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Abstract

Supervised training of deep learning models requires large labeled datasets. There is a growing 

interest in obtaining such datasets for medical image analysis applications. However, the impact of 

label noise has not received sufficient attention. Recent studies have shown that label noise can 

significantly impact the performance of deep learning models in many machine learning and 

computer vision applications. This is especially concerning for medical applications, where 

datasets are typically small, labeling requires domain expertise and suffers from high inter- and 

intra-observer variability, and erroneous predictions may influence decisions that directly impact 

human health. In this paper, we first review the state-of-the-art in handling label noise in deep 

learning. Then, we review studies that have dealt with label noise in deep learning for medical 

image analysis. Our review shows that recent progress on handling label noise in deep learning has 

gone largely unnoticed by the medical image analysis community. To help achieve a better 

understanding of the extent of the problem and its potential remedies, we conducted experiments 

with three medical imaging datasets with different types of label noise, where we investigated 

several existing strategies and developed new methods to combat the negative effect of label noise. 

Based on the results of these experiments and our review of the literature, we have made 

recommendations on methods that can be used to alleviate the effects of different types of label 

noise on deep models trained for medical image analysis. We hope that this article helps the 

medical image analysis researchers and developers in choosing and devising new techniques that 

effectively handle label noise in deep learning.
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1. Introduction

1.1. Background

Deep learning has already made an impact on many branches of medicine, in particular 

medical imaging, and its impact is only expected to grow (Ching et al., 2018; Topol, 2019b). 

Even though it was first greeted with much skepticism (Wang et al., 2017a), in a few short 

years it proved itself to be a worthy player in solving many problems in medicine, including 

problems in disease and patient classification, patient treatment recommendation, outcome 

prediction, and more (Ching et al., 2018). Many experts believe that deep learning will play 

an important role in the future of medicine and will be an enabling tool in medical research 

and practice (Topol, 2019a; Prevedello et al., 2019). With regard to medical image analysis, 

methods that use deep learning have already achieved impressive, and often unprecedented, 

performance in many tasks ranging from low-level image processing tasks such as 

denoising, enhancement, and reconstruction (Wang et al., 2018b), to more high-level image 

analysis tasks such as segmentation, detection, classification, and registration (Ronneberger 

et al., 2015; Haskins et al., 2019), and even more challenging tasks such as discovering links 

between the content of medical images and patient’s health and survival (Xu et al., 2019; 

Mobadersany et al., 2018).

The recent success of deep learning has been attributed to three main factors (LeCun et al., 

2015; Sun et al., 2017). First, technical advancements in network architecture design, 

network parameter initialization, and training methods. Second, increasing availability of 

more powerful computational hardware, in particular graphical processing units and parallel 

processing, that allow training of very large models on massive datasets. Last, but not least, 

increasing availability of very large and growing datasets. However, even though in some 

applications it has become possible to curate large datasets with reliable labels, in most 

applications it is very difficult to collect and accurately label datasets large enough to 

effortlessly train deep learning models. A solution that is becoming more popular is to 

employ non-expert humans or automated systems with little or no human supervision to 

label massive datasets (Guo et al., 2016; Deng et al., 2009; Ipeirotis et al., 2010). However, 
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datasets collected using such methods typically suffer from very high label noise (Wang et 

al., 2018a; Kuznetsova et al., 2018), thus they have limited applicability in medical imaging.

The challenge of obtaining large datasets with accurate labels is particularly significant in 

medical imaging. The available data is typically small to begin with, and data access is 

hampered by such factors as patient privacy and institutional policies. Furthermore, labeling 

of medical images is very resource-intensive because it depends on domain experts. In some 

applications, there is also significant inter-observer variability among experts, which will 

necessitate obtaining consensus labels or labels from multiple experts and proper methods of 

aggregating those labels (Bridge et al., 2016; Nir et al., 2018). Some studies have been able 

to employ a large number of experts to annotate large medical image datasets (Gulshan et 

al., 2016; Esteva et al., 2017). However, such efforts depend on massive financial and 

logistical resources that are not easy to obtain in many domains. Alternatively, a few studies 

have successfully used automated mining of medical image databases such as hospital 

picture archiving and communication systems (PACS) to build large training datasets (Yan et 

al., 2018; Irvin et al., 2019). However, this method is not always applicable as historical data 

may not include all the desired labels or images. Moreover, label noise in such datasets is 

expected to be higher than in expert-labeled datasets. There have also been studies that have 

used crowd-sourcing methods to obtain labels from non-experts (Gurari et al., 2015; 

Albarqouni et al., 2016). Even though this method may have potential for some applications, 

it has a limited scope because in most medical applications non-experts are unable to 

provide useful labels. Even for relatively simple segmentation tasks, computerized systems 

have been shown to generate significantly less accurate labels compared with human experts 

and crowdsourced non-experts (Gurari et al., 2015). In general, lack of large datasets with 

trustworthy labels is considered to be one of the biggest challenges facing a wider adoption 

and successful deployment of deep learning methods in medical applications (Langlotz et 

al., 2019; Ching et al., 2018; Ravì et al., 2016).

1.2. Aims and scope of this paper

Given the outline presented above, it is clear that relatively small datasets with noisy labels 

are, and will continue to be, a common scenario in training deep learning models in medical 

image analysis applications. Hence, algorithmic approaches that can effectively handle the 

label noise are highly desired. In this manuscript, we first review and explain the recent 

advancements in training deep learning models in the presence of label noise. We review the 

methods proposed in the general machine learning literature, most of which have not yet 

been widely employed in medical imaging applications. Then, we review studies that have 

addressed label noise in deep learning with medical imaging data. Finally, we present the 

results of our experiments on three medical image datasets with noisy labels, where we 

investigate the performance of several strategies to deal with label noise, including a number 

of new methods that we have developed for each application. Based on our results, we make 

general recommendations to improve deep learning with noisy training labels in medical 

imaging data.

