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Abstract

Leiomyosarcoma (LMS) is a mesenchymal neoplasm with complex copy number alterations and 

characteristic loss of tumor suppressor genes without known recurrent activating mutations. 

Clinical management of advanced LMS relies on chemotherapy and complementary palliative 

approaches, and research efforts to date have had limited success identifying clinically actionable 

biomarkers or targeted therapeutic vulnerabilities. To explore the biological underpinning of LMS, 

we evaluated gene expression patterns of this disease in comparison to diverse sarcomas, non-
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mesenchymal neoplasms and normal myogenic tissues. We identified a recurrent gene expression 

program in LMS, with evidence of oncogenic evolution of an underlying smooth muscle lineage-

derived program characterized by activation of E2F1 and downstream effectors. Recurrently 

amplified or highly expressed genes in LMS were identified, including IGF1R and genes involved 

in retinoid signaling pathways. Though the majority of expressed transcripts were conserved 

across LMS samples, three separate subtypes were identified that were enriched for muscle-

associated transcripts (conventional LMS), immune markers (inflammatory LMS) or a uterine-like 

gene expression program (uterogenic LMS). Each of these subtypes express a unique subset of 

genes that may be useful in the management of LMS: IGF1R was enriched in conventional LMS, 

worse disease-specific survival was observed in inflammatory LMS, and prolactin was elaborated 

by uterogenic LMS. These results extend our understanding of LMS biology and identify several 

strategies and challenges for further translational investigation.
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Introduction

Smooth muscle cells exist throughout the body and serve essential functions including 

contraction of visceral organs, vasoconstriction, bronchoconstriction, piloerection and 

accommodation. While smooth muscle cells are commonly quiescent and organized into a 

functional syncytium, upon inflammatory or mitogenic stimuli they can enter an active state 

capable of proliferation that may be adaptive or pathologic (1). Similar to other 

mesenchymal-derived tissues, their relative cellular quiescence ostensibly contributes to the 

low frequency of smooth muscle-derived tumors compared to other more proliferative 

tissues. Nevertheless, a complex and varied spectrum of benign and malignant smooth 

muscle tumors exists with diverse anatomic, pathologic and prognostic features (2). 

Leiomyosarcoma (LMS) is a mesenchymal malignancy derived from smooth muscle cells 

and represent one of the most common forms of soft tissue sarcoma. Compared to their 

benign smooth-muscle tumor counterparts, LMS demonstrates nuclear aytpia, mitotic 

activity and has the propensity for metastasis (3). While LMS may arise in any location, 

including the large blood vessels, intra-abdominal and retroperitoneal sites (collectively 

termed extrauterine LMS, or ELMS), the uterus is a common site of origin and uterine LMS 

(ULMS) helps account for the female gender bias in this disease (4).

LMS has no known recurrent and pathogenic single nucleotide variants, though 

characteristically bears multiple copy number alterations and loss of tumor suppressor genes 

including TP53, RB1 and PTEN (5–7). Immunohistochemical markers which support the 

diagnosis of LMS include smooth muscle actin, desmin and h-caldesmon, though none of 

these markers are specific for LMS and several histologic variants exist (2). Significant 

challenges exist in the management of LMS, and for unresectable or metastatic disease 

standard chemotherapy options are the cornerstone of treatment (8). Insights into the 

underpinnings of LMS biology are essential to advancing clinical care, as improved means 
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of disease categorization, prognostication and targeted treatment approaches are urgently 

needed.

Gene expression profiling has been successfully deployed to identify cancer subtypes and 

their associated oncogenic gene expression programs with unique prognostic and therapeutic 

characteristics in many malignancies including breast cancer (9), lymphoma (10), colon 

cancer (11), prostate cancer (12) and others. While these molecular subtypes frequently 

reflect groups defined by morphologic and immunohistochemical features, they have 

enabled the identification of high-risk gene expression programs with prognostic and 

therapeutic implications. Using multi-gene RT-PCR to profile the expression of select genes, 

these findings have translated into clinical testing that informs treatment decisions in breast, 

colon and prostate cancer (13,14). Currently, molecular profiling of LMS plays no standard 

role in clinical management (8), though may be crucial in the future development of 

molecularly targeted therapies for this disease. Previous efforts at defining gene expression 

programs and molecular subtypes in LMS, using diverse sequencing methods and sample 

repositories, have proposed three distinct groups that portend prognostic relevance (5,15,16). 

However, significant discrepancies exist across the LMS subtypes reported in these studies, 

and additional characterization and analysis of subtypes is needed in hopes of translating 

these findings to biological understanding and clinical relevance.

To characterize the distinctive gene expression landscape of LMS and better define its 

molecular subtypes, we compared LMS to other sarcoma histologies, normal myogenic 

tissues and non-mesenchymal cancers. We identified a recurrent gene expression program 

that distinguishes LMS from other sarcomas, activation of oncogenic pathways in 

comparison to normal myogenic tissues, and genes highly expressed within recurrently 

amplified regions of the LMS genome. Within LMS, we characterized conventional, 

inflammatory and uterogenic subtypes, each with a unique and reproducible gene expression 

profile across independent data sets, which bear prognostic relevance. Individual subtypes 

express unique markers that may be useful in the diagnosis, surveillance, prognosis and 

targeted treatment of LMS. Taken together, these findings contribute to establishing the 

biological framework underlying LMS that will enable translational research into this 

complex disease.

MATERIALS AND METHODS

RNA-seq.

