
Urinary Amine Metabolomics Characterization with Custom 12-
plex Isobaric DiLeu Labeling

Pingli Wei1, Ling Hao2, Samuel Thomas3, Amanda Rae Buchberger1, Laura Steinke4, Paul 
C. Marker4, William A. Ricke3,5, Lingjun Li1,3,4,*

1Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA

2Department of Chemistry, George Washington University, Washington, DC, 20052, USA

3Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, 
53706, USA

4School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA

5Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA

Abstract

Lower urinary tract symptoms (LUTS) are common in aging males. Disease etiology is largely 

unknown, but likely includes inflammation and age-related changes in steroid hormones. 

Diagnosis is currently based on subjective symptom scores, and mainstay treatments can be 

ineffective and bothersome. Biomarker discovery efforts could facilitate objective diagnostic 

criteria for personalized medicine and new potential druggable pathways. To identify urine 

metabolite markers specific to hormone-induced bladder outlet obstruction, we applied our custom 

synthesized multiplex isobaric tags to monitor the development of bladder outlet obstruction 

across time in an experimental mouse model of LUTS. Mouse urine samples were collected before 

treatment and after 2, 4, and 8 weeks of steroid hormone treatment and subsequently analyzed by 

nanoflow ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. 

Accurate and high throughput quantification of amine-containing metabolites was achieved by 

twelve-plex DiLeu isobaric labeling. Metandem, a novel online software tool for large-scale 

isobaric labeling-based metabolomics, was used for identification and relative quantification of 

labeled metabolites. A total of 59 amine-containing metabolites were identified and quantified, 9 

of which were changed significantly by the hormone treatment. Metabolic pathway analysis 

showed that three metabolic pathways were potentially disrupted. Among them, the arginine and 

proline metabolism pathway was significantly dysregulated both in this model and in a prior 

analysis of LUTS patient samples. Proline and citrulline were significantly changed in both 

samples and serve as attractive candidate biomarkers. 12-plex DiLeu isobaric labeling with 

Metandem data processing presents an accessible and efficient workflow for amine-containing 

metabolome study in biological specimens.
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The urine sample is collected from the LUTS mouse model. Extracted metabolites from distinct 

urine samples are differentially labeled with isobaric DiLeu tags and each metabolite is shown as a 

single peak at the MS1 level. The subsequent MS2 analysis enables relative quantification based on 

reporter ion intensities. Metandem software is used for data analysis. Finally, the quantification 

results can be used for biomarker discovery of LUTS.
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INTRODUCTION

Lower urinary tract symptoms (LUTS) is a major public health problem in the aging 

population. Symptoms include frequency, urgency, nocturia, weak urinary stream, straining 

to void, and a sense of incomplete emptying (1–3). Recent studies have shown that the 

etiology of LUTS is multi-factorial (4, 5). In men, prostate enlargement, prostatic 

inflammation, age-related changes in detrusor function and steroid hormones, and 

heightened sensitivity to bladder filling may all contribute (4–8). The complex and 

variegated composition of the LUTS patient population makes it challenging to tease out and 

validate contributions of different mechanisms. Currently no objective biomarkers exist to 

inform treatment strategies, so patients are generally treated with drugs to decrease prostate 

size (5α-reductase inhibitors) or relax smooth muscle (alpha blockers) (9, 10). These 

treatments are not completely effective, durable in response, nor are they without 

complication (11). Patients with LUTS that persists after these mainline treatments may 

undergo invasive transurethral resection of the prostate (12). Overall, better biomarkers and 

treatment options need to be found. Here, we attempt to characterize the contribution of 

hormone changes to the urine metabolome under controlled, experimental conditions in a 

mouse model of bladder outlet obstruction (BOO). Understanding the urine signature of 
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hormone-induced BOO will inform both future efforts to study druggable pathways and 

validate LUTS biomarkers for patient stratification and personalized treatments.

Our hormone-induced BOO mouse model relies on slow-release, subcutaneous implants of 

testosterone and 17β-estradiol in adult male C57/BL6 mice to generate marked increases in 

urinary frequency, bladder volume, bladder mass, and prostate mass as well as decreased 

urinary volume/void before the 8 week timepoint (13). Additionally, this model, if treated 

longer (4 months), develops prostatic intraepithelial neoplasia lesions, making this model 

useful for the study of carcinogenesis in the prostate (14). To characterize the urine 

metabolome of hormone-induced BOO, we collected samples across the development of this 

phenotype: before treatment and after 2, 4, and 8 weeks of treatment.

