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ABSTRACT Myxococcus xanthus arranges into two morphologically distinct biofilms
depending on its nutritional status, i.e., coordinately spreading colonies in the pres-
ence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A se-
creted polysaccharide, referred to as exopolysaccharide (EPS), is a structural compo-
nent of both biofilms and is also important for type IV pilus-dependent motility and
fruiting body formation. Here, we characterize the biosynthetic machinery responsi-
ble for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and
biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-
dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ
(MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase re-
sponsible for the initiation of the repeat unit synthesis. Heterologous expression ex-
periments support that EpsZ has galactose-1-P transferase activity. Moreover,
MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flip-
pase and Wzy polymerase responsible for translocation and polymerization of the
EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysac-
charide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide
export (OPX) protein. Mutants with single in-frame deletions in the five correspond-
ing genes had defects in type IV pilus-dependent motility and a conditional defect
in fruiting body formation. Furthermore, all five mutants were deficient in type IV pi-
lus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic
machinery stimulates type IV pilus extension. Additionally, we identify a polysaccha-
ride biosynthesis gene cluster, which together with an orphan gene encoding an
OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an
unknown polysaccharide.

IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS)
has important functions in the social life cycle of M. xanthus; however, little is
known about how EPS is synthesized. Here, we characterized the EPS biosynthetic
machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysac-
charide biosynthesis. Mutants lacking a component of this pathway had reduced
type IV pilus-dependent motility and a conditional defect in development. These
analyses also suggest that EPS and/or the EPS biosynthetic machinery is important
for type IV pilus formation.

KEYWORDS Myxococcus xanthus, Wzx flippase, Wzy polymerase, development,
exopolysaccharide, fruiting body formation, motility, polysaccharide, sporulation,
type IV pili

Bacteria often exist in biofilms, which are surface-associated communities where
cells are embedded in a self-produced extracellular matrix (1). Typically, this matrix

is composed of proteins, extracellular DNA (eDNA), and polysaccharides (2). The
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polysaccharides serve several functions in a biofilm, including structural roles, hydra-
tion, adhesion to substrates, cohesion between cells, and protection against antibac-
terials, grazing, and bacteriophages (2–4).

The Gram-negative deltaproteobacterium Myxococcus xanthus is a model organism
to study social behaviors in bacteria. Depending on their nutritional status, M. xanthus
cells organize into two morphologically distinct biofilms (5, 6). In the presence of
nutrients, cells grow, divide, and move across surfaces by means of two motility
systems to generate colonies that are embedded in a polysaccharide referred to as
exopolysaccharide (EPS) and in which cells at the colony edge spread outwards in a
highly coordinated fashion (6–8). Under nutrient limitations, growth ceases and cells
alter their motility behavior and begin to aggregate. The aggregation process culmi-
nates in the formation of mounds of cells inside which the rod-shaped cells differen-
tiate into environmentally resistant spores, leading to the formation of mature fruiting
bodies (5, 6). EPS also makes up a substantial part of individual fruiting bodies (9–11).

The two motility systems of M. xanthus are important for formation of both biofilms
(12). One motility system depends on type IV pili (T4P), which are highly dynamic
filaments that undergo cycles of extension, surface adhesion, and retraction. Retrac-
tions generate a force sufficient to pull a cell forward (13). The second system is for
gliding motility and depends on the Agl/Glt complexes (6, 7). Generally, T4P-dependent
motility involves the movement of groups of cells, while gliding motility involves the
movement of individual cells (12, 14).

Besides its role as a structural component of spreading colonies and fruiting bodies,
EPS in M. xanthus is also important for T4P-dependent motility (9, 15) and fruiting body
formation (9, 10, 16–18). It has been proposed that EPS stimulates T4P-dependent
motility by stimulating retraction of T4P (15, 19). Most insights into the function of EPS
in M. xanthus have been obtained from analyses of regulatory mutants with altered
levels of EPS synthesis. Among these mutants, the best studied include those of the Dif
chemosensory system and the SgmT/DigR two-component system. The Dif system is a
key regulator of EPS synthesis; analyses of dif (previously dsp [10, 20, 21]) mutants have
shown that decreased EPS accumulation (18, 21, 22) causes defects in T4P-dependent
motility and fruiting body formation (17, 18). While the phosphotransfer reactions
within the Dif system have been described in detail (22, 23), it is unknown how the Dif
system stimulates EPS synthesis. Similarly, mutants of the SgmT/DigR system in which
DigR is a DNA-binding response regulator have increased EPS accumulation and
reduced T4P-dependent motility, as well as a defect in fruiting body formation (24, 25).
Transcriptome analyses support that the effect on EPS accumulation is not caused by
direct effects on the expression of genes for EPS synthesis (25). Compared to the several
identified regulators of EPS synthesis, relatively little is known about EPS biosynthesis.
Here, we focused on the identification of proteins directly involved in EPS biosynthesis.

Synthesis of bacterial cell surface polysaccharides can occur via three different
pathways, the Wzx/Wzy-, ABC transporter-, or synthase-dependent pathway (26, 27)
(Fig. 1A). In the Wzx/Wzy- and ABC transporter-dependent pathways, synthesis gener-
ally starts with the transfer of a sugar-1-P from a UDP-sugar to an undecaprenyl
phosphate (Und-P) molecule in the inner leaflet of the inner membrane (IM) to form an
Und-PP-sugar molecule (28). The priming enzymes are broadly classified in two groups,
polyisoprenyl-phosphate hexose-1-phosphate transferases (PHPTs) and polyisoprenyl-
phosphate N-acetylhexosamine-1-phosphate transferases (PNPTs) (29). Subsequently,
the polysaccharide chain is elongated by the action of specific glycosyltransferases
(GTs), and this depends on the specific pathway. In the Wzx/Wzy-dependent pathway,
GTs synthesize the repeat unit of the polysaccharide on the cytoplasmic side of the IM;
each unit is then translocated across the IM by the Wzx flippase and polymerized by the
Wzy polymerase into a longer chain. Chain length is generally controlled by a Wzz
protein, which belongs to the polysaccharide copolymerase (PCP) family and results in
the formation of polysaccharide molecules with a range of lengths (30, 31). In contrast,
in the ABC transporter-dependent pathway, the full-length polysaccharide chain is
synthesized on the cytoplasmic side of the IM and is then translocated across the IM by
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an ABC transporter (32). In the synthase-dependent pathway, synthesis and transloca-
tion across the IM take place simultaneously by a multifunctional synthase protein
complex in the IM (33). In the Wzx/Wzy- and ABC transporter-dependent pathways, the
polysaccharide molecule reaches the cell surface by translocation through an outer
membrane (OM) polysaccharide export (OPX) protein, and in the synthase-dependent
pathway translocation occurs via an OM �-barrel protein (26, 33).

