: 0.35; p<0.001) (Figure 3B).

Our AML cohort (n=325) included patients with a wide range of disease subtypes 

representing both newly diagnosed and relapsed/refractory status. Among AML specimens, 

increased sensitivity to the combination of IBR+VEN was significantly associated with 

MLL-rearrangement (t(v;11)(v;q23); p=0.035), PML-RARA translocation (t(15;17); 

p=0.019), FLT3-ITD (p<0.001), and NPM1 mutations (p<0.001) (Figure 4A). Other clinical/

genetic features including inv(16), prior MDS, loss of chromosome 7, and RUNX1-

RUNXT1 (t(8;21)) translocations were associated with reduced sensitivity to the 

combination (range of p-values: <0.001 to 0.026). Moreover, higher percentages of bone 

marrow and peripheral blasts were correlated with increased sensitivity to the combination 

(Spearman r: −0.39 and −0.37, respectively; p<0.001) (Figure 4B). ; a similar trend has been 

reported fror venetoclax as a single agent.28

IBR+VEN sensitivity relative to the expression of their respective canonical targets

Expression levels (normalized RPKM) of BTK and BCL2, the respective canonical targets 

of ibrutinib and venetoclax, were compared with sensitivity to the combination for a subset 

of the AML cohort (56%; 181/325) with available RNA-seq data (Figure 4C). Higher 

expression levels of BCL2 correlated with sensitivity to the combination as evaluated by 

AUC (Spearman r=−0.46; p<0.001) whereas expression levels of BTK were not significantly 

correlated with sensitivity to the combination (Spearman r=−0.10; p=0.191).

Distinct patterns of differentially expressed genes associate with IBR+VEN sensitivity

DE analysis of the 25% most sensitive (AUC (% of max) ≤18.5; n=45) versus the 25% most 

resistant (AUC (% of max) >55.5; n=45) AML samples to IBR+VEN yielded 7769 genes 

with an FDR-adjusted p-value < 0.01 (DESeq2 method; Supplemental File S2). 

Unsupervised hierarchical clustering of the top 1000 most differentially-expressed genes 

revealed marked differences between sensitive and resistant samples (Figure 5A). Analysis 

across these two samples sets indicated higher BCL2 expression levels associated with the 

IBR+VEN sensitive samples (FDR-adjusted p=1.18E-10). Within the BCL2 family we and 

others28, 29 observed higher levels of BCL2A1 associated with IBR+VEN resistant samples 

(FDR-adjusted p=2.55E-16) (Figure 5B). Consistent with a lack of correlation between BTK 
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expression levels and IBR+VEN sensitivity (Figure 4C), BTK was not differentially 

expressed between IBR+VEN sensitive and resistant samples. However, among other 

reported kinase targets of ibrutinib featuring the conserved cysteine aligning with C481 in 

BTK30, two other TEC family members (TEC, TXK; Figure 5B) and two ERBB family 

kinases (EGFR, ERBB2; Supplemental Figure S3) showed significantly elevated expression 

levels in IBR+VEN sensitive samples (FDR-adjusted p value range: 2.56E-4 to 2.67E-7).

IL-10 signaling pathway genes are overexpressed in samples with ex vivo resistance to 
IBR+VEN

The fold-changes of differentially expressed genes (defined as genes with FDR-adjusted 

p<0.01) and the functional connections between their protein products in annotated 

biological pathways were combined via the PRS method26 to identify significantly enriched 

Reactome pathways (Supplemental File S3). The IL-10 signaling pathway had one of the top 

enrichment scores, with 28 DE genes among the 39 genes belonging to this pathway. All but 

2 of these 28 DE genes were upregulated in IBR+VEN resistant samples (Figure 6A), 

suggesting that IL-10-dependent inflammatory cytokine pathways may contribute to 

decreased sensitivity to IBR+VEN. Notably, IL-10-dependent, NF-kB-mediated resistance 

mechanisms have been previously identified in mantle cell lymphomas for the IBR+VEN 

combination31. Concordantly, we detected elevated expression of IL-10, CD40LG, 

NFKB1/2, and BIRC5 in IBR+VEN resistant patient samples (FDR-adjusted p<0.001; 

Figure 6B and Supplemental File S2).

We also evaluated levels of inflammatory cytokines in plasma from a subset of the most and 

least IBR+VEN sensitive samples in our AML cohort. We observed increased levels of the 

pro-inflammatory cytokines TNF-alpha and IFN-gamma in IBR+VEN-resistant samples 

compared to sensitive samples (Supplemental Figure S4). Correspondingly, RNAseq-based 

expression levels of both of these genes were significantly increased in the resistant samples.

Discussion

The combination of IBR+VEN was previously identified as a promising therapeutic strategy 

for CLL and mantle cell lymphoma (MCL)31–33. These observations have prompted 

numerous clinical trials in which the combination has shown significant efficacy. Results 

presented from the CLARITY trial showed after 12 months on IBR+VEN combination 

treatment an absence of morphological evidence of CLL in the marrow biopsy and 

achievement of MRD-negative remission in 87% and 41% of patients, respectively6. 