For novel RNA-seq data, fresh frozen tumor samples were obtained from patients consented 

to an Institutional Review Board (IRB) approved research protocol and undergoing surgery 

at the Brigham and Women’s Hospital/Dana-Farber Cancer Institute. Total RNA was 

isolated using an RNeasy Plus Kit (Qiagen). RNA concentration was measured by Nanodrop 

(Thermo Scientific) and quality by Bioanalyzer (Agilent). Libraries for Illumina NextSeq 

500 sequencing were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina) 

and equimolar multiplexed libraries were sequenced with single-end 75 bp reads.
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Sequencing data analysis.

Computational methods used for RNA-seq data analysis have been described previously 

(17). Additional raw data files were obtained from the NCBI’s Database of Genotypes and 

Phenotypes (18) for normal myogenic tissues, NCI’s Genomic Data Commons Legacy 

Archive (19) for sarcoma samples, or previously published sarcoma RNA-seq data sets 

(20,21). All fastq files were aligned to hg19 using STAR (22) with expression quantification 

using Cufflinks (23) to generate gene expression values in FPKM units. Hierarchical 

clustering of RNA-seq data was performed using Cluster 3.0 (24) and visualized with Java 

Treeview (25). Gene set enrichment analysis (GSEA) was performed using Hallmark, 

KEGG or Reactome gene sets present in the Molecular Signatures Database 

(software.broadinstitute.org/gsea/), with additional enrichment analysis using Metascape 

(26). PCA was performed separately on TCGA or novel sequencing data derived from this 

study where samples were similarly processed. Differential expression analysis of RNA-seq 

data was performed using edgeR (27), with statistical analyses reporting corrected P-values. 

Pearson correlation coefficient-based heat map matrices were calculated from log2 mean 

normalized expression values of the top 100 unique LMS-associated genes, with red 

indicating strong positive correlation, white neutral and blue negative correlation between 

samples.

Pan-cancer TCGA RNA-seq expression analysis was performed using the Broad Institute 

TCGA Genome Data Analysis Center (2016): Firehose stddata_2016_01_28 run, Broad 

Institute of MIT and Harvard doi: 10.7908/C11G0KM9. LMS samples were included in the 

SARC TCGA subgroup. The results shown here are in part based upon data generated by the 

TCGA Research Network: http://cancergenome.nih.gov/. Presented data from cBioPortal 

(28) was restricted to cancer subtypes with sample size >100, and only the most frequently 

altered tumor subtypes were shown.

Prolactin Measurements.

Serum samples were obtained from LMS patients consented to an IRB approved research 

protocol at the Brigham and Women’s Hospital/Dana-Farber Cancer Institute. Prolactin was 

measured by a sandwich electrochemiluminescence immunoassay on a Roche E modular 

system (Roche Diagnostics). Samples were mixed with a biotinylated prolactin antibody and 

a prolactin antibody labeled with ruthenium. Streptavidin-coated magnetic microparticles 

were used to magnetically entrap the biotinylated antibody, and a chemiluminescent reaction 

was then electrically stimulated, with resulting photon emission utilized for prolactin 

quantitation. This assay is approved by the Food and Drug Administration for clinical use.

Cell Culture.

All cell lines tested negative for mycoplasma infection on routine surveillance (MycoAlert 

mycoplasma detection kit, Lonza Bioscience). Experiments using cell lines were performed 

within 5 passages from the initial purchased or derived stock without further authentication. 

Commercially available cell lines include SK-LMS-1 (ATCC Cat# HTB-88, RRID: 

CVCL_0628; vulvar leiomyosarcoma), SK-UT-1 (ATCC Cat# HTB-114, RRID: 

CVCL_0533; uterine corpus leiomyosarcoma), SKN (Japanese Collection of Research 

Bioresources Cell Bank Cat# JCRB0176, RRID: CVCL_3167; uterine corpus 
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leiomyosarcoma), and RKN (Japanese Collection of Research Bioresources Cell Bank Cat# 

JCRB0173, RRID: CVCL_3156; ovarian leiomyosarcoma). LMS20 was obtained from the 

Sicinska Laboratory in 2016 and was derived from short-term culture of a surgically resected 

LMS tumor. Commercial cell lines were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 10% FBS, 2 mM L-glutamine, 100 mg/ml penicillin, and 100 mg/ml 

streptomycin. LMS20 was grown in DMEM/F12 with identical supplementation.

Statistical analysis.

Center values, error bars, P-value cutoffs, number of replicates and statistical tests are 

identified in the corresponding figure and legend. Error bars are shown for all data points 

with replicates as a measure of variation within each group. Kaplan-Meier analysis of 

disease-specific survival was calculated by log rank test from survival data available from 

the NCI’s Genomic Data Commons (19).

Data availability.

Previously published RNA-seq and 3SEQ data presented in this publication are available 

through the GEO Publication Reference IDs GSE45510 (16), GSE75885 (20), GSE87581 

(21), the NCBI’s Database of Genotypes and Phenotypes (18,29) and the NCI Genomic Data 

Commons (5,19). Novel RNA-seq data presented in this publication are available online 

through the GEO Publication Reference ID GSE146360.

Results

LMS exhibits a recurrent oncogenic gene expression pattern unique from other sarcomas 
and normal myogenic tissues.