Tandem mass spectrometry (MS/MS)-based relative quantification by isobaric labeling is a 

useful technique for comparative quantitative metabolomics in biological systems (15–17). 

N,N-dimethyl leucine (DiLeu) labels are isobaric. This means that analyte precursor m/z 
between channels is indistinguishable at low MS resolution, but distinct reporter ions are 

apparent in the low m/z region upon MS2 fragmentation. The intensities of these reporter 

ions in MS2 spectra reflect the labeled metabolites’ abundance in each sample and, thus, can 

be compared for relative quantification. Compared to label-free metabolomics, multiplexed 

isobaric labeling of metabolites greatly reduces run-to-run variation, enhances ionization 

efficiency, improves chromatographic separation of polar metabolites, and decreases 

instrument time demand (by 12-fold when using 12-plex DiLeu labeling) (18). DiLeu 

utilizes a triazine ester to label primary and secondary amines, making this derivatization 

scheme applicable to many metabolites. Additionally, DiLeu labeling enables polar 

metabolites to be separated and detected on nanoUPLC systems, improving 

chromatographic resolution and detection sensitivity over typical standard flow separation 

techniques (19). Twelve-plex DiLeu isobaric labels, which are designed and synthesized in 

our lab (20, 21), were employed here for the relative quantification of amine-containing 

metabolites in urine samples via nanoflow ultrahigh-performance liquid chromatography 

coupled to tandem mass spectrometry (nanoUPLC-MS/MS).

Isobaric labeling has been widely adopted for quantitative proteomics and peptidomics, but 

it has only recently been applied to metabolomics analyses (22–24). Thus, data processing 

workflows for isobaric labeling in proteomics and peptidomics have matured more rapidly 

than for metabolomics. To date, few metabolomics software tools can process stable isotope 

label-based metabolomics data, particularly when using reporter ions produced by MS2 for 

quantification. Therefore, our lab developed a novel online software tool for isobaric 

labeling-based metabolomics, called Metandem, which integrates metabolite quantification, 

identification, and statistical analysis in the same software package and is freely available at 

http://metandem.com/web/ (25). Metandem is also the first omics data analysis software to 

provide straightforward, online parameter optimization functionality for customization to a 

particular dataset (25). Here, we employed the Metandem software tool to analyze the 12-

plex DiLeu-labeled urinary metabolites at multiple time points after hormone treatment. 

Metabolite identification, quantification, and statistical analysis were achieved in less than 

15 min using our Metandem software tool. It is expected that these powerful tools may 
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identify clinically useful biomarkers of hormone-induced bladder outlet obstruction and new 

targets for drug treatment.

MATERIALS AND METHODS

Hormone-induced urinary obstruction mouse model

All animal procedures were approved by the University of Wisconsin-Madison Animal Care 

and Use Committee. Adult male C57BL/6 mice were used for this study (n = 3) (Charles 

River, Wilmington, MA). Urine was collected from each animal via metabolic cage (26) for 

a two-hour period. After the pre-treatment urine collection, mice were treated with 

subcutaneous, slow-release implants containing compressed testosterone (T, 25 mg) and 

17β-estradiol (E2, 2.5 mg + 22.5 mg cholesterol binder), as described previously (13). Urine 

samples from the same mice were then collected at 2, 4, and 8 weeks post-treatment, as 

above. All samples were stored at −80 °C until further processing.

Mouse urine sample preparation

Urine samples were thawed on ice and mixed well by vortexing. Raw urine (220 μL) was 

centrifuged at 10,000 g for 10 min to remove particulates and cellular debris. Centrifugal 

filters (3 kDa, Millipore Amicon Ultra, Burlington, MA) were pre-rinsed 3 times with 500 

μL of Milli-Q water at 14,000 g for 20 min. Clarified supernatant (200 μL) of each urine 

sample was added to the filter unit and centrifuged at 14,000 g for 30 min, followed by 2 

rinses with Milli-Q water (200 μL; same centrifugation speed and time) to obtain the 

metabolite fraction (~600 μL total). Osmolality was determined via a freezing-point 

depression osmometer (Osmometer Model 3250, Advanced Instruments, Norwood, MA) 

(27) and all samples were normalized to 50 mOsmoles/kg H2O. Osmolite concentration can 

represent the total urinary metabolite content, and normalized to osmolality has been proven 

to be a better method for metabolite normalization prior to instrumental analysis (28). Then 

all the aliquoted urine samples were lyophilized and stored at −80 °C until labeling.