In the field of medical image analysis, in particular, the notion of label noise is elusive and 

not easy to define. The term has been used in the literature to refer to different forms of label 
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imperfections or corruptions. Especially in the era of big data, label noise may manifest 

itself in various forms. Therefore, at the outset we need to clarify the intended meaning of 

label noise in this paper and demarcate the scope of this study to the extent possible.

To begin with, it should be clear that we are only interested in label noise, and not data/

measurement noise. Specifically, consider a set {xi, yi} of medical images, xi, and their 

corresponding labels, yi. Although xi may include measurement noise, that is not the focus 

of this review. We are only interested in the noise in the label, yi. Typically, the label y is a 

discrete variable and can be either an image-wise label, such as in classification problems, or 

a pixel/voxel-wise label, such as in dense segmentation. Moreover, in this paper we are only 

concerned with labeled data. Semi-supervised methods are methods that use both labeled 

and unlabeled training data. Many semi-supervised methods synthesize (noisy) labels for 

unlabeled data, which are then used for training. Such studies fall within the scope of this 

study if they use novel or sophisticated methods to handle noisy synthesized labels. Another 

form of label imperfection that is becoming more common in medical image datasets is 

when there is only image-level label, and no pixel-level annotations are available (Wang et 

al., 2017b; Irvin et al., 2019). This type of label is referred to as weak label and is used by 

methods that are termed weakly supervised learning or multiple-instance learning methods. 

This type of label imperfection is also beyond the scope of this study. Luckily, there are 

recent review articles that cover these types of label imperfections. Semi-supervised 

learning, multiple-instance learning, and transfer learning in medical image analysis have 

been reviewed in (Cheplygina et al., 2019). Focusing only on medical image segmentation, 

another recent paper reviewed methods for dealing with scarce and imperfect annotations in 

general, including weak and sparse annotations (Tajbakhsh et al., 2019).

The organization of this article is as follows. In Section 2 we briefly describe methods for 

handling label noise in classical (i.e., pre-deep learning) machine learning. In Section 3 we 

review studies that have dealt with label noise in deep learning. Then, in Section 4 we take a 

closer look into studies that have trained deep learning models on medical image datasets 

with noisy labels. Section 5 contains our experimental results with three medical image 

datasets, where we investigate the impact of label noise and the potential of techniques and 

remedies for dealing with noisy labels in deep learning. Conclusions are presented in 

Section 6.

2. Label noise in classical machine learning

Learning from noisy labels has been a long-standing challenge in machine learning (Frénay 

and Verleysen, 2013; García et al., 2015). Studies have shown that the negative impact of 

label noise on the performance of machine learning methods can be more significant than 

that of measurement/feature noise (Zhu and Wu, 2004; Quinlan, 1986). The complexity of 

label noise distribution varies greatly depending on the application. In general, label noise 

can be of three different types: class-independent (the simplest case), class-dependent, and 

class and feature-dependent (potentially much more complicated). Most of the methods that 

have been proposed to handle noisy labels in classical machine learning fall into one of the 

following three categories (Frénay and Verleysen, 2013):
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1. Methods that focus on model selection or design. Fundamentally, these methods 

aim at selecting or devising models that are more robust to label noise. This may 

include selecting the model, the loss function, and the training procedures. It has 

been known that the impact of label noise depends on the type and design of the 

classifier model. For example, naive Bayes and random forests are more robust 

than other common classifiers such as decision trees and support vector machines 

(Nettleton et al., 2010; Folleco et al., 2008), and that boosting can exacerbate the 

impact of label noise (Abellán and Masegosa, 2010; McDonald et al., 2003; 

Long and Servedio, 2010), whereas bagging is a better way of building classifier 

ensembles in the presence of significant label noise (Dietterich, 2000). Studies 

have also shown that 0–1 label loss is more robust than smooth alternatives (e.g., 

exponential loss, log-loss, squared loss, and hinge-loss) (Manwani and Sastry, 

2013; Patrini et al., 2016). Other studies have modified standard loss functions to 

improve their robustness to label noise, for example by making the hinge loss 

negatively unbounded as proposed in (Van Rooyen et al., 2015). Furthermore, it 

has been shown that proper reweighting of training samples can improve the 

robustness of many loss functions to label noise (Liu and Tao, 2015; Natarajan et 

al., 2013).

2. Methods that aim at reducing the label noise in the training data. A popular 

approach is to train a classifier using the available training data with noisy labels 

or a small dataset with clean labels and identify mislabeled data samples based 

on the predictions of this classifier (Segata et al., 2009). Voting among an 

ensemble of classifiers has been shown to be an effective method for this purpose 

(Brodley et al., 1996; Sluban et al., 2010). K-nearest neighbors (KNN)-based 

analysis of the training data has also been used to remove mislabeled instances 

(Wilson and Martinez, 1997, 2000). More computationally intensive approaches 

include those that identify mislabeled instances via their impact on the training 

process. For example, (Zhang et al., 2009; Malossini et al., 2006) propose to 

detect mislabeled instances based on their impact on the classification of other 

instances in a leave-one-out framework. Some methods are similar to outlier-

detection techniques. They define some criterion to reflect the classification 

uncertainty or complexity of a data point and prune those training instances that 

exceed a certain threshold on that criterion (Gamberger et al., 2000; Sun et al., 

2007).

3. Methods that perform classifier training and label noise modeling in a unified 

framework. Methods in this class can overlap with those of the two 

aformentioned classes. For instance, some methods learn to denoise labels or to 

identify and down-weight samples that are more likely to have incorrect labels in 

parallel with classifier training. Some methods in this category improve standard 

classifiers such as support vector machines, decision trees, and neural networks 

by proposing novel training procedures that are more robust to label noise 

(Khardon and Wachman, 2007; Lin et al., 2004). Alternatively, different forms of 

probabilistic models have been used to model the label noise and thereby 

improve various classifiers (Kaster et al., 2010; Kim and Ghahramani, 2006).
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3. Deep learning with noisy labels

Deep learning models typically require much more training data than the more traditional 

machine learning models do. In many applications the training data are labeled by non-

experts or even by automated systems. Therefore, the label noise level is usually higher in 

these datasets compared with the smaller and more carefully prepared datasets used in 

classical machine learning.