The eps locus in M. xanthus was identified by transposon mutagenesis and shown to
encode homologs of proteins involved in polysaccharide biosynthesis (9). Moreover,
several eps genes were identified as essential for EPS biosynthesis (9, 22, 34–36). Here,
we searched the reannotated eps locus and the remaining M. xanthus genome for
homologs of proteins for polysaccharide biosynthesis. We report that the eps locus
encodes a complete Wzx/Wzy-dependent pathway for EPS biosynthesis. In-frame de-
letions in the corresponding genes specifically resulted in EPS biosynthesis defects,
while these mutants still synthesized lipopolysaccharide (LPS) O antigen and spore coat
polysaccharide and had a normal cell morphology. Phenotypic analysis of these mu-
tants, including complementation experiments, demonstrated that they have a defect
in T4P-dependent motility and conditional defects in development. In addition, we
identify a polysaccharide biosynthesis gene cluster of unknown function that, together
with an orphan gene encoding an OPX protein, encodes a complete Wzx/Wzy-
dependent pathway for biosynthesis of a polysaccharide of unknown function.

RESULTS
Identification of homologs of proteins of Wzx/Wzy-dependent pathways for

polysaccharide biosynthesis and export. The M. xanthus genome encodes a total of
66 GTs (CAZy). Therefore, to identify genes for EPS biosynthesis, we searched the M.
xanthus genome for homologs (see Materials and Methods) of the membrane compo-
nents of the three biosynthesis pathways (Fig. 1A). We identified homologs encoding
predicted proteins of the Wzx/Wzy and ABC-transporter pathways but none corre-
sponding to a synthase-dependent pathway (Fig. 1B). Several of these homologs were
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FIG 1 Identification of homologs of polysaccharide biosynthesis proteins in M. xanthus. (A) Schematic of the three pathways for polysaccharide biosynthesis
in Gram-negative bacteria. (B) Bioinformatics-based identification of homologs of polysaccharide biosynthesis proteins in M. xanthus. Color code is the same
as that used for panel A. Note that WaaL is the LPS O-antigen ligase (37), while the remaining three proteins with a Wzy_C domain are predicted
polymerases.
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previously shown to be important for LPS synthesis or spore coat polysaccharide
biosynthesis (37–41) (Fig. 1B). Notably, none of these proteins is required for EPS
biosynthesis. The MraY homolog (MXAN_5607), which belongs to the PNPT family and
is involved in PG synthesis, was not considered here.

The reannotated eps locus consists of two gene clusters (MXAN_7515-_7422 and
MXAN_7441-_7451) that encode all the proteins of a complete Wzx/Wzy-dependent
pathway (Fig. 2A; see also Table S1 in the supplemental material). Specifically, these two
gene clusters encode homologs of a PHPT (EpsZ/MXAN_7415), a Wzx flippase
(MXAN_7416), a Wzy polymerase (MXAN_7442, previously SgnF [42]), a PCP protein
(EpsV/MXAN_7421), and an OPX protein (EpsY/MXAN_7417), as well as five GTs (EpsU/
MXAN_7422, EpsH/MXAN_7441, EpsE/MXAN_7445, EpsD/MXAN_7448, and EpsA/
MXAN_7451) and a serine O-acetyltransferase (EpsC/MXAN_7449). Previous genetic
analyses using transposon insertions, plasmid insertions, or in-frame deletion mutants
demonstrated that genes in both clusters are important for EPS synthesis (9, 22, 34, 35)
(Fig. 2A). Genes in both clusters also were previously shown to be important for
T4P-dependent motility without directly testing for EPS synthesis (42) (Fig. 2A). The two
gene clusters are separated by 13 genes encoding proteins predicted not to be directly
involved in polysaccharide synthesis (Fig. 2A; see Table S1 in the supplemental mate-
rial). Consistent with this, genetic analyses for some of these genes confirmed that they
are not important for EPS synthesis (9), except for MXAN_7440 (Nla24/EpsI), which
encodes a c-di-GMP binding NtrC-like transcriptional regulator (36, 43) that is phos-
phorylated by the histidine kinase MXAN_7439 (44).

In a bioinformatics approach searching for orthologs of the proteins encoded by the
entire eps locus in all fully sequenced Myxococcales genomes and using a reciprocal
best BLASTP hit method, as described previously (41), we found that the two gene
clusters encoding proteins for polysaccharide synthesis (MXAN_7415-MXAN_7422 and
MXAN_7442-MXAN_7451) are largely conserved in closely related Cystobacterineae (Fig.
2B). Importantly, in several of these genomes, the two clusters are present in a single
uninterrupted gene cluster (e.g., M. stipitatus and Stigmatella aurantiaca) (Fig. 2B).
Interestingly, in M. macrosporus and M. fulvus, the two gene clusters are separated by
a set of genes that are conserved between these two organisms but not homologous
to the genes separating the two clusters in M. xanthus. Together, based on previous
genetic analyses and because genes for polysaccharide biosynthesis are often clustered
(45), our data support that the two separated gene clusters in the M. xanthus eps locus
encode a Wzx/Wzy-dependent pathway for EPS synthesis.

We also identified a second locus encoding homologs of a Wzx/Wzy pathway (Fig.
3A and Table S2). Specifically, this locus encodes homologs of a PNPT (MXAN_1043), a
Wzx flippase (MXAN_1035), a Wzy polymerase (MXAN_1052), a Wzc chain length
regulator (MXAN_1025 or BtkB [46]) of the PCP-2, 10 GTs (MXAN_1026, MXAN_1027,
MXAN_1029, MXAN_1030, MXAN_1031, MXAN_1032, MXAN_1033, MXAN_1036,
MXAN_1037, and MXAN_1042), and two acetyltransferases (MXAN_1041 and
MXAN_1049). Finally, we identified a gene encoding an OPX protein (MXAN_1915) that
is not part of a gene cluster encoding proteins involved in polysaccharide synthesis (Fig.
3B and Table S2). Using bioinformatics, as described above, we found that the large
gene cluster as well as MXAN_1915 are conserved in closely related Cystobacterineae
(Fig. 3C). Importantly, the MXAN_1915 ortholog of Sandaracinus amylolyticus is found in
a cluster with homologs of MXAN_1025, MXAN_1043, and MXAN_1052. Because the
MXAN_1025-_1052 locus does not encode an OPX homolog, these observations support
that MXAN_1915 could function together with the proteins encoded by this locus, and
together they would make up a complete Wzx/Wzy-dependent pathway for biosyn-
thesis of a polysaccharide. Based on these analyses, we hypothesized that the proteins
encoded by the eps locus and the proteins encoded by the MXAN_1025-_1052/_1915
loci make up two independent and dedicated pathways for polysaccharide synthesis.