DiLeu synthesis and labeling procedure

Twelve-plex isobaric DiLeu reagents were synthesized and used for labeling reaction as 

previously described (29). Briefly, the DiLeu 12-plex reagents were synthesized, aliquoted 

in inactivated form at 4 °C in a dry box and activated prior to labeling. Lyophilized urine 

metabolite samples were re-dissolved in 0.5 M triethylammonium bicarbonate solution prior 

to derivatization of primary and secondary amines by excess activated DiLeu reagent (Fig. 

1D). The organic: aqueous ratio was maintained at ~70% via anhydrous dimethylformamide. 

Reactions were allowed to proceed for 2 hrs at room temperature with vigorous vortexing. 

Labeling reactions were quenched with 0.25% hydroxylamine (v/v), and labeled samples 

were combined in equal ratios (v/v) to form pooled 12-plex samples. Excess DiLeu reagents 

were removed from pooled 12-plex samples via SCX Ziptips (OMIX-SCX, Agilent, Santa 

Clara, CA) as previously described (19) before lyophilization and storage at −80 °C until 

analysis.
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LC-ESI-MS analysis

Twelve-plex pooled samples were reconstituted in 3% acetonitrile, 0.1% formic acid (v/v) in 

water before injection. UPLC-MS/MS analysis was conducted using a Thermo Dionex 

UltiMate™ 3000 nanoLC system coupled to a Thermo Q Exactive™ HF Orbitrap MS. The 

analytical column was self-made with an integrated emitter tip and dimensions of 75 μm 

inner diameter × 15 cm length, packed with 1.7 μm, 150 Å, BEH C18 material (Waters, 

Milford, MA). Mobile phase A was 0.1% formic acid in water, and mobile phase B was 

0.1% formic acid in acetonitrile (Optima Solvents, Thermo, Waltham, MA). The flow rate 

was 0.3 μL/min, and the 70-min gradient was as follows: 0–16 min, 3% solvent B; 16–20 

min, 3–25% B; 20–30 min, 25–45% B; 30–50 min, 45–70% B; 50–56 min, 70–95% B; 56–

60 min 95% B; 60–60.5 min, 95–3% B; 60.5–70 min, 3% B. Positive ionization mode was 

used for the MS analysis. Full MS scans were acquired from m/z 180 to 1000 at a resolution 

of 60 K, automatic gain control (AGC) at 1 × 106, and maximum injection time of 50 ms. 

The top 20 precursors were selected for higher-energy C-trap dissociation tandem mass 

spectrometry (HCD MS2) analysis with an isolation window of 1 m/z, normalized collision 

energy (NCE) of 30, resolving power of 60k, AGC target of 1 × 105, maximum injection 

time of 30 ms, and a lower mass limit of 110 m/z.

Data analysis

Raw data files were acquired using Thermo Scientific Xcalibur™ software and converted 

into .txt format via the COMPASS software suite (30). Metandem was then used to batch-

process three technical replicates of each 12-plex sample for metabolite quantification. 

Accurate mass of reporter ions was obtained by averaging the mass across several MS/MS 

spectra. Then, the mass tolerance for metabolite identification was 20 ppm. DiLeu label 

purity was predetermined, and correction for each channel was performed as previously 

described (19). Average precursor mass shift due to labeling was 145.1280 Da. Data analysis 

parameters, such as reporter ion mass tolerance, batch mass tolerance, and retention time 

tolerance were optimized using the parameter optimization graphs in the Metandem 

software. Output files with reporter ion information were merged and median-normalized. 

Molecular weights of detected compounds were calculated based on the charge and mass 

shift caused by labeling, and then searched against the Human Metabolome Database 

(HMDB). The unreasonable matches were excluded from the identification results and only 

the metabolites with primary or secondary amine were kept. Paired t-test was performed 

comparing metabolite abundance of 2/4/8 weeks to that of 0 week. Any of the three 

comparisons showing fold change > 1.5 and p-value < 0.05 were considered as significantly 

changed metabolites. MetaboAnalyte 4.0 software (31) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database were used for metabolic pathway analysis. Pathways were 

considered dysregulated when more than two metabolites were identified in the pathway and 

at least one was significantly changed due to the treatment. Candidate biomarkers and 

dysregulated pathways were compared with prior patient analyses and other previous 

reports.
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RESULTS AND DISCUSSION

Efficacy of twelve-plex DiLeu isobaric labeling for metabolomics

Twelve-plex DiLeu isobaric labeling allowed multiplexed metabolite identification and 

quantification in mouse urine samples while also reducing instrumentation time demand, 

decreasing run-to-run variation, and also improving quantification accuracy. The same 

labeled metabolite from 12 urine samples showed a single peak in the MS1 spectrum with a 

mass shift of 145.1280 Da (Fig. 1A). For this peak, twelve distinct reporter ion peaks are 

present in the MS2 low m/z region (Fig. 1B). The intensity of each reporter ion in MS2 

spectra reflects the labeled metabolites’ abundance in each sample and, thus, can be 

compared for relative quantification (Fig. 1C). The absence of unlabeled metabolite ions in 

the MS1 (mass difference of 145.1280 compared to unlabeled counterparts) suggested highly 

efficient labeling of the metabolites by the DiLeu reagent.