Many recent studies have demonstrated the negative impact of label noise on the 

performance of deep learning models and have investigated the nature of this impact. It has 

been shown that, even with regularization, current convolutional neural network (CNN) 

architectures used for image classification and trained with standard stochastic gradient 

descent (SGD) algorithms can fit very large training datasets with completely random labels 

(Zhang et al., 2016). Obviously, the test performance of such a model would be similar to 

random assignment because the model has only memorized the training data. Given such an 

enormous representation capacity, it may seem surprising that large deep learning models 

have achieved record-breaking performance in many real-world applications. The answer to 

this apparent contradiction, as suggested by (Arpit et al., 2017), is that when deep learning 

models are trained on typical datasets with mostly correct labels, they do not memorize the 

data. Instead, at least in the beginning of training, they learn the dominant patterns shared 

among the data samples. It has been conjectured that this behavior is due to the distributed 

and hierarchical representation inherent in the design of the state of the art deep learning 

models and the explicit regularization techniques that are commonly used when training 

them (Arpit et al., 2017). One study empirically confirmed these ideas by showing that deep 

CNNs are robust to strong label noise (Rolnick et al., 2017). For example, in hand-written 

digit classification on the MNIST dataset, if the label accuracy was only 1% higher than 

random labels, a classification accuracy of 90% was achieved at test time. A similar 

behavior was observed on more challenging datasets such as CIFAR100 and ImageNet, 

albeit at much lower label noise levels. This suggests strong learning (as opposed to 

memorization) tendency of large CNNs. However, somewhat contradictory results have been 

reported by other studies. For face recognition, for example, it has been found that label 

noise can have a significant impact on the accuracy of a CNN and that training on a smaller 

dataset with clean labels is better than training on a much larger dataset with significant 

label noise (Wang et al., 2018a). The theoretical reasoning and experiments in (Chen et al., 

2019b) suggested a quadratic relation between the label noise ratio in the training data and 

test error.

Although the details of the interplay between memorization and learning mentioned above is 

not fully understood, experiments in (Arpit et al., 2017) suggest that this trade-off depends 

on the nature and richness of the data, amount of label noise, model architecture, as well as 

training procedures including regularization. Ma et al. (2018) show that the local intrinsic 

dimensionality of the features learned by a deep learning model depends on the label noise. 

Formal definition of local intrinsic dimensionality is given by Houle (2017). It quantifies the 

dimensionality of the underlying data manifold. More specifically, given a data point xi, 

local intrinsic dimensionality of the data manifold is a measure of the rate of encounter of 

other data points as the radius of a ball centered at xi grows. Ma et al. (2018) showed that 
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when training on data with noisy labels, the local dimensionality of the features initially 

decreases as the model learns the dominant patterns in the data. As the training proceeds, the 

model begins to overfit to the data samples with incorrect labels and the dimensionality 

starts to increase. Drory et al. (2018) establish an analogy between the performance of deep 

learning models and KNN under label noise. Using this analogy, they empirically show that 

deep learning models are highly sensitive to label noise that is concentrated, but that they are 

less sensitive when the label noise is spread across the training data.

The theoretical work on understanding the impact of label noise on the training and 

generalization of deep neural networks is still ongoing (Martin and Mahoney, 2017). On the 

practical side, many studies have shown the negative impact of noisy labels on the 

performance of these models in real-world applications (Yu et al., 2017; Moosavi-Dezfooli 

et al., 2017; Speth and Hand, 2019). Not surprisingly, therefore, this topic has been the 

subject of much research in recent years. We review some of these studies below, organizing 

them under six categories. As this categorization is arbitrary, there is much overlap among 

the categories and some studies may be argued to belong to more than one category.

Table 1 shows a summary of the methods we have reviewed. For each category of methods, 

we have shown a set of representative studies along with the applications addressed in the 

experimental results of the original paper. For each category of methods, we have also 

suggested some applications in medical image analysis that can benefit from the methods 

developed in those papers.

3.1. Label cleaning and pre-processing

The methods in this category aim at identifying and either fixing or discarding training data 

samples that are likely to have incorrect labels. This can be done either prior to training or 

iteratively in parallel with the training of the main model. Vo et al. (2015) proposed 

supervised and unsupervised image ranking methods for identifying correctly-labeled 

images in a large corpus of images with noisy labels. The proposed methods were based on 

matching each image with a noisy label to a set of representative images with clean labels. 

This method improved the classification accuracy by 4–6% over the baseline CNN models 

on three datasets. Veit et al. (2017) trained two CNNs in parallel using a small dataset with 

correct labels and a large dataset with noisy labels. The two CNNs shared the feature 

extraction layers. One CNN used the clean dataset to learn to clean the noisy dataset, which 

was used by the other CNN to learn the main classification task. Experiments showed that 

this training method was more effective than training on the large noisy dataset followed by 

fine-tuning on the clean dataset. Ostyakov et al. (2018) trained an ensemble of classifiers on 

data with noisy labels using cross-validation and used the predictions of the ensemble as soft 

labels for training the final classifier.

CleanNet, proposed by Lee et al. (2018), extracts a feature vector from a query image with a 

noisy label and compares it with a feature vector that is representative of its class. The 

representative feature vector for each class is computed from a small clean dataset. The 

similarity between these feature vectors is used to decide whether the label is correct. 