The eps locus is essential for EPS biosynthesis. To test for the importance of
genes of the eps locus and the MXAN_1025-_1052/_1915 loci for EPS synthesis, we
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generated 10 in-frame deletions in genes encoding the five conserved core compo-
nents of Wzx/Wzy-dependent pathways (i.e., the genes for the PH/NPT, Wzx, Wzy, PCP,
and OPX). Subsequently, we used plate-based colorimetric assays with either Congo red
or trypan blue to assess EPS biosynthesis. As a negative control, we used a �difE
mutant, which has a defect in EPS synthesis (17).

All five mutations in the eps locus abolished EPS synthesis (Fig. 2C). Importantly, the
EPS synthesis defects of these five Δeps mutants were complemented by ectopic
expression of the relevant full-length gene from a plasmid integrated in a single copy
at the Mx8 attB site (Fig. 2C). In contrast, in the case of the five in-frame deletions in the
genes of the MXAN_1025-_1052/_1915 loci, only the ΔMXAN_1035 mutant, which lacks
a Wzx flippase homolog (Fig. 3A to C), caused a significant decrease in EPS synthesis.
Based on several arguments, we do not think that MXAN_1035 is directly involved in
EPS synthesis but rather that the ΔMXAN_1035 mutation results in titration of Und-P.

First, mutation of MXAN_7416, which codes for a Wzx flippase homolog in the eps
locus, completely blocked EPS synthesis (Fig. 2), supporting that MXAN_7416 is the
flippase involved in EPS biosynthesis and that MXAN_1035 cannot replace MXAN_7416
flippase function. Second, as mentioned, enzymes of the same polysaccharide biosyn-
thesis and export pathway are typically encoded in the same locus (45); however, the
three other mutations in the MXAN_1025-_1052 locus did not have a significant effect
on EPS biosynthesis (Fig. 3D). Third, blocking translocation of a specific sugar unit
across the IM can cause sequestration of Und-P and thereby result in pleiotropic effects
on the synthesis of other polysaccharides (47–50). Consistent with this, a ΔMXAN_1035
mutation was previously shown to cause a reduction in glycerol-induced sporulation
(see below), likely by interfering with spore coat polysaccharide biosynthesis (39);
however, MXAN_3260 (ExoM) was recently shown to be the flippase involved in spore
coat polysaccharide synthesis (41). Although we cannot completely rule out that
MXAN_1035 is involved in EPS synthesis, these considerations support that it is unlikely
that MXAN_1035 is part of the EPS biosynthesis machinery. In total, our results suggest
that the eps locus encodes homologs of a Wzx/Wzy-dependent pathway for EPS
biosynthesis. Therefore, we renamed MXAN_7416 and MXAN_7442 to WzxEPS and
WzyEPS. From here on, we focused on the five core components of the Wzx/Wzy-
dependent pathway for EPS synthesis.

�eps mutants synthesize spore coat polysaccharide and LPS and have normal
cell morphology. In addition to EPS, M. xanthus synthetizes O-antigen LPS (51) and a
spore coat polysaccharide (52). As mentioned, because blocking the synthesis of one
polysaccharide can affect the synthesis of other polysaccharides, including PG, by
sequestration of Und-P through accumulation of Und-PP intermediates, we determined
whether the lack of the EPS biosynthetic proteins affects spore coat polysaccharide,
LPS, or PG synthesis.

Synthesis of the spore coat polysaccharide is essential for sporulation in M. xanthus
(40, 53). To evaluate whether the Δeps mutants synthetized spore coat polysaccharide,
we analyzed sporulation independently of starvation. For this, we profited from an
assay in which sporulation occurs rapidly and synchronously and is induced chemically
by the addition of glycerol at a high concentration (0.5 M) to cells growing in
nutrient-rich broth (54). In response to adding glycerol, cells of wild type (WT) and all
five eps in-frame deletion mutants rounded up during the first 4 h and had turned into
phase-bright resistant spores by 24 h (Fig. 4A). Cells of the ΔexoE mutant, which lacks
the PHPT for initiating spore coat polysaccharide biosynthesis, were used as a negative
control (39, 41), remained rod-shaped, and did not form phase-bright spores. Interest-
ingly, the sporulation efficiency of all five Δeps mutants was increased compared to that
of the WT (Fig. 4A). Because the spores formed by the WT under high concentrations

FIG 3 Legend (Continued)
Determination of EPS synthesis. Twenty-microliter aliquots of cell suspensions of strains of the indicated genotypes at 7 � 109 cells ml�1 were spotted on 0.5%
agar supplemented with 0.5% CTT and Congo red or trypan blue and incubated 24 h. The �difE mutant served as a negative control. Scale bars, 3 �m.
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of glycerol adhere to glass surfaces and each other, forming large aggregates, while the
spores formed by the Δeps mutants do not, we speculate that the ease of harvesting
the EPS� spores rather than the eps mutations per se results in an apparent increase in
the overall sporulation efficiency. We conclude that lack of the EPS biosynthetic
proteins does not cause a sporulation defect, in agreement with previous observations
that mutation of epsV did not affect glycerol-induced sporulation (39).