Several efforts have utilized gene expression profiling to identify diagnostic and prognostic 

features in soft tissue sarcoma (20,30,31). The most extensive multi-platform analysis of 

sarcomas was published by the TCGA (5), which compared 206 samples from six sarcoma 

subtypes, finding that most LMS samples clustered together when compared to other 

sarcomas. To extend these findings, we performed gene expression comparisons from 

available (5,20) and novel RNA-seq data sets derived from fresh-frozen tissue. Utilizing 

transcriptional data sets from TCGA, the French Sarcoma Group (FSG) and Dana-Farber 

Cancer Institute (DFCI) where a mix of sarcoma subtypes was present, we performed 

unsupervised hierarchical clustering. In each data set, a majority of LMS samples resided 

within the same cluster (Fig. 1A–C). Between these data sets, there was overlap in genes 

expressed at higher levels in LMS compared to other sarcoma subtypes, with gene ontology 

analysis showing significant enrichment for genes involved in muscle development and 

function (Fig. 1D–E). The top 500 genes enriched in LMS were expressed at significantly 

higher levels than non-LMS sarcomas (Fig. 1F), but were expressed at similar levels in 

normal myogenic tissues derived from the genotype-tissue expression (GTEx) project (Fig. 

1G) (29). By contrast, genes enriched in normal smooth muscle compared to cardiac and 

skeletal muscle were expressed at similar levels in all LMS tumors (Fig. 1H).

To identify pathways activated in LMS compared to normal myogenic tissues, we utilized 

multiple gene expression pathway databases and gene set enrichment analysis (GSEA). 
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Comparison of smooth muscle-derived tissues, composed of esophageal muscularis and 

uterus, to all LMS samples showed significant enrichment for cancer-associated pathways 

including telomere maintenance, cell cycle, and DNA replication in LMS (Fig. 2A). In 

contrast, there was enrichment in phosphatidylinositol (PI) and FGFR signaling gene sets in 

normal smooth muscle (Fig. S1A–B). LMS showed significant enrichment for genes 

involved in myogenesis (Fig. 2B), suggesting that derivation from a myogenic precursor or 

dedifferentiation from more mature smooth muscle may be relevant in oncogenesis. Notably, 

gene sets consisting of pathways regulated by E2F and cell cycle regulation were among the 

most enriched in LMS (Fig. 2A,C–D).

Given the prominence of cell cycle and E2F-related gene sets, and the characteristic loss of 

RB1 in LMS which negatively regulates E2F1 (32), we focused on transcriptional regulators 

in LMS and normal myogenic tissues. Compared to normal muscle, E2F1, it’s binding 

partner TFDP1, and downstream oncogenic TFs related to E2F1 including MYBL2 (33) and 

FOXM1 (34) were significantly upregulated in LMS (Fig. 2E). By contrast, other muscle 

lineage-specific transcription factors associated with tissue differentiation were exclusively 

expressed in normal myogenic tissues (Fig. 2F) (35–37). Many transcription factors were 

expressed across LMS and normal myogenic tissues, including members of the myocyte-

specific enhancer factor (MEF2) family and serum response factor (SRF) and its 

transcriptional co-activator MYOCD (Fig. 2G). MYOCD has previously been identified as 

an amplified and relevant transcription factor in LMS biology (38), and was significantly 

enriched in LMS compared to normal myogenic tissues.

Given the prominence of RB1 loss and the E2F1-driven transcriptional program in LMS, we 

sought to compare the expression of these two genes across all cancer types profiled by 

TCGA, comprising over 14,000 RNA-seq samples. Compared to other TCGA data sets, 

relative RB1 expression was lower in LMS than 36 of 37 tumor types. By contrast, relative 

E2F1 expression was higher in LMS than 36 of 37 TCGA tumor types, and the ratio of E2F1 

to RB1 was second only to testicular germ cell tumor (Fig. 2H, upper panel). We performed 

a similar analysis of SRF, which is ubiquitously expressed, and MYOCD, which was 

substantially enriched in LMS compared to all other cancer subtypes (Fig. 2H, lower panel). 

These data highlight the unique transcriptional state of LMS, with LMS demonstrating high 

E2F1 expression with lower RB1, and unique expression of MYOCD among all other cancer 

types.

To comparatively evaluate for genomic events involving RB1 and MYOCD, we analyzed 

cancer genomic profiling data from cBioPortal (28) comprising over 74,000 samples. RB1 
was altered in 4,139 (6%) of all samples, with LMS ranking second to small cell lung cancer 

with an alteration frequency of approximately 40% (Fig. 2I). MYOCD was altered in 1,270 

samples (2%) of all samples, with LMS comprising the most commonly altered cancer 

subtype with complete bias towards gene amplification (Fig. 2J). While TP53 and PTEN 
disruption is also characteristic of LMS, their frequency of alteration is lower in LMS 

compared to many other cancer types (Fig. S1C–D). Expression of putative tumor 

suppressors across TCGA cancer subtypes is notable for overall similarity between LMS and 

all sarcoma samples, with notably higher expression of CDKN2A, CDKN2B and CDKN2C 

in LMS compared to most other tumor types (Fig. S1E). An inverse correlation of RB1 and 

Hemming et al. Page 6

Mol Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CDK inhibitor protein expression has been previously described in several cancer subtypes, 

and may suggest loss of RB1 and activation of the E2F transcriptional program as a primary 

driving event in these diseases (6), and further may represent a biomarker of native 

resistance to CDK 4/6 inhibition (39), though this needs to be formally tested in LMS.

Taken together, these data demonstrate that, among sarcomas, LMS has a unique gene 

expression profile that differentiates it from other sarcoma subtypes. These data outline an 

oncogenic platform driving leiomyosarcoma, with initiation of a myogenic program reliant 

upon RB1 loss and activation of E2F1 and collaborative transcription factors. The genomic 

locus of one such transcription factor, MYOCD, is recurrently amplified in LMS to support 

the expression of this myogenic lineage transcriptional regulator. Compared to non-

mesenchymal cancer subtypes, LMS demonstrates a higher proportion of copy number 

alterations in tumor suppressors and putative oncogenes, which is a characteristic shared 

with other sarcomas (5).