Alternatively, this similarity can be used to assign weights to the training samples, which is 

the method proposed for image classification by Lee et al. (2018). Han et al. (2019) 
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improved upon CleanNet in several ways. Most importantly, they removed the need for a 

clean dataset by estimating the correct labels in an iterative framework. Moreover, they 

allowed for multiple prototypes (as opposed to only one in CleanNet) to represent each 

class. Both of these studies reported improvements in image classification accuracy of 1–5% 

depending on the dataset and noise level.

A number of proposed methods for label denoising are based on classification confidence. 

Rank Pruning, proposed by Northcutt et al. (2017), identifies data points with confident 

labels and updates the classifier using only those data points. This method is based on the 

assumption that data samples for which the predicted probability is close to one are more 

likely to have correct labels. However, this is not necessarily true. In fact, there is extensive 

recent work showing that standard deep learning models are not “well calibrated” (Guo et 

al., 2017; Lakshminarayanan et al., 2017). A classifier is said to have a calibrated prediction 

confidence if its predicted class probability indicates its likelihood of being correct. For a 

perfectly-calibrated classifier, P ypredicted = ytrue | p = p = p. It has been shown that deep 

learning models produce highly over-confident predictions. Many studies in recent years 

have aimed at improving the calibration of deep learning models (Gal and Ghahramani, 

2015; Kendall and Gal, 2017; Pawlowski et al., 2017). In order to reduce the reliance on 

classifier calibration, the Rank Pruning algorithm, as its name suggests, ranks the data 

samples based on their predicted probability and removes the data samples that are least 

confident. In other words, Rank Pruning assumes that the predicted probabilities are accurate 

in the relative sense needed for ranking. In light of what is known about poor calibration of 

deep learning models, this might still be a strong assumption. Nonetheless, Rank Pruning 

was shown empirically to lead to substantial improvements in image classification tasks in 

the presence of strong label noise. Identification of incorrect labels based on prediction 

confidence was also shown to be highly effective in extensive experiments on image 

classification by Ding et al. (2018), improving the classification accuracy on CIFAR-10 by 

up to 20% in the presence of very strong label nosie. Köhler et al. (2019) proposed an 

iterative label noise filtering approach based on similar concepts as Rank Pruning. This 

method estimates prediction uncertainty (using such methods as Deep Ensembles 

(Lakshminarayanan et al., 2017) or Monte-Carlo dropout (Kendall and Gal, 2017)) during 

training and relabels data samples that are likely to have incorrect labels.

A different approach, is proposed by Gao et al. (2017). In this approach, termed deep label 

distribution learning (DLDL), the initial noisy labels are smoothed to obtain a “label 

distribution”, which is a discrete distribution for classification problems. The authors 

propose methods for obtaining this label distribution from one-hot labels for several 

applications including multi-class classification and semantic segmentation. For semantic 

segmentation, for example, a simple kernel smoothing of the segmentation mask is 

suggested to account for unreliable boundaries. Once this smooth label is obtained, the deep 

learning model is trained by minimizing the Kullback-Leibler (KL) divergence between the 

model output and the smooth noisy label. Label smoothing is a well-know trick for 

improving the test performance of deep learning models (Szegedy et al., 2016; Müller et al., 

2019). The DLDL approach was improved by Yi and Wu (2019), where the authors 

introduced a cross-entropy-based loss term to encourage closeness of estimated labels and 
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the initial noisy labels and proposed a back-propagation method to iteratively update the 

initial label distributions as well.

Ratner et al. (2016) used a generative model to model labeling of large datasets used in deep 

learning and proposed a label denoising method under this scenario. Zhou et al. (2017) 

proposed a GAN for removing label noise from synthetic data generated to train a CNN. 

This method was shown to be highly effective in removing label noise and improving the 

model performance. GANs were used to generate a training dataset with clean labels from 

an initial dataset with noisy labels by Chiaroni et al. (2019).

3.2. Network architecture

Several studies have proposed adding a “noise layer” to the end of deep learning models. 

The noise layer proposed by Sukhbaatar et al. (2014) is equivalent to multiplication with the 

transition matrix between noisy and true labels. The authors developed methods for learning 

this matrix in parallel with the network weights using error back-propagation. A similar 

noise layer was proposed by Thekumparampil et al. (2018) for training a generative 

adversarial network (GAN) under label noise. Sukhbaatar and Fergus (2014) proposed 

methods for estimating the transition matrix from either a clean or a noisy dataset. 

Reductions of up to 3.5% in classification error were reported on different datasets. A 

similar noise layer was proposed by Goldberger and Ben-Reuven (2016), where the authors 

proposed an EM-type method for optimizing the parameters of the noise layer. Importantly, 

the authors extended their model to the more general case where the label noise also depends 

on image features. This more complex case, however, could not be optimized with EM and a 

back-propagation method was exploited instead. Bekker and Goldberger (2016) used a 

combination of EM and error back-propagation for end-to-end training with a noise layer. 

Jindal et al. (2016) suggested that aggressive dropout regularization (with a rate of 90%) can 

improve the effectiveness of such noise layers.

Focusing on noisy labels obtained from multiple annotators, Tanno et al. (2019) proposed a 

simple and effective method for estimating the correct labels and annotator confusion 

matrices in parallel with CNN training. The key observation was that, in order to avoid the 

ambiguity in simultaneous estimation of true labels and annotator confusion matrices, the 

traces of the confusion matrices had to be penalized. The entire model including the CNN 

weights and confusion matrices were learned via SGD. The method was shown to be highly 

effective in estimating annotator confusion matrices for various annotator types including 

inaccurate and adversarial ones. Improvements of 8–11% in image classification accuracy 

were reported compared to the best competing methods.