LPS in total cell extracts was detected by Emerald staining and the ΔwbaP mutant,
which lacks the PHPT for O-antigen biosynthesis, served as a negative control (37). A
fast-running lipid-A core band and polymeric LPS O-antigen bands were detected in
LPS preparations of WT and the five Δeps mutants, while only the lipid A core band was
detected in the ΔwbaP mutant (Fig. 4B). The ΔwzxEPS mutant accumulated lower levels
of LPS O antigen (Fig. 4B). O antigen in M. xanthus is synthesized via an ABC transporter-
dependent pathway, and the lack of the Wzm/Wzt ABC transporter blocks LPS
O-antigen synthesis (37, 38), suggesting that WzxEPS is not directly involved in
O-antigen synthesis. Therefore, we speculate that the reduced O-antigen level in the
ΔwzxEPS mutant could be caused by sequestration of Und-PP-linked EPS intermediates
unable to be translocated across the membrane, which would reduce the available pool
of Und-P for O-antigen synthesis.

Interference with PG synthesis during growth in M. xanthus causes morphological
defects (55–57). Therefore, we used cell morphology as a proxy for PG synthesis to test
whether lack of the EPS biosynthetic proteins interferes with PG synthesis during
growth. Cell morphology and cell length of the five Δeps mutants were similar to that
of WT cells, supporting that PG synthesis is not affected in the Δeps mutants (Fig. 4A [0
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h] and C). Altogether, these observations support that the Eps proteins make up a
pathway dedicated to EPS synthesis.

MXAN_7415 has Gal-1-P transferase activity. EpsZ is the predicted PHPT of the
EPS biosynthesis pathway. Similar to WcaJEc from E. coli and WbaPSe from Salmonella
enterica (41, 58, 59), we identified a PF13727 (CoA_binding _3) domain, a C-terminal
PF02397 (Bac_transf) domain, and five transmembrane regions in EpsZ (Fig. 5A), all
features of PHPT proteins. The fifth TMH of WcaJEc does not fully span the IM, and this
results in the cytoplasmic localization of the C-terminal catalytic domain. This depends
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FIG 5 Polyisoprenyl-phosphate hexose-1-phosphate (PHPT) activity of MXAN_7415. (A) Domain and TMH prediction of EpsZ (MXAN_7415) and WcaJ of E. coli
(WcaJEc). Gray rectangles indicate TMH. Numbers indicate domain borders. (B) Topology predictions for EpsZ (MXAN_7415). Domains are indicated in blue, and
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on residue P291, which causes a helix-break-helix in the structure and forms part of a
DX12P motif conserved among PHPTs (59). Because EpsZ contains the DX12P motif and
all the conserved essential residues important for catalytic activity that have been
identified in the C-terminal catalytic region of WbaP (60) (Fig. 5B and Fig. S1A), we
suggest that EpsZ is a PHPT with a membrane topology similar to that of WcaJ.

PHPTs generally utilize UDP-glucose (UDP-Glc) or UDP-galactose (UDP-Gal) as sub-
strates to transfer Glc-1-P or Gal-1-P, respectively, to Und-P (29, 61). Therefore, by
following the same strategy as that previously reported (37, 41, 62), we tested whether
EpsZ could functionally replace WcaJEc or WbaPSe, which catalyze the transfer of Glc-1-P
and Gal-1-P to Und-P, respectively. To this end, epsZ was cloned into pBADNTF,
resulting in plasmid pMP146, which encodes EpsZ with an N-terminal FLAG tag
(FLAGEpsZ) to facilitate detection by immunoblot and under the control of an arabinose-
inducible promoter.

WcaJEc initiates colanic acid biosynthesis, which results in a strong glossy and
mucoid phenotype of wcaJEc

	 cells containing the plasmid pWQ499 encoding the
positive regulator RcsA (59). An E. coli ΔwcaJEc(pWQ499) mutant is complemented with
the plasmid pLA3 in the presence of arabinose (59), which encodes FLAGWcaJEc under
the control of the arabinose-inducible promoter (Fig. 5C and Fig. S1B). In contrast, no
complementation was observed by FLAGEpsZ or the empty pBADNTF vector in the
presence of arabinose (Fig. 5C and Fig. S1B), suggesting that EpsZ does not have
Glc-1-P transferase activity.

WbaPSe initiates O-antigen synthesis in S. enterica, and the O-antigen synthesis
defect of a ΔwbaPSe mutant can be partially corrected by complementation with the
plasmid pJD132, which encodes the E. coli O9:K30 WbaPSe homolog (WbaPEc O9:K30),
and with the plasmid pSM13, which encodes WbaPSe (58) (Fig. 5D, left). The differences
in the O-antigen profile between the different complementation strains are likely due
to different processing of the O antigen, as previously reported (58). Expression of

FLAGEpsZ in the ΔwbaPSe mutant in the presence of arabinose provoked a change of the
LPS profile (Fig. 5D, left), while the empty pBADNTF vector did not affect the LPS profile.
Because the effect of FLAGEpsZ on the O-antigen profile of the ΔwbaPSe mutant was
relatively modest by silver staining, we repeated these experiments using Salmonella
O-antigen rabbit antibodies. As shown in Fig. 5D, right, in this analysis, FLAGEpsZ
complemented the ΔwbaPSe mutant in the presence of arabinose. To test for the
accumulation of FLAGEpsZ in the E. coli and S. enterica strains when grown in the
presence of arabinose, we performed immunoblots using anti-FLAG antibodies
(Fig. 5E). EpsZ accumulated in both strains predominantly in the monomeric form. In
contrast, FLAGWcaJEc showed the characteristic oligomeric and monomeric bands as
previously reported for PHPTs (58). We conclude from these experiments that WbaPMx

can transfer Gal-1-P onto Und-P.
EPS and/or EPS biosynthetic machinery is important for T4P-dependent mo-