Identification of putative oncogenes in LMS within recurrently amplified genomic regions.

Though there is significant diversity in patterns of aneuploidy across LMS tumors, we and 

others have previously reported recurrent genomic amplifications in LMS (5–7). These 

recurrently amplified regions may harbor potential oncogenic dependencies important in 

LMS biology. Using genes contained within these previously defined amplified genomic loci 

(7), we evaluated the expression of 1,775 genes in LMS tumors and normal smooth muscle 

(Fig. 3A). The majority of these genes (n=1,671) were either expressed at low levels (FPKM 

<10) or not changed between LMS and smooth muscle, and included putative oncogenes 

such as MYC (5) which contribute to cancer biology in other contexts. By contrast, 104 

genes exhibited 2-fold or greater enrichment in LMS, including MYOCD (Table S3). 

Several of these genes were more highly expressed in LMS compared to other cancer 

subtypes, and exhibited enrichment similar to that seen for commonly used LMS histologic 

markers (Fig. 3B).

Several of these genes were preferentially amplified in LMS compared to other cancer 

subtypes in cBioPortal, and may bear relevance to disease pathogenesis. For example, 

microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein involved in 

intercellular interactions promoting smooth muscle cell proliferation (40), and was found to 

be highly amplified in LMS compared to other cancers (Fig. 3C). PRC1, TOP3A and 

TRIM16 were also highly amplified and expressed in LMS compared to other tumor 

subtypes and normal myogenic tissues (Fig. 3A, D–F), and have been shown to have 

oncogenic roles and prognostic value in other cancer subtypes (41–43). Like TRIM16, many 

other transcripts related to the retinoid signaling pathway were expressed in LMS. 

Compared to smooth muscle, LMS expresses higher levels of many constituents of the 

retinoid signaling pathway, which includes retinol binding proteins (RBPs), retinol 

dehydrogenases (RDHs), retinaldehyde dehydrogenases (ALDH1A enzymes), cellular 

retinoic acid-binding proteins (CRABPs), retinoic acid receptors (RARs), and retinoid X 

receptors (RXRs) (Fig. 3A,G). Notable is the high expression in LMS of CRABP1 and 

CRABP2, which are responsible for all-trans-retinoic acid binding and shuttling to 

metabolic enzymes and nuclear receptors (44). Given the role of retinoic acid signaling in 
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smooth muscle cell homeostasis, proliferation and differentiation (45), these data suggest 

this pathway may be activated and important in LMS. Taken together, these results highlight 

a small group of recurrently amplified and highly expressed genes in LMS, and further 

testing is needed to explore their utility as diagnostic markers or therapeutic vulnerabilities.

Gene expression profiling clusters LMS into conventional, inflammatory and uterogenic 
subtypes.

Given the clinical diversity seen in LMS and the associated anticipation of LMS subtype-

specific oncogenic programs, the wealth of available gene expression datasets, and to build 

on prior efforts at stratifying disease subtypes, we sought to use gene expression profiling to 

characterize molecular subtypes of LMS. Unsupervised hierarchical clustering of all LMS 

samples with known anatomic origin disclosed three distinct gene expression profiles (Fig. 

4A). Evaluating genes upregulated in each of these clusters, one showed an abundance of 

muscle-associated transcripts including CALD1, DMD and MYL9 among others, and was 

designated conventional LMS (cLMS). The second cluster was enriched in immune-related 

transcripts including HLA subtypes, interleukins and cytokines, and was designated 

inflammatory LMS (iLMS). The third subtype was composed predominantly of ULMS, with 

preservation of genes expressed in the uterus including ESR1, WT1 and HOXA10; this 

cluster was designated uterogenic LMS (uLMS). Of note, ULMS tumors clustered into each 

LMS subtype, though all samples outside the uLMS cluster lost expression of the uterogenic 

transcriptional profile, with stratification being demonstrated by ESR1 expression (Fig. 4A). 

All subgroups contained both localized and metastatic tumors, and the few tumors with 

paired primary and metastatic samples clustered within the same subtype (Table S4).

Principal component analysis (PCA) represents an independent mathematical method of 

representing sample clustering and variation. Applying PCA to the largest subset of 

annotated LMS samples with identical sequencing methodology performed by the TCGA, 

three primary clusters again emerge. Samples clustered more closely together by LMS 

molecular subtype than by anatomic origin (Fig. 4B, Fig. S2A). Histologic descriptions, 

including well differentiated, conventional and pleomorphic features, poorly separated LMS 

subtypes, with the exception of well differentiated samples that all clustered with cLMS 

(Fig. 4C).

We next used differential expression analysis of RNA-seq data from each LMS subtype to 

identify uniquely expressed genes in cLMS, iLMS and uLMS. In each subgroup 

comparison, less than 10 percent of all expressed genes were differentially expressed, 

indicating the overall homogeneity of LMS subtypes (Fig. S2B–D). Nevertheless, numerous 

genes were recurrently enriched in each subgroup. For cLMS, muscle-associated transcripts 

including ACTA1, SYNM and LMO1 were unique and highly expressed (Fig. 4D). For 

iLMS, inflammatory markers, PDGFRA and LRRC15 were enriched among many others 

(Fig. 4E). For uLMS, uterine and hormone-related transcripts enriched included ESR1, PGR 

and EMX2 (Fig. 4F). To characterize the immune infiltrate in each LMS subtype from bulk 

RNA-seq data, we utilized CIBERSORT (46). This analysis found evidence of macrophage, 

CD4 and CD8 T cell infiltration in each tumor subtype, with M2 macrophage and CD8 T 

cell estimated leukocyte fraction highest in iLMS (Fig. S2E). These data demonstrate a 
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unique and recurrent gene expression program within the three subtypes of LMS that 

supersedes anatomic origin, disease state (localized versus metastatic) or histologic 

characteristics.

