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Abstract

Over the past few years several methodological and data-driven advances have greatly improved 

our ability to robustly detect genomic signatures of selective sweeps selection in humans. New 

methods applied to large samples of present-day genomes provide increased power, while ancient 

DNA allows precise estimation of timing and tempo. However, despite these advances, we are still 

limited in our ability to translate these signatures into understanding about which traits were 

actually under selection, and why. Combining information from different populations and 

timescales may allow interpretation of selective sweeps. Other modes of selection have proved 

more difficult to detect. In particular, despite strong evidence of the polygenicity of most human 

traits, evidence for polygenic selection is weak, and its importance in recent human evolution 

remains unclear. Balancing selection and archaic introgression seem important for the 

maintenance of potentially adaptive immune diversity, but perhaps less so for other traits.
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Introduction

The past few decades of human genetics research have emphasized the fundamental 

similarity of human populations–as demonstrated by the overwhelming support from genetic 

data for the recent out-of-African model of human origins, extensive gene flow between 

populations, and low levels of Archaic admixture. Nonetheless, the small number of 

differences among populations, and the even smaller number that are driven by natural 

selection, continue to be of great interest partly because of their potential to contribute to the 

explanation of how humans were able to expand occupy such a diverse range of 

environments. Despite this interest, and rapidly expanding datasets, there are still relatively 

few well-understood examples, and our overall picture of the relative importance of different 

modes of adaptation is limited. While recognizing that non-genetic mechanisms of 

adaptation such as developmental plasticity and cultural evolution are powerful forces, this 

review focuses on recent developments related to the detection, classification and 

interpretation of natural selection in the human genome.
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Selective sweeps

The first generation of human genome-wide selection scans produced lists of thousands of 

putatively selected loci but the limited overlap, number of potential confounding factors, and 

lack of statistical framework to assess significance led to suspicion that these lists contained 

high false positive rates (1). This has led to ongoing debate about the extent of positive 

selection in recent human history, the contribution of “hard” and “soft” selective sweeps, of 

polygenic adaptation (Figure 1), and whether these features differ between populations (2–

6). While these broader questions about the nature of selection remain unresolved, much 

recent work has focused on the identification, classification and fine-mapping of candidate 

loci. Many approaches (4, 7–10) combine multiple statistics and use machine learning 

models trained on simulated data to identify and classify sweeps. While these methods are 

powerful, they are still limited by our ability to simulate realistic data that incorporate effects 

such as background selection and heterogeneity in mutation rate.

A more direct way to study natural selection is to use ancient DNA data to directly observe 

changes in allele frequency over time. Ancient DNA has revolutionized the study of 

demographic history and is becoming increasingly useful for the study of natural selection 

and phenotypic evolution (11). While even a single genome can be informative about 

demographic history, inference of selection requires much larger sample sizes. Ancient DNA 

based scans can detect strong signals of selection (12) (Figure 2A), but have limited power 

due to small sample sizes. However, ancient DNA can provide precise estimates of the 

timing of selection on particular alleles such as those associated with skin pigmentation (12, 

13) and lactase persistence (14–16) (Figure 2B). It can help to resolve complex evolutionary 

histories, for example at the FADS locus (17–20) (Figure 2C), and help to separate the 

effects of selection from those of changes in ancestry. Currently, the vast majority of ancient 

DNA samples are from Western Eurasia and it is on this region that most ancient DNA 

studies of selection have focused (with exceptions (21, 22)). Large ancient DNA studies in 

other parts of the world should allow similar analyses.

The UK Biobank (23) and UK10 (24) projects have enabled particularly deep investigation 

of recent selection in the British population (25–27). Recently, similar scans have become 

possible in the Japanese population thanks to BioBank Japan and other cohorts (28, 29). 

These scans reveal a qualitatively similar landscape of selection between Britain and Japan. 