Metandem parameter optimization

Metandem is a newly developed custom software platform for large-scale stable isotope 

labeling-based metabolite identification and quantification. It is also the first omics data 

analysis software that contains functionality to perform online parameter optimization for 

customization to a dataset. Results of automated parameter optimization were as follows: 

optimal reporter ion mass tolerance, 0.5 mDa (Fig. 2A); optimal batch processing mass 

tolerance, 5 ppm (Fig. 2B); and optimal batch processing retention time tolerance, 0.5 min 

(Fig. 2C). Metandem also provides the histogram for retention time (Fig. S1A) and detected 

precursor (Fig. S1B) distribution results.

Mouse urine metabolite identification and quantification

Three technical replicates of each 12-plex injection were merged in Metandem. A total of 

312 features were identified as putative metabolites after accurate mass matching against the 

HMDB. After excluding unreasonable matches from the database, 59 were primary or 

secondary amine-containing metabolites were identified (Table S1). Thirty-seven of these 59 

were documented in the urine metabolome database (32), and the twenty-two additional 

amine-containing metabolites were, to our knowledge, first reported here. After comparing 

metabolite abundance between timepoints, 9 metabolites were identified as statistically 

significant biomarker candidates (Paired t-test, fold change > 1.5 and p-value < 0.05. The 

smallest p-value out of the three was show in Table 1). Among them, eight metabolites were 

generally increased at all timepoints, while only one metabolite was generally decreased at 

all timepoints (Fig. 3). For the increased expression patterns, leucine and 5-

aminopentanamide have the highest concentration at 2 weeks; N-acetylputrescine at 4 

weeks; and proline, citrulline, D-alanyl-D-alanine, O-phosphohomoserine, and 2-

Aminobenzoic acid peaked at 8 weeks.

Metabolic pathway analysis

Metabolic pathway analysis is based on the association between identified metabolites and 

their related biological processes (33). Herein, all identified metabolites were input into the 

MetaboAnalyte 4.0 software for metabolic pathway analysis. Three potentially perturbed 
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metabolic pathways were identified: (1) the arginine and proline metabolism pathway; (2) 

the aminoacyl-tRNA biosynthesis pathway; and (3) the tryptophan metabolism pathway 

(Table 2. p-value is from Fisher’s exact test). Although tryptophan metabolism pathway has 

a p-value slightly higher than 0.05, it was also shown here as a candidate disrupted 

metabolic pathway.

Comparison with LUTS patient samples and other previous reports

Prior analyses have demonstrated some of the metabolomic and immunohistochemical 

features of LUTS in patient samples, which represent processes like fibrosis and 

inflammation (27). Both LUTS patients and this hormone-induced mouse model of BOO 

show perturbation of the arginine and proline metabolic pathway in the urine metabolome. 

In particular, the candidate biomarkers citrulline and proline were significantly changed in 

both LUTS and this mouse model (Fig. 4). For proline, it was increased in both LUTS 

patients and the hormone-treated mice, represents a strong candidate biomarker for 

hormone-induced BOO. Urinary proline was also increased in a mouse model of hepatic 

injury and fibrosis, indicating fibrosis is a potential relevant pathway in the present BOO 

model (34). Next, citrulline was decreased in LUTS patients but increased in this mouse 

model. Citrulline is poorly understood in the context of prostate diseases. Citrulline is a non-

essential amino acid, a precursor to arginine, and displays antioxidant properties (35). 

Increased urine citrulline in these mice could be explained by inflammation-induced 

expression of nitric oxide synthase 2, the enzyme responsible for conversion of arginine to 

citrulline (36), possibly in response to oxidative stress generated by catechol estrogen 

metabolites (37).