Similarly high response rates were observed in the CAPTIVATE trial in cohorts of CLL 

patients with either relapsed/refractory or untreated high-risk disease7, 9. These promising 

outcomes, coupled with confirmation that the two drugs can be given in combination 

without obvious additional toxicity, are likely to alter the landscape of CLL therapy.

Our ex vivo drug testing process surveys patient samples across the full spectrum of 

hematologic malignancies, where we expectedly detected potent IBR+VEN sensitivity in 

primary CLL samples. Unexpectedly, our data revealed that the therapeutic potential of IBR

+VEN may extend to AML, as demonstrated by the impressive sensitivity to this 

combination in our large patient sample set (median IC50: 0.054 μM, n=325). The IBR

Eide et al. Page 8

Leukemia. Author manuscript; available in PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



+VEN combination was important more effective than either single agent at reducing tumor 

burden in vivo in a xenograft model of AML. Previously reported levels of each drug in 

plasma (ibrutinib Cmax for 140 mg QD: 0.084 μM 34; venetoclax Cmax for 400 mg QD: 2.51 

μM35) suggest effective combination concentrations would be achievable in patients. The 

most recent approval for AML has been for use of venetoclax in combination with 

hypomethylating agents in newly diagnosed, elderly patients not fit for standard 

chemotherapy36. In this setting, the initial response rates of 60–80% are highly encouraging; 

however, 1-year survival rates of 30–40% along with significantly lower activity in relapsed/

refractory patients indicate that alternative venetoclax combinations may be beneficial.

Different clinical and genetic features of AML guide the selection of treatment options 

and/or confer altered risk stratification and prognosis. The most extreme example is that of 

the PML-RARA rearrangement (t(15;17)), which has an excellent prognosis when treated 

with the combination of arsenic trioxide and retinoic acid regimen37. By contrast, complex 

karyotype, monosomy 7/del(7q), monosomy 5/del(5q), TP53 mutations, and del(17p) are 

features of adverse risk patients with more limited treatment options. Among the panel of 

clinical and genetic features of AML for which we had available annotations, we found 

select features showing either increased (11q23 MLL and PML-RARA rearrangements, 

FLT3 and NPM1 mutations) or decreased (inv(16), monosomy 7, RUNX1-RUNXT1 

rearrangement, prior MDS) sensitivity to this combination. Importantly, there were no 

significant differences in sensitivity to IBR+VEN observed for several features typically 

associated with adverse risk, including complex karyotype, abnormal 17p, prior MPN, and 

deletion of chr5 or 5q. With respect to CLL patient samples, the characteristics most 

associated with increased sensitivity to IBR+VEN were del(11q), male gender, and non-

mutated IGHV. Our clinical record mining for mutated genes in CLL patients was restricted 

to IGHV, as this gene has prognostic impact for treatment. It is formally possible that 

unsurveyed genes or mutations may contribute to lower sensitivity to the combination.

Combined inhibition of BTK and BCL2, the respective canonical targets of ibrutinib and 

venetoclax, represents a possible mechanism of IBR+VEN efficacy. BTK has been shown to 

contribute to proliferation, survival, and migration in AML blast cells38, 39 and it is possible 

that ibrutinib acts predominately on this kinase. It is also possible that the sensitivity of 

AML specimens to IBR+VEN represents an “overlapping” leukemia40, although such bi-

phenotypic leukemias are uncommon among adults (<1% of all acute leukemias) and the 

median age among AML patient samples in our cohort was 60.9 years. Furthermore, a 

majority of tested AML patient specimens showed sensitivity to the IBR+VEN combination, 

suggesting that the mechanism of efficacy of this combination is dramatically broader than a 

rare subset of AML. Importantly, while we observed that ex vivo sensitivity to IBR+VEN 

associated with higher levels of BCL2 gene expression, we observed no significant 

association between IBR+VEN sensitivity and BTK expression. It remains possible that 

post-translational modification of BTK could contribute to differences in sensitivity to IBR

+VEN, though this finding may also be indicative of involvement of other ibrutinib targets in 

AML15. Beyond BTK, ibrutinib also potently inhibits several other kinases, including FLT3 

and multiple TEC and SRC family members30, which may provide therapeutic opportunities 

in other malignancies41. It is formally possible that ibrutinib acts on multiple targets in AML 

cells to achieve its enhanced sensitivity when combined with venetoclax. Notably, we 
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identified increased expression in IBR+VEN sensitive samples for several ibrutinib targets 

(TEC, TXK, EGFR, ERBB2) that contain a cysteine residue aligning with C481 in BTK, 

which is the covalent binding site for ibrutinib30. Each of these four kinases as well as FLT3 

are reported to have in vitro IC50 values for ibrutinib below 100 nM42, indicating that the 

effective concentrations of IBR+VEN could inhibit these targets and suggesting additional 

complexity with respect to ibrutinib sensitivity. With respect to FLT3, the association of 

FLT3-ITD mutations with sensitivity to ibrutinib has been established15, 38, 39. Moreover, 

elevated levels of TXK have been described in Behcet’s disease, whose pathogenesis is 

associated with excessive Th1 cytokine production and inflammatory signaling43.