A number of studies have integrated different forms of probabilistic graphical models into 

deep neural networks to handle label noise. Xiao et al. (2015) proposed a graphical model 

with two discrete latent variables y and z, where y was the true label and z was a one-hot 

vector of size 3 that denoted whether the label noise was zero, class-independent, or class-

conditional. Two separate CNNs estimated y and z, and the entire model was optimized in an 

EM framework. The method required a small dataset with clean labels. The authors showed 

significant gains compared with baseline CNNs in image classification from large datasets 

with noisy labels. Vahdat (2017) employed an undirected graphical model to learn the 
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relationship between correct and noisy labels. The model allowed incorporation of domain-

specific sources of information in the form of joint probability distribution of labels and 

hidden variables. Their method improved the classification accuracy of baseline CNNs by up 

to 3% on three different datasets. For image classification, Misra et al. (2016) proposed to 

jointly train two CNNs to disentangle the object presence and relevance in a framework 

similar to the graphical model-based methods described above. Model parameters and true 

labels were estimated using SGD. A more elaborate model was proposed by Yao et al. 

(2018), where an additional latent variable was introduced to model the trustworthiness of 

the noisy labels.

3.3. Loss functions

A large number of studies keep the model architecture, training data, and training procedures 

largely intact and only change the loss function (Izadinia et al., 2015). Ghosh et al. (2017) 

studied the conditions for robustness of a loss function to label noise for training deep 

learning models. They showed that mean absolute value of error, MAE, (defined as the ℓ1 

norm of the difference between the true and predicted class probability vectors) is tolerant to 

label noise. This means that, in theory, the optimal classifier can be learned by training with 

basic error back-propagation. They showed that cross-entropy and mean square error did not 

possess this property. For a multi-class classification problem, denoting the vector of true 

and predicted probabilities with p(y = j|x) and p(y = j ∣ x), respectively, the cross-entropy 

loss function is defined as LCE = ∑j p(y = j ∣ x)logp(y = j ∣ x). The MAE loss is defined as 

LMAE = ∑j |p(y = j ∣ x) − p(y = j ∣ x)|. As opposed to cross-entropy that puts more emphasis 

on hard examples (desirable for training with clean labels), MAE tends to treat all data 

points more equally. However, a more recent study argued that because of the stochastic 

nature of the optimization algorithms used to train deep learning models, training with MAE 

down-weights difficult samples with correct labels, leading to significantly longer training 

times and reduced test accuracy (Zhang and Sabuncu, 2018). The authors proposed their 

own loss functions based on Box-Cox transformation to combine the advantages of MAE 

and cross-entropy. Similarly, Wang et al. (2019b) analyzed the gradients of cross-entropy 

and MAE loss functions to show their weaknesses and advantages. They proposed an 

improved MAE loss function (iMAE) that overcame MAE’s poor sample weighting strategy. 

Specifically, they showed that the ℓ1 norm of the gradient of LMAE with respect to the logit 

vector was equal to 4p(y|x)(1 − p(y|x)), leading to down-weighting of difficult but 

informative data samples. To fix this shortcoming, they suggested to transform the MAE 

weights nonlinearly with a new weighting defined as exp(T p(y|x))(1 − p(y|x)), where the 

hyperparameter T was set equal to 8 for training data with noisy labels. In image 

classification experiments on the CIFAR-10 dataset, compared with cross-entropy and MAE 

losses, their proposed iMAE loss improved the classification by approximately 1–5% when 

label noise was low and up to 25% when label noise was very high. In another experiment 

on person reidentification in video, iMAE improved the mean average precision by 13% 

compared with cross-entropy.

Thulasidasan et al. (2019) proposed modifying the cross-entropy loss function to enable 

abstention. Their proposed modification allowed the model to abstain from making a 

prediction on some data points at the cost of incurring an abstention penalty. They showed 
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that this policy could improve the classification performance on both random label noise as 

well as systematic datadependent label noise. Rusiecki (2019) proposed a trimmed cross-

entropy loss based on trimmed absolute value criterion. Their central assumption is that, 

with a well-trained model, data samples with wrong labels result in high loss values. Hence, 

their proposed loss function simply ignores the training samples with the largest loss values. 

Note that the central idea in (Rusiecki, 2019) (of down-weighting hard data samples) seems 

to run against many prevalent techniques in machine learning such as boosting (Freund et 

al., 1999), hard example mining (Shrivastava et al., 2016), and loss functions such as focal 

loss (Lin et al., 2017), that steer the training process to focus on hard examples. This is 

because when the training labels are correct, data points with high loss values constitute the 

hard examples that the model has not learned yet. Hence, focusing on those examples 

generally helps improve the model performance. On the other hand, when there is significant 

label noise, assuming that the model has attained a decent level of accuracy, data points with 

unusually high loss values are likely to have wrong labels. This idea is not restricted to 

(Rusiecki, 2019) and it is an idea that is shared by many methods reviewed in this article. 

This paradigm shift is a good example of the dramatic effect of label noise on the machine 

learning methodology.

Patrini et al. (2017) proposed two simple ways of improving the robustness of a loss 

function to label noise for training deep learning models. The proposed correction methods 

are based on the error confusion matrix T, defined as Ti, j = p y = ej ∣ y = ei , where y and y 

are the noisy and true labels, respectively. Assuming T is non-singular, one of the proposed 

correction strategies is lcorr(p(y ∣ x)) = T −1l(p(y ∣ x)). This correction is a linear weighting of 

the loss values for each possible label, where the weights, given by T, are the probability of 

the true label given the observed label. The authors name this correction method “backward 

correction” because it is intuitively equivalent to going one step back in the noise process 

described by the Markov chain represented by T. The alternative approach, named forward 

correction, is based on correcting the model predictions and only applies to composite 

proper loss functions (Reid and Williamson (2010)), which include cross-entropy. The 

corrected loss is defined as lcorr(h(x)) = l(TTψ−1((h(x))), where h is the vector of logits, and 

ψ−1 is the inverse of the link function for the loss function in consideration, which is the 

standard softmax for cross-entropy loss. The authors show that both these corrections lead to 

unbiased loss functions, in the sense that ∀xEy ∣ xlcorr = Ey ∣ xl. They also propose a method 

for estimating T from noisy data and show that their methods lead to performance 

improvements on a range of computer vision problems and deep learning models. Similar 

methods have been proposed by Hendrycks et al. (2018), and Boughorbel et al. (2018), 

where it is suggested to use a small dataset with clean labels to estimate T. Boughorbel et al. 