Both populations show evidence of selection on dietary, immune and anthropometric 

phenotypes but carry relatively few strong sweeps. Curiously, in both cases, the strongest 

signals of selection are at loci associated with a specific agricultural product; ability to 

consume milk in Britain (the LCT locus), and inability to consume alcohol in Japan (the 

ADH locus). On the other hand, the Japanese population does not show the very strong 

recent signals of selection for pigmentation-associated variation that the British population 

does (29). More broadly, these data provide the opportunity to assess the extent of parallel 

adaptation at the level of individual genes, pathways, phenotypes or classes of phenotype in 

the two populations. It is widely believed that the development of agriculture was one of the 

strongest forces in recent human evolution and demography, and it represents one of the few 

repeated experiments in human evolution. The demographic transitions associated with the 

introduction of agriculture in both the UK and Japan were very similar (30, 31) and the 
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phenotypic associations available through UK Biobank and BioBank Japan provide an 

excellent opportunity to test whether the adaptive responses were also similar.

Although lacking the phenotypic information from large biobanks, genetic data from diverse 

cohorts from Africa (32–35), East Asia (36, 37) and other parts of the world are enabling a 

broader assessment of human adaptation. These studies confirm that the immune system is a 

frequent, perhaps the most frequent, target of positive selection and help to identify the 

genetic basis of putative local adaptations such as short stature in African rainforest hunter-

gatherers (33, 34, 38–41).

Polygenic adaptation

Genome-wide association studies (GWAS) indicate that many human traits are highly 

polygenic-controlled by a large number of variants-many of which have extremely small 

marginal effects. This observation, coupled with the relatively limited number of selective 

sweeps, suggested that polygenic adaptation might be an important force in human evolution 

(42). In this model, complex traits evolve as the result of small shifts in frequency of large 

number of variants. These shifts are too small to produce classical signals of selection but 

can be identified in aggregate. Over the past decade, several different studies supported this 

expectation (12, 26, 43–47). Many of these focused on differential selection for height 

across Europe, although other traits were also implicated. Recently, with the release and 

analysis of the UK Biobank dataset, it became clear that the signals of selection of height 

had been overestimated (48, 49). Specifically, the GWAS on which previous analyses had 

relied had not fully corrected for the effect of population stratification, leading to 

overestimation of the effect of selection. If the results for height in Europe–apparently the 

clearest example of polygenic selection-cannot be trusted, how can we trust evidence for 

other traits, which surely suffer from similar problems? What about evidence of selection in 

non-European ancestry populations, which is likely further biased by non-transferability of 

GWAS effect size estimates (50)?

So, in 2020, the question of the contribution of polygenic adaptation to human evolution is 

largely back to where it was in 2010. In many cases, patterns of phenotypic variation are 

highly suggestive of local adaptation (51–53). Many traits are highly polygenic and it seems 

that we should expect polygenic adaptation to be common. On the other hand, the empirical 

evidence is relatively weak and polygenic selection tests are highly sensitive to artefacts. 

Some authors have argued that using GWAS effect sizes estimated in an outgroup population 

avoids bias associated with population stratification (54, 55). Others have attempted to use 

effect sizes re-estimated within sibling pairs (56), which should be more resistant to 

stratification. However, neither of these approaches is totally satisfactory. In any case, even 

if there is some residual signal of selection, the fact that polygenic selection tests turned out 

to be unexpectedly vulnerable to population stratification probably warrants additional 

caution before we accept such claims. Given that we expect polygenic selection to be 

common, why is it so hard to find?

One possibility is that polygenic adaptation is, in fact, relatively rare. Despite hundreds or 

thousands of loci with nonzero effects on a trait, widespread pleiotropy might mean that 

adaptation is driven by shifts in the frequency of a relatively small proportion of loci. That 
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is, adaptation on polygenic traits may be more oligogenic than polygenic (57, 58). 

Alternatively, polygenic adaptation could occur without leaving a clearly detectable 

signature of consistent frequency shifts because effects vary in time due to allelic 

heterogeneity or interactions (either genetic or environmental), or because selection 

pressures or effect sizes are fluctuating (58) (Figure 3). Finally, recent theoretical work 

shows that the details of the response to selection on a polygenic trait are sensitive to the 

details of the genetic architecture (59–61) so might leave more complex genomic signatures 

than commonly assumed.