Other processes were significantly changed in the present study but not observed in LUTS 

patients. For example, the aminoacyl-tRNA biosynthesis pathway was disrupted in the urine 

metabolome of this mouse model but not in LUTS patients. This pathway is pivotal in 

determining how the genetic code is interpreted as amino acids (38). More specifically, 

leucine and proline were significantly changed in this metabolic pathway. The tryptophan 

metabolism pathway, represented by 2-aminobenzoic acid, was also disrupted in this mouse 

model. Overall, these pathway-level results were similar to a prior report of urine 

metabolomics in liver injury and fibrosis (39). Interestingly, leucine may play an important 

role in prostatic proliferation. Leucine is an essential branched-chain amino acid that signals 

through the mTOR pathway (40). This signaling is pro-proliferative in prostate cancer cells, 

and as such decreasing leucine transport into tumors is an attractive therapeutic target (41). It 

is possible the strong initial increases in leucine in this model contribute to the increased 

prostate mass (benign hyperplasia) or even the development of prostatic intraepithelial 

neoplasia observed later in this model (14).

CONCLUSIONS

Twelve-plex DiLeu isobaric labeling is an attractive high-throughput strategy for 

identification and quantification of amine-containing metabolites, and Metandem is a useful 

tool for large-scale stable isotope labeling-based metabolomics data analysis. Paired 

together, these tools offer a powerful and accessible method for relative quantification of 
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amine-containing metabolites in disease biomarker research. In this study of urinary amine 

metabolomics of a hormone-induced LUTS mouse model, we have identified and quantified 

59 amine metabolites, and 22 of them were identified in urine for the first time. LUTS 

patients and this mouse model shared common pathways that are dysregulated compared to 

control groups, for instance, the arginine and proline metabolism pathway. Proline presents 

an especially attractive candidate biomarker for hormone-induced BOO, as it was 

significantly increased in both human LUTS and this mouse model. Future experiments will 

test the hypothesis that this hormone treatment results in fibrosis of the lower urinary tract, 

ultimately leading to the pronounced BOO phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Details of 12-plex DiLeu labeling.
A: Precursor ion of DiLeu-labeled citrulline; B: An MS2 spectrum of the 12-plex DiLeu-

labeled citrulline acquired in the Orbitrap at 60 K resolving power. Low m/z region showing 

distinct DiLeu reporter channels (bottom) and after zooming in, twelve distinct reporter ion 

peaks are present (bottom); C: Citrulline changing trends from different time points of three 

biological replicates. D: Sample labeling map showing the 12-plex DiLeu tags and time 

point (randomized)
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Figure 2. Metandem parameter optimization results:
A: Optimizing reporter ion mass tolerance (0.5 mDa); B: Optimizing batch processing 

retention time tolerance (5 ppm); C: Optimizing batch processing retention time tolerance 

(0.5 min).
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Figure 3. 
Quantification trends of 9 significantly changed urine metabolites (n = 3; Paired t-test, fold 

change > 1.5 and p < 0.05).
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Figure 4. 
Arginine and proline metabolism pathway is potentially disrupted (MetaboAnalyte, KEGG; 

Fisher’s exact test, p < 0.07).
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Table 1.

Nine significantly changed urine metabolites after hormone treatment.

Compound Molecular Weight p-value Expression Pattern ppm tr
(min) HMDB_ID

Proline 115.0623 0.006 Increase 9.2 13.6 HMDB00162

5-Aminopentanamide 116.0938 0.029 Increase 10.2 14.4 HMDB12176

N-Acetylputrescine 130.1108 0.042 Increase 1.2 15.2 HMDB02064

Citrulline 175.0936 0.005 Increase 11.7 15.5 HMDB00904

D-Alanyl-D-alanine 160.0827 0.005 Increase 13.1 16.5 HMDB03459

O-Phosphohomoserine 199.0278 0.001 Increase 16.1 16.7 HMDB03484

Purine 120.0450 0.001 Decrease 11.3 8.6 HMDB01366

2-Aminobenzoic acid 137.0464 0.023 Increase 9.7 19.0 HMDB01123

Leucine 131.0942 0.006 Increase 3.0 19.0 HMDB00687
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Table 2.

Potentially disrupted metabolic pathways via MetaboAnalyte 4.0 and KEGG pathway analysis, metabolites 

highlighted with red bold font are significantly changed metabolites (p-value is from Fisher’s exact test).

Metabolic Pathway KEGG ID Matched Metabolites p-value

Arginine and proline metabolism Map00330
citrulline, N-acetylputrescine, proline, glutamic acid, creatine, GABA, 4-

aminobutyraldehyde 4.90E-05

Aminoacyl-tRNA biosynthesis Map00970 leucine, proline, cysteine, glycine, alanine, glutamic acid 4.88E-03

Tryptophan metabolism Map00380 2-aminobenzoic acid, 3-hydroxyanthranilic acid, 5-hydroxyindoleacetic acid 6.81E-02
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