Different gene expression programs drive LMS subtype clustering and bear prognostic 
relevance.

We next sought to characterize LMS subtype-specific transcripts and their prognostic 

relevance. Selecting from the 100 most highly and differentially expressed transcripts, 

subtype-specific clustering could be robustly reproduced (Fig. 5A, Table S5). Each subtype-

specific gene list was significantly enriched in its associated cluster compared to other 

subtypes (Fig. 5B). LMS subtype designation was further explored utilizing gene lists from 

the Molecular Signatures Database. The cLMS subtype showed the most enrichment in 

genes associated with smooth muscle contraction, though this gene list failed to statistically 

differentiate cLMS from uLMS (Fig. 5C). iLMS showed enrichment for many gene sets 

associated with the immune and inflammatory response (Fig. 5D). Comparing all subtype-

specific transcripts with normal myogenic tissues, cLMS and iLMS showed significantly 

increased expression compared to esophageal muscularis, uterus, myocardium and skeletal 

muscle. In contrast, uLMS-enriched transcripts were not significantly different from 

expression levels found in normal uterus (Fig. 5E). Compared to the other nine sarcoma 

subtypes evaluated (Fig. 1A), cLMS and uLMS gene lists were significantly enriched in 

their respective LMS subgroups, while the iLMS gene list was also highly expressed in other 

select sarcoma histologies (Fig. 5F), possibly reflecting similar immune system involvement 

in these other sarcoma subtypes.

In agreement with this subgroup stratification, a confirmatory RNA-seq data set consisting 

of 40 LMS tumors could similarly be categorized by this gene list (Fig. S3A) (20). Gene 

expression signatures for LMS subgroups were similarly enriched in this data set (Fig. S3B–

D). These same subgroups were also reproduced in data from 99 LMS formalin-fixed, 

paraffin-embedded (FFPE) tumors evaluated by 3’ end RNA sequencing (3SEQ) (16), 

though while significant differences were found between groups the magnitude of changes 

were less marked in this data set (Fig. S3E–F), perhaps arising from differences in sample 

source and sequencing technology. Previously identified LMS markers consistent with 

cLMS were enriched in this subgroup (Fig. S4A–B). ARL4C expression and the CSF1 

signature, previously identified as an LMS subtype distinct from the muscle-like subtype 

(16), were enriched in iLMS, though no consistent enrichment was found in ROR2 or the 

CINSARC signature (16) (Fig. S4C–F).

All uLMS tumors occurred in women (Fig. 5G). Though sample numbers were smaller in 

this group, this may indicate that the ELMS tumors clustering within the uLMS subtype 

originate from a gynecologic cell of origin outside the adult uterus, such as from embryonic 

remnants of the paramesonephric ducts. Conversely, cLMS or iLMS arising from ULMS 

may originate from a non-myometrial progenitor cell, such as vascular smooth muscle 

within the uterus, suggesting a unique cell of origin for each LMS subtype.

Comparing cLMS and iLMS, there was a significantly worse disease-specific survival in the 

iLMS group (Fig. 5H). In agreement, markers of inflammation, including macrophage 
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infiltration and an elevated CSF1 signature gene expression pattern, have previously been 

found to portend worse prognosis in LMS (47,48). Other LMS subgroup comparisons of 

survival were limited by sample size (Fig. S5A–B). Taken together, these data indicate that a 

defined gene list can distinguish LMS subtypes, that the distinctive gene expression profile 

of each subtype suggests underlying unique biology and origin, and that this transcriptional 

program leads to differences in clinical course and outcomes.

LMS subtypes have unique expression of putative oncogenic programs.

In evaluating for possible subtype-specific pathway or oncogene activation, we noted that 

IGF1R was significantly enriched in the cLMS group (Fig. 6A). Despite the overall group 

enrichment, there was within-group variability in expression levels (Fig. 6B). Stratifying 

IGF1R expression by the median value, significant differences in survival were observed, 

with higher IGF1R expression associated with worse outcomes in cLMS (Fig. 6C). These 

data implicate IGF1R signaling in cLMS pathogenesis, and further studies are warranted to 

evaluate its utility as a predictive marker of disease course and in future development of 

IGF1R-directed therapies for LMS (49).

Among the most differentially expressed transcripts in the uLMS group were prolactin 

(PRL) and the prolactin receptor (PRLR) (Fig. 6D). While PRLR was expressed in normal 

uterus, a subset of uLMS tumors exhibited PRL and PRLR upregulation (Fig. 6E). 

Evaluating PRL and PRLR expression across all TCGA samples, a subset of LMS had 

distinctively high expression of both transcripts (Fig. 6F). Though PRLR is expressed in 

many normal tissues including the uterus, breast, vagina and adrenal glands, PRL expression 

is normally restricted to the pituitary (Fig. 6G). To determine if elevated levels of circulating 

prolactin could be detected in LMS patients, we performed a prolactin ELISA on serum 

from patients with metastatic ULMS or ELMS. Though tumors in these patients could not be 

further stratified by molecular subtype for comparisons, plasma from patients with ULMS 

had significantly higher levels of prolactin compared to ELMS, with a subset of patients 

having high levels of circulating prolactin (Fig. 6H). Formal studies are needed to determine 

if prolactin could be a useful circulating tumor marker in some patients with uLMS, or may 

act in an autocrine loop to stimulate tumor growth.