tility and T4P formation. Next, we tested the five Δeps mutants for motility defects. To
this end, cells were spotted on 0.5% and 1.5% agar, respectively (14). On 0.5% agar, WT
cells formed the long flares characteristic of T4P-dependent motility, while on 1.5%
agar, WT displayed the single cells at the colony edge characteristic of gliding motility.
The ΔpilA mutant, which lacks the major pilin subunit and does not assemble T4P (63),
and the ΔaglQ mutant, which lacks a component of the gliding motility machinery (64,
65), were used as negative controls for T4P-dependent and gliding motility, respec-
tively. As expected, the Δeps mutants had a T4P-dependent motility defect, forming
colonies with shorter flares than the WT, as did the ΔaglQ mutant (Fig. 6A). The motility
defects of the Δeps mutants were complemented by ectopic expression of the relevant
genes (Fig. 6A). On 1.5% agar, the Δeps mutants displayed the single cells at the colony
edge, characteristic of gliding motility, while the ΔaglQ mutant did not and had a flat
colony edge (Fig. 6A). The total colony expansion also was reduced similarly to that of
the ΔpilA mutant. The reduced colony expansion of the Δeps mutants was corrected in
the five complementation strains (Fig. 6A). Because the ΔaglQ mutant made shorter
flares on 0.5% agar and had no single-cell motility on 1.5% agar, the ΔpilA mutant made
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FIG 6 Motility analyses of Δeps mutants. (A) Colony-based motility assay of Δeps mutants. T4P-dependent motility and gliding motility were tested
on 0.5% and 1.5% agar, respectively. Images were recorded after 24 h. Scale bars, 1 mm, 1 mm, and 10 �m (left to right). (B and C) T4P shear-off
assay. Immunoblot detection of the major pilin PilA in sheared T4P (top) and in total cell extract (middle), where the same number of cells grown
on 1% CTT, 1.5% agar was loaded per lane. The top and middle blots were probed with anti-PilA antibodies (calculated molecular mass, 23.4 kDa).
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no flares on 0.5% agar and had reduced colony expansion on 1.5% agar, while the five
Δeps mutants generated shorter flares on 0.5% agar and still had single-cell motility on
1.5% agar, we conclude that the lack of any single one of the five EPS biosynthetic
proteins causes a defect in T4P-dependent motility but not in gliding motility. Inter-
estingly, lack of WzxEPS and WzyEPS caused a stronger defect in T4P-dependent motility
than lack of EpsZ, EpsV, and EpsY (Fig. 6A).

To understand the mechanism underlying the defect in T4P-dependent motility in
the Δeps mutants, we determined the level of T4P formation using a shear-off assay, in
which T4P are sheared off the cell surface and then the level of PilA assessed by
immunoblotting. The PilA level in the sheared fraction was strongly reduced in all five
Δeps mutants, while the total cellular level of PilA was generally similar to that in the
WT, suggesting that these mutants have fewer T4P than WT cells (Fig. 6B). Of note, the
reduction in T4P-dependent motility in the five Δeps mutants did not correlate with the
level of T4P formation (Fig. 6A and B). Because a reduced level of T4P can result from
an extension defect or hyperretraction, we deleted the pilT gene encoding the PilT
retraction ATPase (66) in the five Δeps mutants and then repeated the shearing assay.
All five strains with the additional ΔpilT mutation assembled T4P at a higher level than
the pilT	 strains but at a significantly lower level than the ΔpilT strain (Fig. 6C). Thus, the
five Δeps mutants have a defect in T4P extension. Of note, the observation that the Δeps
pilT	 strains make fewer T4P than the Δeps ΔpilT strains support that T4P still retract in
the absence of the EPS biosynthetic machinery and/or EPS.

These observations are in stark contrast to the observations for the ΔdifA mutant,
which lacks the methyl-accepting chemotaxis protein (MCP) component of the Dif
system and is strongly reduced in EPS synthesis (21). This mutant was reported to make
T4P at WT levels (21) or to be hyperpiliated (15), and EPS was reported to stimulate T4P
retractions in this mutant (15, 19). We conclude that the lack of an EPS biosynthetic
protein and/or EPS causes a reduction in T4P extension, but the fewer T4P made can
still retract.

To analyze whether the reduced T4P formation in the Δeps mutants was caused by
reduced synthesis of one or more of the 10 core proteins of the T4P machine (13, 67)
or the Tgl pilotin for PilQ (68), we determined their accumulation levels in the five eps
mutants. All 11 proteins were detected at WT levels in the Δeps mutants (Fig. 6D),
suggesting that the T4P machinery is still assembled. We conclude that the EPS
biosynthetic machinery and/or EPS is important for T4P extension and, therefore,
T4P-dependent motility.

Cell-cell cohesion has been suggested to depend on EPS (10, 16, 69). To evaluate
whether the Δeps mutants were affected in cell-cell cohesion and agglutination, we
transferred exponentially growing cells to a cuvette and measured the change in cell
density over time. WT cells agglutinated and sedimented during the course of the
experiment, causing a decrease in the absorbance (Fig. 7). �difE and a mutant were
used as a negative control and did not agglutinate over time (21). None of the five Δeps
in-frame deletion strains agglutinated (Fig. 7), and the agglutination defect was com-
plemented in the complementation strains (Fig. 7).

EPS and/or the EPS biosynthetic machinery is conditionally important for
fruiting body formation. Next, we tested the five Δeps mutants for development. On
TPM agar (10 mM Tris-HCl [pH 7.6], 1 mM K2HPO4-KH2PO4 [pH 7.6], 8 mM MgSO4) and
in submerged culture, WT cells had aggregated to form darkened mounds at 24 h of
starvation (Fig. 8). On TPM agar, the Δeps mutants showed a delay in aggregation but
eventually formed larger and less compact fruiting bodies and sporulated with an
efficiency similar to that of the WT (Fig. 8). Under submerged conditions, the Δeps
mutants did not aggregate to form fruiting body sporulation, as expected from the
cell-cell cohesion and agglutination defects, and were significantly reduced in sporu-
lation. The developmental defects of the five Δeps mutants were largely restored by
ectopic expression of the corresponding gene (Fig. 8). These observations are also in
stark contrast to the observations for dif mutants with an EPS� phenotype, which do not
aggregate on solid surfaces (17, 18).
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DISCUSSION

Here, we focused on elucidating key steps of EPS biosynthesis and determined
functional consequences of the loss of the EPS biosynthetic machinery. The EPS
structure is unknown; however, chemical analyses support that it contains at least
N-acetylglucosamine (GlcNAc), Glc, and Gal, while data for other monosaccharides vary
depending on the analysis (70, 71).