Within the BCL2 family, higher expression levels of BCL2A1 and BCL2L11 (BIM) were 

detected in IBR+VEN resistant samples. This observation is consistent with prior studies 

that found elevated expression levels of BCL2A1, a BCR-regulated gene, are indicative of 

resistance to apoptosis inducers44–46. Many genes involved in cytokine signaling, including 

members of the IL-10 signaling pathway (as annotated by Reactome), were significantly 

upregulated in AML samples resistant to IBR+VEN, in a manner reminiscent of resistance 

mechanisms previously reported in mantle cell lymphomas31. Moreover, IL-6, an IL-10 

signaling pathway member, has been shown to upregulate MCL1 and BCL-XL in myeloma 

cells47 or modulate MCL1:BIM priming48, thereby promoting resistance to BCL2 family 

inhibitors. While these mechanisms may provide insight into IBR+VEN resistance, the 

majority of AML patient samples are sensitive to IBR+VEN, thus warranting consideration 

of this combination for AML therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sensitivity of Ibrutinib + Venetoclax combination on 651 unique leukemia patient 
samples.
A. Radar plot indicating median IC50 values (red line) for 651 unique patient samples across 

5 leukemia subgroups. B-D. Comparisons of Ibrutinib (IBR) and Venetoclax (VEN) 

sensitivities alone and in combination for AML, CLL and ALL subgroups. Red horizontal 

bars indicate median and interquartile range for % of maximum AUC. Comparisons were 

performed with Nemenyi test for the combination to each single agent.

Eide et al. Page 14

Leukemia. Author manuscript; available in PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Ibrutinib + Venetoclax combination is potent and synergistic in AML cells.
A. Evaluation of IBR and VEN alone and in combination on two healthy donor bone 

marrow samples. B. Evaluation of IBR and VEN alone and in combination on MOLM14 

AML cells. C. Surface plot of IBR+VEN synergy (ZIP score) generated from a 7×7 dose 

matrix on MOLM14 AML cells. Synergy was calculated with R_SynergyFinder. D. 
Schematic of in vivo xenograft study. E. Levels of human CD45-positive cells in peripheral 

blood of NSG mice injected with MOLM13 cells and treated with vehicle, venetoclax (25 

mk/kg), ibrutinib (25 mg/kg) or the combination IBR+VEN (25 mg/kg each). FDR-adjusted 

p-values are indicated for comparisons with the combination.
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Figure 3. Select clinical and genetic features in CLL samples associate with differential 
sensitivity ex vivo to Ibrutinib + Venetoclax.
Comparisons of IBR+VEN sensitivities (% of max AUC) with respect to categorical 

variables (panel A) and continuous variables (panel B). Categorical variables were compared 

by Mann-Whitney test; circles indicate difference of median AUC and bars indicate 95% 

confidence interval. Continuous variables were correlated by Spearman rank test.
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Figure 4. Genetic abnormalities in AML samples associate with differential sensitivity ex vivo to 
Ibrutinib + Venetoclax.
Comparisons of IBR+VEN sensitivities (% of max AUC) with respect to categorical 

variables (panel A) and continuous variables (panel B). Categorical variables were compared 

by Mann-Whitney test; circles indicate difference of median AUC and bars indicate 95% 

confidence interval. Continuous variables were correlated by Spearman rank test. C. Scatter 

plots of IBR+VEN AUC with expression levels of their respective canonical drug target: 

BTK and BCL2.
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Figure 5. Patterns of differentially-expressed genes associate with sensitivity or resistance to IBR
+VEN.
A. Hierarchical clustering of top 1000 DE genes between sensitive and resistant AML 

samples (lowest and highest quartile, respectively) by % of max AUC for IBR+VEN. 

Sensitive and resistant samples are designated in blue and orange, respectively and 

expression values are represented as z-score. B. Dot plot comparisons of expression for 

select DE genes.
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Figure 6. Pathway analysis indicates IL-10 signaling is enriched in IBR+VEN resistant samples.
A. The IL-10 signaling pathway is enriched in IBR+VEN resistant samples as represented in 

the volcano plot depicting the relative expression of ~22,000 genes. Genes involved in the 

IL-10 signaling pathway are highlighted by blue dots; differentially expressed genes with an 

adjusted p-value < 0.001 are labeled. Red dashed line indicates p-value of 0.01. B. Dot plot 

comparisons of expression for select DE inflammatory signaling pathway genes.
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