In an attempt to validate potential LMS oncogenic pathways, we profiled five LMS cell lines 

by RNA-seq. Using PCA, the global gene expression program of these cell lines did not 

resemble that from LMS tumors (Fig. S6A). Further, many distinctive transcripts enriched in 

LMS and associated with smooth muscle lineage are not expressed in cell lines, with the 

exception of those related to cell cycle activation, and cell lines express genes that may 

support growth programs unrelated to LMS biology (Fig. S6B–E, Table S6). Taken together 

with prior studies on LMS cell lines (50), these data argue for the broad loss of fidelity of 

LMS cell lines to their tumor of origin. This may owe in part to the characteristic loss of 

tumor suppressors and lack of defined oncogene activation in LMS, enabling the evolution 

of divergent growth programs in vitro, and underscores the urgent need to develop valid pre-

clinical models of this disease to enable translational research.
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Discussion

In the present study we explore the gene expression profile of LMS through comparisons to 

other sarcoma subtypes, normal myogenic tissues and non-mesenchymal cancers. In 

comparisons to sarcomas, the vast majority of LMS tumor samples cluster together, 

suggesting the oncogenic evolution of an underlying smooth muscle lineage-derived gene 

expression program. Among cancer subtypes, LMS is notable for loss of RB1 and associated 

activation of E2F1 and related downstream pathways, possibly representing a common and 

early oncogenic event. Supporting the preeminence of RB1 loss in the development of 

mesenchymal neoplasms, and LMS in particular, patients with hereditary retinoblastoma are 

at high risk of developing sarcomas. In survivors of hereditary retinoblastoma treated with 

radiation, sarcomas account for the majority of cancer diagnoses (51), with LMS 

representing the most common histology (52). E2F1 is a transcription factor that is 

negatively regulated by the Rb family of proteins with complex and context-dependent roles 

in driving cell cycle, cellular growth and survival (53). With the commonality of RB1 
alterations in LMS (5,54), E2F1 proceeds with an unchecked oncogenic program, and 

targeting this pathway represents a challenging but promising strategy in this disease. 

Beyond this prominent means of oncogenesis, these data have identified or reinforced 

several additional cancer-associated pathways that may represent diagnostic opportunities or 

therapeutic vulnerabilities in LMS. In addition the to loss of common tumor suppressors 

(e.g. TP53, PTEN), potentially oncogenic pathways and tumor biology in LMS that merit 

further evaluation include those involving MYOCD, IGF1R and retinoid signaling. 

Identifications of such transcripts present within recurrently amplified regions of LMS may 

suggest their selection during tumor evolution.

The majority of expressed genes were conserved across LMS samples. However, through 

hierarchical clustering and PCA, three separate LMS subtypes were distinguished by a 

subset of uniquely expressed genes. Among subtypes, cLMS was found to have enrichment 

for smooth-muscle associated proteins, iLMS for markers of immune cell activity and uLMS 

a uterine-like gene expression program. The genes that best distinguished these subtypes 

were conserved across different cohorts, sample preparations, sequencing methods and 

between localized and metastatic disease, arguing for the generalizability of these markers, 

the biology giving rise to their expression and the utility of this experimental approach.

Several previous reports have evaluated LMS molecular subtypes by various methodologies. 

Initial microarray profiling and later 3SEQ identified three groups consisting of (1) a 

“muscle-enriched” subtype, (2) “subtype II” enriched for the CSF1 gene signature and 

ARL4C which had a worse prognostic outcome, and (3) “subtype III” defined as cases that 

did not fit into the other subtypes (15,16). More recently, primary analysis of TCGA LMS 

samples also noted three distinct LMS subtypes by mRNA expression (5). However, there 

has been both limited analysis of drivers of LMS clustering and discrepancies between 

studies. Differences may be attributed to sequencing methodology (microarray, 3SEQ and 

RNA-seq), sample type (FFPE, fresh frozen, disease state) and variable exclusion of samples 

in clustering analysis. In the present investigation, we have utilized differential expression 

analysis of RNA-seq data to identify uniform signatures for cLMS, iLMS and uLMS that 

stratify tumors across multiple data sets. Further, we have described distinguishing 
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biological processes and pathways enriched in these subtypes that may explain their cellular 

origin and give translational insight into LMS.

A subset of cLMS expresses IGF1R, which is associated with worse prognosis in this 

subtype and may represent an informative prognostic marker. Further, in early clinical trials 

utilizing combination treatment with mTOR and IGF1R inhibition, some patients with LMS 

derived benefit (49,55). Based on early clinical experience and these data, additional 

preclinical studies with combination therapy utilizing IGF1R inhibition in this LMS subtype 

are warranted. As evidenced by the iLMS subtype and in several prior reports, LMS with 

evidence of immune infiltration has a worse prognosis (16,47,48). Though isolated cases of 

successful treatment with checkpoint blockade have been reported, larger trials have shown 

no clear benefit in ULMS (56). Further efforts at histologic characterization of immune 

infiltrates in LMS subtypes are warranted, as this iLMS subset may most benefit from 

treatment with checkpoint inhibition or other immune-based therapies (57).