Adaptive archaic introgression

A long-standing hypothesis is that Neanderthals (and Denisovans), who lived in Eurasia for 

hundreds of thousands of years, carried adaptations to that environment that would have 

been beneficial to modern humans on their arrival. While, broadly speaking, archaic ancestry 

was deleterious and selected against in modern humans (62–65), this idea has gained some 

empirical support from the observation that some specific variants were positively selected 

(66). Perhaps the best example is of a Denisovan haplotype at EPAS1 that is associated with 

altitude adaptation in present-day Tibetans (67). However, even this case is not so simple. 

The functional variant tagged by the Denisovan haplotype is unclear and not necessarily of 

Denisovan origin. Even if the functional variant was present in Denisovans, the haplotype 

was carried by Denisovans living at low altitude (Denisova cave is only 700m above sea 

level), so did not necessarily represent an altitude adaptation. It may have just been part of 

Denisovan physiology that happened to later become adaptive in modern humans in the 

high-altitude environment.

While there is some evidence that classically adaptive traits such as skin pigmentation 

experienced a contribution from adaptive archaic introgression, by far the strongest evidence 

for an important role in recent evolution involves the immune system. Specific targets 

include the toll-like receptor genes TLR1, 6 and 10 (68, 69), the oligoadenylate synthetases 

OAS2 and 3 (70–72), and the interferon pathway (69, 73). However, recent analyses suggest 

that the effects go beyond these individual loci and apply more broadly over large classes of 

immune-associated genes (74, 75), largely through regulatory effects (76–78). In some 

cases, these archaic alleles may have provided protection against pathogens, or classes of 

pathogen, transmitted directly from archaic to modern humans (75, 79). However, in other 

cases, for example the TLR cluster, positive selection on the archaic allele occurred tens of 

thousands of years after introgression (69). Like EPAS1, much of the adaptive archaic 

admixture may have contributed to the reservoir of potentially adaptive standing variation, 

rather than being of immediate advantage, although this remains to be systematically tested.

Balancing selection

One reason why the immune system, in particular, might retain a large reservoir of potential 

archaic targets of positive selection is that a relatively large proportion of immune-associated 

variation is under balancing selection. Recently a number of tests specifically designed to 

detect balancing selection within (80, 81) and between species (82–84) have been developed. 

These tests broadly confirm enrichment of balancing selection at immune-associated genes, 

but also highlight a number of intriguing potential new signals. These include loci associated 
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with reproductive biology or behavior, including the CADM2 and ESR1 loci (81, 83, 85, 

86). Signatures of balancing selection can be generated by a number of different 

evolutionary processes-frequency dependent selection, overdominance, and fluctuating 

selection, for example-and the relative contribution of these processes remains unclear. A 

key question for future work is to determine whether it is possible, perhaps using ancient 

DNA, to distinguish the effects of these processes both at specific loci, and more generally 

across the genome.

Can we do better than just-so stories?

New datasets and statistical approaches have made the detection of genomic signatures of 

selection much easier. While there is still relatively little overlap between methods, the 

ability to combine statistics and directly replicate signals with ancient DNA has allowed us 

to robustly identify parts of the genome under selection. What is less clear, in almost every 

case, is why those parts of the genome were selected. As has recently been observed (87), 

even for the clearest and best-known examples of selective sweeps, many of which involve 

alleles with pleiotropic effects, we almost never know which phenotype is actually under 

selection. Even when we can make a good guess at the phenotype, we almost never know the 

mechanism by which it affects fitness. How might we do better?

One approach, as already described, is to borrow information across loci and look for 

enrichment of selection signals in pathways, or sets of loci associated with a particular trait. 

But even if we can identify such a trait, it is hard to know whether we should assume that 

was the specific trait under selection. In parallel, we can try to borrow information across 

populations (88). Correlating shared environment with shared and parallel adaptation across 

populations can provide clues to the underlying drivers of that selection. A particularly 

powerful way to do this is to investigate the few repeated experiments in human evolution. 