Using bioinformatics, we identified the genes for all the components of a Wzx/Wzy
pathway in the eps locus. Our experimental results support a model in which these
genes encode the EPS biosynthesis machinery (Fig. 9A) and that synthesis of the EPS
repeat unit is initiated by the PHPT homolog EpsZ (MXAN_7415). We demonstrate in
heterologous expression experiments that EpsZ is functionally similar to the Gal-1-P
transferase WbaPSe, suggesting that Gal is the first sugar of the EPS repeat unit. The eps
locus encodes five GTs, and inactivation of each of these five genes (9, 34, 42) causes
a loss of EPS synthesis or T4P-dependent motility (Fig. 2A). Therefore, we suggest that
these five GTs add monosaccharides to build the repeat unit, which is then translocated
across the IM by the WzxEPS flippase (MXAN_7416). The repeat units are polymerized by
the WzyEPS polymerase (MXAN_7442) with the help of the PCP protein EpsV
(MXAN_7421) to make the EPS polysaccharide. In the last step, the EPS polymer is
transported to the surface through the OPX protein EpsY (MXAN_7417). EpsC
(MXAN_7449) is a serine O-acetyltransferase homolog, which is important but not
essential for EPS synthesis (9). As previously suggested for a paralog encoded by exoN
(41), which is important for spore coat polysaccharide synthesis, MXAN_7449 could be
involved in O-acetylation of precursors for EPS synthesis. Finally, the predicted glycosyl
hydrolase EpsB (MXAN_7450) is also important but not essential for EPS synthesis (9),
and its biochemical function remains to be characterized. Overall, our genetic and
functional analyses support that the EPS biosynthesis machinery is exclusively dedi-
cated to EPS biosynthesis and not involved in LPS O-antigen or spore coat polysac-
charide biosynthesis.

We also identified two additional loci, which together encode a complete Wzx/Wzy-
dependent pathway (Fig. 9B). Our genetic analysis suggests the proteins of this
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pathway are not involved in EPS biosynthesis and spore coat polysaccharide and LPS
O-antigen synthesis (Fig. 3D and unpublished data), indicating a novel function. While
the manuscript was in preparation, Islam et al. (72) reported that this pathway synthe-
sizes a biosurfactant that is important for T4P-dependent motility.

Genetic analyses of the five core components of the EPS biosynthesis machinery
showed that the lack of any of these proteins caused a defect not only in EPS synthesis
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but also in T4P-dependent motility and cell-cell cohesion, as well as a conditional defect
in fruiting body formation. Superficially, these defects are similar to those reported for
dif mutants with an EPS� phenotype, which are the best-studied mutants with de-
creased EPS synthesis. However, more detailed comparisons reveal important differ-
ences. First, dif mutants with an EPS� phenotype have a defect in T4P-dependent
motility (17, 18); however, a difA mutant makes T4P at WT levels (21) or is hyperpiliated
(15). Moreover, it was suggested that EPS stimulates T4P retractions in this mutant,
because the addition of EPS caused reduced piliation (15, 19). Because the dif mutants
with an EPS� phenotype make T4P but have reduced T4P-dependent motility, this
supports that EPS per se might stimulate T4P-dependent motility. In contrast, we
observed that the five Δeps mutants analyzed here are hypopilated. Further deletion of
the gene for the PilT retraction ATPase also resulted in an increased level of surface
piliation, suggesting that T4P in the five Δeps pilT	 mutants can still be retracted.
Consistent with this, T4P-dependent motility was not completely abolished in the five
Δeps mutants. These observations suggest that EPS, or, alternatively, components of
the EPS biosynthetic machinery, is important for T4P formation. Altogether, these
comparisons support that the dif EPS� mutations, which are regulatory mutants, and the
Δeps mutations described here, which are biosynthetic mutants, both interfere with
T4P-dependent motility, but the underlying mechanisms are different. Second, dif
mutants with an EPS� phenotype develop to form spore-filled fruiting bodies neither on
TPM or CF agar nor under submerged conditions (17, 18, 43). Of note, development of
such mutants on TPM agar was rescued by addition of EPS (21, 73). In contrast, the five
Δeps mutants described here develop with only a slight delay on TPM agar but not
under submerged conditions. We speculate that this developmental defect is caused by
lack of cell-cell cohesion and agglutination in the five Δeps mutants. Whether these
phenotypic differences are caused by the differences in T4P levels and functionality in
the two types of mutants remains to be investigated.

Previously, it was reported that the T4P machinery functions upstream of the Dif
pathway to stimulate EPS synthesis (74–77). How the T4P machinery interfaces with the
Dif system is unknown. Similarly, it is unknown how the Dif system stimulates EPS
biosynthesis. Here, we show that mutations in the Wzx/Wzy-dependent pathway for
EPS synthesis cause a defect in T4P extension. How this effect is brought about remains
to be determined. Interestingly, different Δeps mutations had different effects on T4P
extension, indicating that the extension defect is not simply caused by lack of EPS.
Because all five Δeps mutants accumulate all the proteins of the T4P machine and this
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machine is at least partially functional, we speculate that the EPS machinery, possibly
together with EPS, stimulate the function of the T4P machine. It will be an important
future goal to disentangle how dif and eps mutants at the molecular level affect T4P
formation and function as well as how the T4P machinery affects EPS synthesis.

MATERIALS AND METHODS
Strains and cell growth. All M. xanthus strains are derivatives of the wild-type DK1622 (78). Strains,

plasmids, and oligonucleotides used in this work are listed in Tables 1 and 2 and Table S3 in the
supplemental material, respectively. M. xanthus was grown at 32°C in 1% CTT (1% [wt/vol] Bacto
Casitone, 10 mM Tris-HCl [pH 8.0], 1 mM K2HPO4-KH2PO4 [pH 7.6], and 8 mM MgSO4) liquid medium or
on 1.5% agar supplemented with 1% CTT and kanamycin (50 �g ml�1) or oxytetracycline (10 �g ml�1),
as appropriate (79). In-frame deletions were generated as described previously (80), and plasmids for
complementation experiments were integrated in a single copy by site-specific recombination into the
Mx8 attB site. In-frame deletions and plasmid integrations were verified by PCR. Plasmids were propa-
gated in E. coli Mach1 and DH5�.