The uLMS subtype maintains components of a myometrium-derived gene expression 

program, including expression of estrogen, progesterone and prolactin receptors. There is 

limited evidence that targeting the estrogen receptor with aromatase inhibition may have 

clinical benefit in select ULMS patients (58), suggesting functional dependency upon 

myometrial lineage-related hormonal receptors (59). Whether the ectopic expression of 

prolactin in a subset of uLMS supports tumor growth in an autocrine loop is uncertain. 

However, evidence of oncogenic activity from autocrine prolactin signaling, and the 

therapeutic utility of blocking the prolactin receptor, has previously been reported in breast 

cancer (60). These data suggest that prolactin signaling may be an uncommon means of 

acquired autocrine stimulation in several cancer subtypes of reproductive origin.

Translational opportunities in cancer research rely upon the use of preclinical models of 

disease. In attempting to model features of LMS biology in vitro, we evaluated five LMS 

cell lines and found little relationship between their gene expression program and that of 

LMS tumors, either in their global transcriptional program or transcripts enriched in LMS or 

of smooth muscle lineage. This may have arisen from an incorrect diagnosis of the 

malignancy these cells were derived from, in vitro selection for alternative growth programs 

in the setting of tumor suppressor loss common in LMS or a combination of these and other 

factors. Nevertheless, development of preclinical models of LMS is essential to furthering 

our understanding of LMS biology and attempts at future translational investigation, and 

these findings warrant additional efforts in developing such models.

Together with other unbiased sequencing efforts, these data highlight the complexity and 

diversity of LMS biology, including the common loss of tumor suppressors, recurrently 

amplified genes and evidence of a smooth muscle lineage. Given the limited outcomes data 

available for this study, additional research regarding prognostic markers in larger case series 

is warranted. The emerging understanding of this disease and its subtypes will facilitate 

additional translational research. Given the frequently limited benefit of currently available 

systemic therapies, there is an urgent need for the development of targeted therapeutic 

approaches in LMS and an appreciation for which patients they may benefit most.
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Implications:

Leiomyosarcoma has a recurrent oncogenic transcriptional program and consists of 

molecular subtypes with biological and possible clinical implications.
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Figure 1. 
LMS has a recurrent and unique gene expression program among sarcomas. A-C, 
Unsupervised hierarchical clustering of RNA-seq data from the 10,000 highest expressed 

genes (rows) and 392 sarcoma samples comprising 10 histologic subtypes (columns). LMS 

samples are indicated in red and non-LMS sarcoma subtypes is gray. Clustering is divided 

by data set origin, with The Cancer Genome Atlas in A (TCGA, n=211 with LMS n=88), 

French Sarcoma Group in B (FSG, n=149 with LMS n=40), and from DFCI in C (Dana-

Farber Cancer Institute, n=32 with LMS n=19). D, Circos plot showing overlap of genes 

enriched in LMS in each data set. The outside arc represents the source data set, the inside 

arc the individual genes, with darker shading indicating overlap with other data sets. Purple 

lines indicate shared genes between data sets, and blue lines link genes falling into the same 
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ontologic term. E, Enriched GO terms arising from the top 500 enriched genes from D. 

Darker coloring indicates higher P-values. F, Box plots displaying expression in FPKM of 

the top 500 LMS-enriched genes between LMS and non-LMS samples in each sarcoma data 

set. Data were analyzed by unpaired t-test (compared to LMS; ***, P<0.001). G, Box plots 

displaying expression in FPKM of the top 500 LMS-enriched genes across normal myogenic 

tissues (n=85 per tissue) and all LMS samples (n=147). H, Box plots displaying expression 

in FPKM of the top 500 SM-enriched genes across normal myogenic tissues and all LMS 

samples. Data were analyzed by one-way ANOVA with Dunnett’s multiple comparisons test 

(compared to LMS; ***, P<0.001).

Hemming et al. Page 19

Mol Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Oncogenic pathways in LMS. A, GSEA plot of false discovery rate (FDR) and normalized 

enrichment score (NES) in Reactome, KEGG and Hallmark gene sets comparing normal 

tissue enriched for smooth muscle (SM, combined esophageal muscularis (n=85) and uterus 

(n=85)) and all LMS samples (n=147). B, Hallmark Myogenesis gene set comparing normal 

smooth muscle and LMS. C-D, Hallmark E2F targets and Reactome Cell Cycle Mitotic gene 

sets comparing normal smooth muscle and LMS. E, Enrichment of oncogenic TFs related to 

E2F1 in LMS (n=147) compared to normal myogenic tissues (n=85 each). F, Select muscle 

lineage-specific TFs in LMS and normal myogenic tissues. G, Muscle-associated TFs 

expressed in LMS and normal myogenic tissues. Data were analyzed by one-way ANOVA 
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with Tukey’s post-hoc test (compared to the highest mean expressing group; **, P<0.01; 

***, P<0.001). H, Heatmap of TCGA RNA-seq data across cancer subtypes, with LMS 

samples compiled in their own group. Relative expression of RB1, E2F1 and the ratio of 

E2F1 to RB1 expression are shown, with heatmap indicating the row minimum and 

maximum values (upper panel). Samples are arranged by unsupervised hierarchical 

clustering of the relative expression value. SRF and MYOCD expression in RSEM are 

indicated across data sets (lower panel, n=14,114). I, Frequency of RB1 alterations in 

cancer, with the top ten most altered cancer subtypes in cBioPortal shown. J, Frequency of 

MYOCD alterations in cancer, with the top ten most altered cancer subtypes shown. See 