The introduction of agriculture, already discussed, is the most striking example, but others 

include migration to extreme latitudes or altitudes, urbanization, or response to particular 

classes of pathogen. Key here is the incorporation of external information, for example 

archaeological data about subsistence, lifestyle and diet. Finally, we can use the precise 

temporal information provided by ancient DNA to directly test hypotheses about drivers of 

selection and we should be ruthless about rejecting or reformulating hypotheses that are 

contradicted by direct evidence.

Simulations provide an important tool for developing intuition about different demographic 

and selective scenarios, for evaluating the performance of different methods and for training 

machine learning models. This has been made much easier by recent developments in 

population genetic tools including 1) msprime, which enables fast coalescent simulations 

(89) 2) stdpopsim, a library of standard demographic models (90) and, in particular 3) SLiM, 

which allows the forward simulations needed to model complex selection (91). Development 

and maintenance of these tools is critical to enabling future selection studies.

Finally, while most work has focused on ancient selection, very large datasets provide the 

opportunity to investigate very recent selection-over the past few or even current generations 

(92–94). Some authors have worried that relaxation of selection due to modern medical care 

will lead to an overall decrease in fitness (95, 96). On the other hand, much selection 
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happens in utero and large effective population sizes might be expected to increase the 

efficacy of both negative and positive selection. Modern environmental conditions might 

promote selection for traits that were previously neutral or deleterious. Despite much 

speculation about these sorts of effects, there has been relatively little analysis, leaving many 

opportunities for studies of human adaptation over the past 40, rather than 40,000 years.
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Figure 1: Genomic signatures of adaptation.
Selection on variants affecting a beneficial trait. In a hard sweep, a new (or rare) mutation 

(red) on a single haplotype increases rapidly in frequency. Variants on the same haplotype 

(grey) also increase (“hitchhike”), reducing diversity around the selected site (97). Over 

time, recombination, drift and mutation break down the sweep signature. In a soft sweep 

(98), the selected variant may already be present on multiple haplotypes (red), or there may 

be new selected mutations (green) as the sweep is in progress. Diversity is reduced around 

the sweep but not by as much as a hard sweep. In practice, this signature may be difficult to 

distinguish from an incomplete hard sweep. In polygenic adaptation (42), variants at many 

loci genome-wide change frequency; trait-increasing alleles (red) increase in frequency 

while trait-decreasing alleles (blue) decrease. This process is essentially a large number of 

weak soft sweeps, but the effects are too small to be detected at any one locus. Variants drift 

after selection, but mean shifts in frequency are maintained.
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Figure 2: Ancient DNA adds another dimension to selection scans.
A: genome-wide selection scan signals from three different approaches (8, 12, 26) with 

power to detect selection over different timescales. Y-axis shows log10 quantiles for the top 

0.1% of tested markers. B: stratified by geographic location, ancient DNA from 668 

individuals reveals distinct trajectories of the lactase persistence allele in different parts of 

Europe. C: stratified by ancestry derived from the three main source populations of present-

day Europe, ancient DNA reconstructs the evolution of the FADS locus (redrawn from (17)).
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Figure 3: Limits to polygenic adaption. A:
If the phenotypic optimum changes over time, polygenic adaptation will not leave a 

consistent signal of frequency shift. B: Similarly, if effect sizes or direction changes over 

time due to allelic heterogeneity, or interactions, then polygenic adaption will occur, but will 

not leave a consistent pattern of frequency shifts. This cartoon shows a population of five 

haplotypes with three trait-associated SNPs over three time periods, with selection for an 

increased phenotype. If SNP effects are constant, then trait-increasing SNPs consistently 

increase in frequency and trait-decreasing SNPs decrease in frequency. On the other hand, if 

effects change over time, then this signal would be obscured over the long term, even though 

polygenic adaptation is still occurring. C: Finally, polygenic adaptation may be 

fundamentally limited by pleiotropy, which constrains the range of possible phenotypes that 

can be reached (between the dashed lines), or the set of variants that can respond to 

selection.
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