(2018) alternate between training on a clean dataset with a standard loss function and 

training on a larger noisy dataset with the corrected loss function. Mnih and Hinton (2012) 

proposed a similar loss function based on penalizing the disagreement between the predicted 

label and the posterior of the true label.
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3.4. Data re-weighting

Broadly speaking, these methods aim at down-weighting those training samples that are 

more likely to have incorrect labels. Ren et al. (2018) proposed to weight the training data 

using a meta-learning approach. That method required a separate dataset with clean labels, 

which was used to determine the weights assigned to the training data with noisy labels. 

Simply put, it optimized the weights on the training samples by minimizing the loss on the 

clean validation data. The authors showed that this weighting scheme was equivalent to 

assigning larger weights to training data samples that were similar to the clean validation 

data in terms of both the learned features and optimization gradient directions. Experiments 

showed that this method improved upon baseline methods by 0.5% and 3% on CIFAR-10 

and CIFAR-100 with only 1000 images with clean labels. More recently, Wang et al. (2019a) 

proposed to re-weight samples by optimization gradient re-scaling. The underlying idea, 

again, is to give larger weights to samples that are easier to learn, hence more likely to have 

correct labels. Pumpout, proposed by Han et al. (2018a), is also based on gradient scaling. 

The authors propose two methods for identifying data samples that are likely to have 

incorrect lables. One of their methods is based on the assumption that data samples with 

incorrect labels are likely to display unusually high loss values. Their second method is 

based on the value of the backward-corrected loss (Patrini et al., 2017); they suggest that the 

condition 1TT −1l(p(y ∣ x)) < 0 indicates data samples with incorrect labels. For training data 

samples that are suspected of having incorrect labels, the gradients are scaled by −γ, where 

0 < γ < 1. In other words, they perform a scaled gradient ascent on the samples with 

incorrect labels. In several experiments, including image classification with MNIST and 

CIFAR-10 datasets, they show that their method avoids fitting to incorrect labels and reduces 

the classification error by up to 40%.

Shen and Sanghavi (2019) proposed a training strategy that can be interpreted as a form of 

data re-weighting. In each training epoch, they remove a fraction of the data for which the 

loss is the largest, and update the model parameters to minimize the loss function on the 

remaining training data. This method assumes that the model gradually converges towards a 

good classifier such that the mis-labeled training samples exhibit unusually high loss values 

as training progresses. The authors proved that this simple approach learns the optimal 

model in the case of generalized linear models. For deep CNNs that are highly nonlinear, 

they empirically showed the effectiveness of their method on several image classification 

tasks. As in the case of this method, there is often a close connection between some of the 

data re-weighting methods and methods based on robust loss functions. Shu et al. (2019) 

built upon this connection and developed it further by proposing to learn a data re-weighting 

scheme from data. Instead of assuming a pre-defined weighting scheme, they used a multi-

layer perceptron (MLP) model with a single hidden layer to learn a suitable weighting 

strategy for the task and the dataset at hand. The MLP in this method is trained on a small 

dataset with clean labels. Experiments on datasets with unbalanced and noisy labels showed 

that the learned weighting scheme conformed with those proposed in other studies. 

Specifically, for data with noisy labels the model learned to down-weight samples with large 

loss functions, the opposite of the form learned for datasets with unbalanced classes. One 

can argue that this observation empirically justifies the general trend towards down-

weighting training samples with large loss values when training with noisy labels.
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A common scenario involves labels obtained from multiple sources or annotators with 

potentially different levels of accuracy. This is a heavily-researched topic in machine 

learning. A simple approach to tackling this scenario is to use expectation-maximization 

(EM)-based methods such as (Warfield et al., 2004; Raykar et al., 2010) to estimate the true 

labels and then proceed to train the deep learning model using the estimated labels. Khetan 

et al. (2017) proposed an iterative method, whereby model predictions were used to estimate 

annotator accuracy and then these accuracies were used to train the model with a loss 

function that properly weighted the label from each annotator. The model was updated via 

gradient descent, whereas annotator confusion matrices were optimized with an EM method. 

By contrast, Tanno et al. (2019) estimated the network weights as well as annotator 

confusion matrices via gradient descent.

3.5. Data and label consistency

It is usually the case that the majority of the training data samples have correct labels. 

Moreover, there is considerable correlation among data points that belong to the same class 

(or the features computed from them). These correlations can be exploited to reduce the 

impact of incorrect labels. A typical example is the work of Lee et al. (2019), where the 

authors consider the correlation of the features learned by a deep learning model. They 

suggest that the features learned by various layers of a deep learning model on data samples 

of the same class should be highly correlated (i.e., clustered). Therefore, they propose 

training an ensemble of generative models (in the form of linear discriminant classifiers) on 

the features of the penultimate layer and possibly also other layers of a trained deep learning 

model. They show significant improvements in classification accuracy on several network 

architectures, noise levels, and datasets. On CIFAR-10 dataset, they report classification 

accuracy improvements of 3–20%, with larger improvements for higher label noise levels, 

compared with a baseline CNN. On more difficult datasets such as CIFAR-100 and SVHN, 

smaller but still significant improvements of approximately 3–10% are reported. Another 

example is the work of Zhang et al. (2019), where the authors proposed a method to leverage 

the multiplicity of data samples with the same (noisy) label in each training batch. All 

samples with the same label were fed into a light-weight neural network model that assigned 

a confidence weight to each sample based on the probability of it having the correct label. 

These weights were used to compute a representative feature vector for that class, which was 

then used to train the main classification model. Compared with other competing methods, 

1–4% higher classification accuracies were reprorted on several datasets. For face 

identification, Speth and Hand (2019) proposed feature embedding to detect data samples 

with incorrect labels. Their proposed verification framework used a multi-label Siamese 

CNN to embed a data point in a lower-dimensional space. The distance of the point to a set 

of representative points in this lower-dimensional space was used to determine whether the 

label was incorrect.