Table S1–S2 for cancer subtype abbreviations in TCGA and cBioPortal data.
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Figure 3. 
Gene amplification and expression in LMS. A, Plot of LMS log2 FPKM RNA-seq 

expression versus the log2 ratio of LMS (n=147) to smooth muscle (n=170) FPKM for genes 

in recurrently amplified regions in LMS. B, Heatmap with unsupervised hierarchical 

clustering of select amplified genes and standard histologic markers for LMS in TCGA data 

sets (Table S1). C-F, Frequency of MFAP4, PRC1, TOP3A and TRIM16 alterations across 

cancer subtypes in cBioPortal, with the top ten most altered cancer subtypes shown (Table 

S2). G, Plot of expression in FPKM of select components of the retinoic acid signaling 

pathway in LMS and normal smooth muscle. The Pearson correlation coefficient is shown.
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Figure 4. 
Gene expression profiling defines conventional, inflammatory and uterogenic LMS 

subtypes. A, Unsupervised hierarchical clustering of RNA-seq data from the 10,000 highest 

expressed genes (rows) and 107 annotated LMS samples (columns). Histologic tumor 

subtype (h) and sample origination (s) are indicated with color-coding. An FPKM value of 

10 was used as the threshold to determine positive or negative expression of ESR1. Genes 

listed to the right of the heatmap indicate the identity of select subtype-specific clustered 

genes. B, PCA of 88 TCGA LMS samples colored by molecular subtype. C, PCA of LMS 

samples colored by the LMS histologic subtypes well-differentiated, conventional and 

pleomorphic (inclusive of pleomorphic, undifferentiated and epithelioid histologies). D, Box 

plots of select cLMS-specific genes. E, Box plots of select iLMS-specific genes. F, Box 
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plots of select uLMS-specific genes. Data were analyzed by one-way ANOVA with Tukey’s 

post-hoc test (compared to the enriched LMS subtype; *,P<0.05; **, P<0.01; ***, P<0.001).
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Figure 5. 
LMS subtype-specific gene expression programs and prognostic relevance. A, Pearson 

correlation matrix of the top 100 most differentially expressed genes in LMS subtypes. The 

LMS subtype represented by each cluster is indicated (cLMS n=52, iLMS n=30, uLMS 

n=25). B, Log2 FPKM values for each LMS subtype normalized to the mean of all LMS 

samples. For each plot, the indicated subtype-specific gene list was used to compare 

expression values across subtypes. C, Log2 normalized FPKM values across LMS subtypes 

for the KEGG Vascular Smooth Muscle Contraction gene list. D, Log2 normalized FPKM 

values across LMS subtypes for the indicated gene sets including Hallmark Inflammatory 

Response, Hallmark IFN-gamma Response, KEGG TCR Signaling Pathway, KEGG 

Cytokine-Cytokine Receptor Interaction and KEGG Antigen Processing and Presentation. E, 
Log2 normalized FPKM values comparing the indicated LMS subtype and subtype-specific 

Hemming et al. Page 25

Mol Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes to normal myogenic tissues. F, Log2 FPKM values normalized to the mean of all 

samples comparing the indicated LMS subtype-specific genes to all analyzed sarcoma 

histologies from Fig. 1A. Data were analyzed by one-way ANOVA with Tukey’s post-hoc 
test (compared to the indicated LMS subtype; *,P<0.05; **, P<0.01; ***, P<0.001; 

compared to the non-reference LMS subtype; #,P<0.05). G, Percentage of female patients 

within each LMS subtype. H, Kaplan-Meier analysis of disease-specific survival comparing 

cLMS and iLMS subtypes. Survival data were analyzed by log-rank test.
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Figure 6. 
LMS subtype-specific oncogene-associated pathways. A, Box plot displaying FPKM of 

IGF1R between LMS subtypes (cLMS n=52, iLMS n=30, uLMS n=25). B, IGF1R 

expression level in cLMS samples, with color differentiating samples above and below the 

median value. C, Kaplan-Meier analysis of disease-specific survival comparing cLMS 

stratified by IGF1R expression above or below the median. Survival data were analyzed by 

log-rank test. D, Box plot displaying FPKM of PRL (top) and PRLR (bottom) between LMS 

subtypes. Data were analyzed by one-way ANOVA with Tukey’s post-hoc test (compared to 

the indicated LMS subtype; **, P<0.01; ***, P<0.001). E, Log2 FPKM scatterplot of PRL 

and PRLR comparing LMS subtypes and normal uterus (n=85). F, Scatterplot of PRL and 

PRLR log2 RSEM in all TCGA tumors (n=14,114). LMS tumors are indicated in red. G, 
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Scatterplot of PRL and PRLR log2 TPM in GTEx normal tissues (n=10,788). Select tissues 

are differentiated by color. H, ELISA of serum prolactin levels in patients with metastatic 

ULMS (n=36) or ELMS (n=29). The shaded area indicates reference values for normal 

female prolactin levels; P -value indicates unpaired t-test.

Hemming et al. Page 28

Mol Cancer Res. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	MATERIALS AND METHODS
	RNA-seq.
	Sequencing data analysis.
	Prolactin Measurements.
	Cell Culture.
	Statistical analysis.
	Data availability.

	Results
	LMS exhibits a recurrent oncogenic gene expression pattern unique from other sarcomas and normal myogenic tissues.
	Identification of putative oncogenes in LMS within recurrently amplified genomic regions.
	Gene expression profiling clusters LMS into conventional, inflammatory and uterogenic subtypes.
	Different gene expression programs drive LMS subtype clustering and bear prognostic relevance.
	LMS subtypes have unique expression of putative oncogenic programs.

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