E. coli and S. enterica serovar Typhimurium strains were grown at 37°C in Luria-Bertani (LB) medium
(10 mg tryptone ml�1, 5 mg yeast extract ml�1, 5 mg NaCl ml�1) supplemented, when required, with
ampicillin, tetracycline, kanamycin, or chloramphenicol at a final concentration of 100, 20, 40, or 30 �g

TABLE 1 Strains used in this work

Strain Genotype Reference(s) or source

M. xanthus
DK1622 WT 78
DK8615 ΔpilQ 105
DK10405 Δtgl 106, 107
DK10409 ΔpilT 66, 90
DK10410 ΔpilA 90
DK10416 ΔpilB 66, 90
DK10417 ΔpilC 90
SW501 difE::Kmr 17
SA3001 ΔpilO 87
SA3002 ΔpilM 86
SA3005 ΔpilP 87
SA3044 ΔpilN 87
SA5923 ΔaglQ 108
SA6011 ΔtsaP 88
SA7450 ΔwbaPMx 37
SA7495 ΔexoE 37
SA7400 ΔMXAN_7415 This study
SA7405 ΔMXAN_7416 This study
SA7406 ΔMXAN_7421 This study
SA7407 ΔMXAN_7442 This study
SA7408 ΔMXAN_7417 This study
SA7410 ΔMXAN_7416 attB::pMP024 (Pnat MXAN_7416) This study
SA7411 ΔMXAN_7415 attB::pMP021 (Pnat MXAN_7415) This study
SA7412 ΔMXAN_7417 attB::pMP030 (PpilA MXAN_7417) This study
SA7413 ΔMXAN_7421 attB::pMP032 (PpilA MXAN_7421) This study
SA7427 ΔMXAN_7416 
pilT This study
SA7433 ΔMXAN_7415 
pilT This study
SA7435 ΔMXAN_7442 
pilT This study
SA7444 ΔMXAN_7417 
pilT This study
SA7445 ΔMXAN_7421 
pilT This study
SA7451 ΔMXAN_1025 This study
SA7452 ΔMXAN_1035 This study
SA7456 ΔMXAN_1052 This study
SA7454 ΔMXAN_1915 This study
SA7477 ΔMXAN_7442 attB::pMP091 (Pnat MXAN_7442) This study
SA8515 ΔMXAN_1043 This study

E. coli
DH5� F� �80lacZΔM15 endA recA hsdR(rK

� mK
�) nupG thi glnV deoR gyrA relA1 Δ(lacZYA-argF)U169 Laboratory stock

Mach1 ΔrecA1398 endA1 tonA �80ΔlacM15 ΔlacX74 hsdR(rK
� mK

	) Invitrogen
XBF1 W3110 
wcaJ::aph Kmr 62

Salmonella
LT2 WT S. enterica serovar Typhimurium S. Maloy
MSS2 LT2 ΔwbaP::cat Cmr 58
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ml�1, respectively. Plasmids for heterologous complementation were introduced into MSS2 and XBF1
strains (Table 1) by electroporation (81).

Detection of EPS accumulation. Exponentially growing cells were harvested (3 min, 6,000 � g at
room temperature [RT]) and resuspended in 1% CTT to a calculated density of 7 � 109 cells ml�1.
Twenty-microliter aliquots of the cell suspensions were placed on 0.5% agar plates supplemented with
0.5% CTT and 10 or 20 �g ml�1 of trypan blue or Congo red, respectively. Plates were incubated at 32°C
and documented at 24 h.

Glycerol-induced sporulation assay. Sporulation in response to 0.5 M glycerol was performed as
described previously (82), with a slightly modified protocol. Briefly, cells were cultivated in 10 ml of CTT
medium at a cell density of 3 � 108 cells ml�1, and glycerol was added to a final concentration of 0.5 M.
At 0, 4, and 24 h after glycerol addition, cell morphology was observed by placing 5 �l of cells on a 1.5%
agar TPM pad on a slide. Cells were immediately covered with a coverslip and imaged with a DMi6000B
microscope and a Hamamatsu Flash 4.0 camera (Leica). To determine the resistance to heat and
sonication of spores formed, cells from 5 ml of the culture after 24 h of incubation were harvested
(10 min, 4,150 � g, RT), resuspended in 1 ml sterile water, incubated at 50°C for 2 h, and then sonicated
with 30 pulses (pulse, 50%; amplitude, 75%; with a UP200St sonifier and microtip; Hielscher). Sporulation
levels were determined as the number of sonication- and heat-resistant spores relative to the WT using
a Helber bacterial counting chamber (Hawksley, UK), and 0.5 �l of the treated samples was placed on a
1.5% agar TPM pad on a slide, covered with a coverslip, and imaged.

LPS extraction and detection. LPS was extracted from M. xanthus and visualized by Emerald
staining as described previously (37). LPS from S. enterica and E. coli was extracted and visualized by silver
staining as described previously (37, 83). For S. enterica, O antigen was detected by immunoblot using
rabbit Salmonella O antiserum group B (number 229481; Difco, Becton Dickinson) (1:500) and the
secondary antibody IRDye 800CW goat anti-rabbit immunoglobulin G (1:10,000) (LI-COR) (37).

Cell length determination. Five-microliter aliquots of exponentially growing cell suspensions were
spotted on glass placed on a metal frame, covered with 1.5% agar supplemented with TPM, and imaged
using a DMi8 inverted microscope and DFC9000 GT camera (Leica) (84). Cell length was determined and
visualized as described previously (37). Statistical analyses were performed using SigmaPlot v14. All data
sets were tested for a normal distribution using a Shapiro-Wilk test, and for all data sets without a normal
distribution, the Mann-Whitney test was applied to test for significant differences.

Motility assays. Exponentially growing cultures of M. xanthus were harvested (6,000 � g, RT) and
resuspended in 1% CTT to a calculated density of 7 � 109 cells ml�1. Five-microliter aliquots of cell
suspensions were spotted on 0.5% and 1.5% agar supplemented with 0.5% CTT. The plates were
incubated at 32°C for 24 h, and cells were visualized using a M205FA stereomicroscope (Leica) and
imaged using a Hamamatsu ORCA-flash V2 digital CMOS camera (Hamamatsu Photonics). Pictures were
analyzed using Metamorph v 7.5 (Molecular Devices).