Azadi et al. (2015) propose a method that they name “auxiliary image regularization”. Their 

method requires a small set of auxiliary images with clean labels in addition to the main 

training dataset with noisy labels. The core idea of auxiliary image regularization is to 

encourage representation consistency between training images (with noisy labels) and 

auxiliary images (with known correct labels). For this purpose, their proposed loss function 
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includes a term based on group sparsity that encourages the features of a training image to 

be close to those of a small number of auxiliary images. Clearly, the auxiliary images should 

include good representatives of all expected classes. This method improved the classification 

accuracy by up to 8% on ImageNet dataset. Chen et al. (2019a) proposed a manifold 

regularization technique that penalized the KL divergence between the class probability 

predictions of similar data samples. Because searching for similar samples in high-

dimensional data spaces was challenging, they suggested using data augmentation to 

synthesize similar inputs. They reported 1–3% higher classification accuracy compared with 

several alternative methods on CIFAR-10 and CIFAR-100. Li et al. (2017a) proposed 

BundleNet, where multiple images with the same (noisy) labels were stacked together and 

fed as a single input to the network. Even though the authors do not provide a clear 

justification of their method and its difference with standard mini-batch training, they show 

empirically that their method improves the accuracy on image classification with noisy 

labels. Wang et al. (2018c) used the similarity between images in terms of their deep 

features in an iterative framework to identify and down-weight training samples that were 

likely to have incorrect labels. Consistency between predicted labels and data (e.g., images 

or features) was exploited by Reed et al. (2014). The authors considered the true label as a 

hidden variable and proposed a model that simultaneously learned the relation between true 

and noisy labels (i.e., label noise distribution) and an auto-encoder model to reconstruct the 

data from the hidden variables. They showed improved performance in detection and 

classification tasks.

3.6. Training procedures

The methods in this category are very diverse. Some of them are based on well-known 

machine learning methods such as curriculum learning and knowledge distillation, while 

others focus on modifying the settings of the training pipeline such as learning rate and 

regularization.

Several methods based on curriculum learning have been proposed to combat label noise. 

Curriculum learning, first proposed by Bengio et al. (2009), is based on training a model 

with examples of increasing complexity or difficulty. In the method proposed by Jiang et al. 

(2017), an LSTM network called Mentor-Net provides a curriculum, in the form of weights 

on the training samples, to a second network called Student-Net. On CIFAR-100 and 

ImageNet with various label noise levels, their method improved the classification accuracy 

by up to 20% and 2%, respectively. Guo et al. (2018) proposed another method based on 

curriculum learning, named CurriculumNet, for training a model from massive datasets with 

noisy labels. This method first clusters the training data in some feature space and identifies 

samples that are more likely to have incorrect labels as those that fall in low-density clusters. 

The data are then sequentially presented to the main CNN model to be trained. This 

technique achieved good results on several datasets including ImageNet. The Self-Error-

Correcting CNN proposed by Liu et al. (2017) is based on similar ideas; the training begins 

with noisy labels but as the training proceeds the network is allowed to change a sample’s 

label based on a confidence policy that gives more weight to the network predictions with 

more training.
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Li et al. (2017b) adopted a knowledge distillation approach (Hinton et al., 2015) to train an 

auxiliary model on a small dataset with clean labels to guide the training of the main model 

on a large dataset with noisy labels. In brief, their approach amounts to using a pseudo-label, 

which is a convex combination of the noisy label and the label predicted by the auxiliary 

model. To reduce the risk of overfitting the auxiliary model on the small clean dataset, the 

authors introduced a knowledge graph based on the label transition matrix. Reed et al. 

(2014) also proposed using a convex combination of the noisy labels and labels predicted by 

the model at its current training stage. They suggested that as the training proceeds, the 

model becomes more accurate and its predictions can be weighted more strongly, thereby 

gradually forgetting the original incorrect labels. Zhong et al. (2019) used a similar approach 

for face identification. They first trained their model on a small dataset with less label noise 

and then fine-tuned it on data with stronger label noise using an iterative label update 

strategy similar to that explained above. Their method led to improvements of up to 2% in 

face recognition accuracy. Following a similar training strategy, Köhler et al. (2019) 

suggested that there is a point (e.g., a training epoch) when the model learns the true data 

features and is about to fit to the noisy labels. They proposed two methods, one based on the 

predictions on a clean dataset and another based on prediction uncertainty measures, to 

identify that stage in training. The output of the model at that stage can be used to fix the 

incorrect labels.

A number of studies have proposed methods involving joint training of more than one 

model. For example, one work suggested simultaneously training two separate but identical 

networks with random initialization, and only updating the network parameters when the 

predictions of the two networks differed Malach and Shalev-Shwartz (2017). The idea is that 

when training with noisy labels, the model starts by learning the patterns in data samples 

with correct labels. Later in training, the model will struggle to overfit to samples with 

incorrect labels. The proposed method hopes to reduce the impact of label noise because the 

decision as to whether or not to update the model is made based on the predictions of the 

two models and independent of the noisy label. In other words, on data with incorrect labels 

both models are likely to produce the same prediction, i.e., they will predict the correct label. 