TABLE 2 Plasmids used in this work

Plasmid Description Reference or source

pBJ114 Kmr galK 109
pSWU30 Tetr 63
pSW105 Kmr PpilA 66
pBADNTF pBAD24 for N-terminal FLAG fusion and with arabinose-inducible promoter, Ampr 110
pLA3 pBADNTF wcaJ Ampr 59
pSM13 pUC18, wbaP from S. enterica Ty2 containing a 1-bp deletion at position 583

a 2-bp deletion at position 645, which causes a frame shift at WbaP I194 and
frame restoration at Y215, Ampr

58

pJD132 pBluescript SK, wbaP and flanking sequences from E. coli O9:K30, Ampr 111
pWQ499 pKV102 containing rcsAK30, Tetr Chris Whitfield
pMAT150 pBJ114, in-frame deletion construct for pilT Kmr Anke Treuner-Lange
pMP001 pBJ114, in-frame deletion construct for MXAN_7415 Kmr This study
pMP012 pBJ114, in-frame deletion construct for MXAN_7421 Kmr This study
pMP015 pBJ114, in-frame deletion construct for MXAN_7442 Kmr This study
pMP016 pBJ114, in-frame deletion construct for MXAN_7416 Kmr This study
pMP018 pBJ114, in-frame deletion construct for MXAN_7417 Kmr This study
pMP021 pSWU30 Pnat MXAN_7415 Tetr This study
pMP024 pSWU30 Pnat MXAN_7416 Tetr This study
pMP030 pSW105 MXAN_7417 Kmr This study
pMP032 pSW105 MXAN_7421 Kmr This study
pMP091 pSWU30 Pnat MXAN_7442 Tetr This study
pMP124 pBJ114, in-frame deletion construct for MXAN_1043 Kmr This study
pMP146 pBADNTF MXAN_7415 Ampr This study
pJJ1 pBJ114, in-frame deletion construct for MXAN_1035 Kmr This study
pJJ2 pBJ114, in-frame deletion construct for MXAN_1025 Kmr This study
pJJ3 pBJ114, in-frame deletion construct for MXAN_1052 Kmr This study
pJJ4 pBJ114, in-frame deletion construct for MXAN_1915 Kmr This study
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Detection of colanic acid biosynthesis. E. coli ΔwcaJ strains were grown on LB plates with
antibiotics and with or without 0.2% (wt/vol) arabinose at 37°C overnight. Incubation was extended to
24 to 48 h at RT to visualize the mucoid phenotype (Furlong et al. [59]).

Immunoblot analysis. Immunoblots were carried out as described previously (85). For M. xanthus
immunoblots, rabbit polyclonal anti-PilA (dilution, 1:2,000), anti-PilB (dilution, 1:2,000) (66), anti-PilC
(dilution, 1,2,000) (86), anti-PilM (dilution, 1:3,000) (86), anti-PilN (dilution, 1:2,000) (87), anti-PilO (dilution,
1:2,000) (87), anti-PilP (dilution, 1:2,000) (87), anti-PilT (dilution, 1:3,000) (66), anti-Tgl (dilution, 1:2,000)
(87), anti-TsaP (dilution, 1:2,000) (88), and anti-PilQ (dilution, 1:5,000) (86) were used together with a
horseradish-conjugated goat anti-rabbit immunoglobulin G (Sigma) as a secondary antibody. Blots were
developed using Luminata crescendo Western HRP substrate (Millipore) on a LAS-4000 imager (Fujifilm).

For E. coli and S. enterica strains, FLAG-tagged membrane proteins were isolated and detected by
immunoblot analysis, as previously described, using anti-FLAG M2 monoclonal antibody (Sigma) (1:10,000)
and a secondary antibody, 0.5 mg IRDye 800CW goat anti-mouse IgG (H	L) (1:10,000) (LI-COR) (37).

T4P shear-off assay. T4P were sheared from cells that had been grown for 3 days on 1.5% agar
plates supplemented with 1% CTT at 32°C as described above, except that precipitation of sheared T4P
was done using trichloroacetic acid as described previously (89) and analyzed by immunoblotting with
anti-PilA antibodies as described previously (63). Blots were developed as indicated.

Cell agglutination assay. Cell agglutination was performed as described previously (90), with a
slightly modified protocol. Briefly, 1 ml of exponentially growing cells in 1% CTT was transferred to a
cuvette, and cell density was measured at the indicated time points.

Development. Exponentially growing M. xanthus cultures were harvested (3 min, 6,000 � g at RT)
and resuspended in MC7 buffer (10 mM morpholinepropanesulfonic acid [pH 7.0], 1 mM CaCl2) to a
calculated density of 7 � 109 cells ml�1. Ten-microliter aliquots of cells were placed on TPM agar (10 mM
Tris-HCl [pH 7.6], 1 mM K2HPO4-KH2PO4 [pH 7.6], 8 mM MgSO4), and 50-�l aliquots were mixed with
350 �l of MC7 buffer and placed in a 24-well polystyrene plate (Falcon) for development in submerged
culture. Cells were visualized at the indicated time points using an M205FA stereomicroscope (Leica) and
imaged using a Hamamatsu ORCA-flash V2 digital CMOS camera (Hamamatsu Photonics), DMi8 inverted
microscope, and DFC9000 GT camera (Leica). Images were analyzed as previously described. After 120 h,
cells were collected and incubated at 50°C for 2 h and then sonicated as described above. Sporulation
levels were determined as the number of sonication- and heat-resistant spores relative to the WT.

Bioinformatics. The KEGG SSDB (Sequence Similarity Database) (91) database was used to identify
homologs of PHPT (PF02397, Bacterial Sugar Transferase), PNPT (PF00953, Glycosyl transferase family 4)
(92), Wzx (PF01943, Polysacc_synt, and PF13440, Polysacc_synt_3), Wzy_C (PF04932, Wzy_C), PCP
(PF02706, Wzz), and OPX (PF02563, Poly_export), as described previously (41, 93, 94). For the ABC
transporter-dependent pathway we used (PF01061, ABC2_membrane) for the permease and, (PF00005,
ABC_tran) and (PF14524, Wzt_C) for the ATPase, as described in reference 37, together with an analysis
of the genetic neighborhood to search for glycan-related proteins. BLASTP was used to identify
homologs of the synthase-dependent pathway using previously identified components (33). KEGG SSDB
was also used to identify EPS homolog proteins in other Myxococcales using a reciprocal best BLASTP hit
method. UniProt (95), KEGG (91), and the Carbohydrate Active Enzymes (CAZy) (http://www.cazy.org/)
(96) databases were used to assign functions to proteins (Fig. 1B, 2A, 3A and B, and Tables S1 and
S2). SMART (smart.embl-heidelberg.de) (97) and Pfam v31.0 and v32.0 (pfam.xfam.org) (98) were
used to identify protein domains. Membrane topology was assessed by TMHMM v2.0 (99), and
two-dimensional topology was graphically shown using TOPO2 (100). Clustal Omega (101) was used
to align protein sequences. The phylogenetic tree was prepared as described in reference 41 in
MEGA7 (102) using the neighbor-joining method (103). Bootstrap values (500 replicates) are shown
next to the branches (104).

Data availability. The data that support the findings of this study are available from the corre-
sponding author upon request.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.
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