On easy examples with correct labels, too, both models will make the same (correct) 

prediction. On hard examples with correct labels, on the other hand, the two models are 

more likely to disagree. Hence, with the proposed training strategy, the data samples that 

will be used in later stages of training will shrink to the hard data samples with correct 

labels. This strategy also improves the computational efficiency since it performs many 

updates at the start of training but avoids unnecessary updates on easy data samples once the 

models have sufficiently converged to predict the correct label on those samples. This idea 

was developed into co-teaching Han et al. (2018b), whereby the two networks identified 

label-noise-free samples in their mini-batches and shared the update information with the 

other network. The authors compare their method with several state of the art techniques 

including Mentor-Net (Jiang et al. (2017). Their method outperformed competing methods 

in most experiments, while narrowly underperforming in some experiments. Co-teaching 

was further improved in Yu et al. (2019b), where the authors suggested to focus the training 

on data samples with lower loss values in order to reduce the risk of training on data with 

incorrect labels. Along the same lines, Li et al. (2019) proposed a meta-learning objective 
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that encouraged consistent predictions between a student model trained on noisy labels and a 

teacher model trained on clean labels. The goal was to train the student model to be tolerant 

to label noise. Towards this goal, artificial label noise was added on data with correct labels 

to train the student model. The student model was encouraged to be consistent with the 

teacher model using a meta-objective in the form of the KL divergence between prediction 

probabilities. Their method outperformed several competing methods by 1–2% on 

CIFAR-10 and Clothing1M datasets.

Experiments in Chen et al. (2019b) showed that co-teaching was less effective as the label 

noise increased. Instead, the authors showed that selecting the data samples with correct 

labels using cross-validation was more effective. In their proposed approach, the training 

data was divided into two folds. The model was iteratively trained on one fold and tested on 

the other. Data samples for which the predicted and noisy labels agreed were assumed to 

have the correct label and were used in the next training epoch. One study proposed to learn 

the network parameters by optimizing the joint likelihood of the network parameters and 

true labels Tanaka et al. (2018). Compared with standard training with cross-entropy loss, 

this method improved the classification accuracy on CIFAR-10 by 2% with low label noise 

rate to 17% when label noise rate was very high.

Some studies have suggested modifying the learning rate, batch size, or other settings in the 

training methodology. For example, for applications where multiple datasets with varying 

levels of label noise are available, Song et al. (2015) have proposed training strategies in 

terms of the order of using different datasets during training and proper learning rate 

adjustments based on the level of label noise in each dataset. Assuming that separate clean 

and noisy datasets are available, the same study has shown that using different learning rates 

for training with noisy and clean samples can improve the performance. It has also shown 

that the optimal ordering of using the two datasets (i.e., whether to train on the noisy dataset 

or the clean dataset first) depends on the choice of the learning rate. It has also been 

suggested that when label noise is strong, the effective batch size decreases, and that batch 

size should be increased with a proper scaling of the learning rate (Rolnick et al., 2017). 

Sukhbaatar and Fergus (2014) proposed to include samples from a noisy dataset and a clean 

dataset in each training mini-batch, giving higher weights to the samples with clean labels.

Mixup is a less intuitive but simple and effective method (Zhang et al., 2017). It synthesizes 

new training data points and labels via a convex combination of pairs of training data points 

and their labels. More specifically, given two randomly selected training data and label pairs 

(xi, yi) and (xj, yj), a new training data point and label are synthesized as x = λxi + (1 − λ)xj
and y = λyi + (1 − λ)yj, where λ ∈ [0, 1] is sampled from a beta distribution. Although mixup 

is known primarily as a data augmentation and regularization strategy, it has been shown to 

be remarkably effective for combatting label noise. Compared with basic emprirical risk 

minimization on CIFAR-10 dataset with different levels of label noise, mixup reduced the 

classification error by 6.5–12.5%. The authors argue that the reason for this behavior is 

because interpolation between datapoints makes memorization on noisy labels, as observed 

in (Zhang et al., 2016), more difficult. In other words, it is easier for the network to learn the 

linear iterpolation between datapoints with correct labels than to memorize the interploation 
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when labels are incorrect. The same idea was successfully used in video classification by 

Ostyakov et al. (2018).

For object boundary segmentation, two studies proposed to improve noisy labels in parallel 

with model training (Yu et al., 2018; Acuna et al., 2019). This is a task for which large 

datasets are known to suffer from significant label noise and model performance to be very 

sensitive to label noise. Both methods consider the true boundary as a latent variable that is 

estimated in an alternating optimization framework in parallel with model training. One 

major assumption in Acuna et al. (2019) is the preservation of the length of the boundary 

during optimization, resulting in a bipartite graph assignment problem. In Yu et al. (2018), a 

level-set formulation was introduced instead, providing much higher flexibility in terms of 

the shape and length of the boundary while preserving its topology. Both studies compared 

their methods with baseline CNNs in terms of F-measure for object edge detection and 

report impressive improvements. In particular, Acuna et al. (2019) improved upon their 

baseline CNN by 2–5% on segmentation of different objects. Similarly, Yu et al. (2018) 

reported improvements of 1–17% compared to a baseline CNN.

4. Deep learning with noisy labels in medical image analysis

In this section, we review studies that have addressed label noise in training deep learning 

models for medical image analysis. We use the same categorization as in the previous 

section.

4.1. Label cleaning and pre-processing

For classification of thoracic diseases from chest x-ray scans, Pham et al. (2019) used label 

smoothing to handle noisy labels. They compared their label smoothing method with simple 

methods such as ignoring data samples with noisy labels. They found that label smoothing 

can lead to improvements of up to 0.08 in the area under the receiver operating characteristic 

curve (AUC).

4.2. Network architectures

The noise layer proposed by Bekker and Goldberger (2016), reviewed above, was used for 

breast lesion detection in mammograms by Dgani et al. (2018) and slightly improved the 

detection accuracy.

4.3. Loss functions

To train a network to segment virus particles in transmission electron microscopy images 

using original annotations that consisted of only the approximate center of each virus, 

Matuszewski and Sintorn (2018) dilated the annotations with a small and a large structuring 

element to generate noisy masks for foreground and background, respectively. Consequently, 

parts of the image in the shape of the union of rings were marked as uncertain regions that 

were ignored during training. The Dice similarity and intersection-over-union loss functions 

were modified to ignore those regions. Promising results were reported for both loss 

functions. Rister et al. (2018) showed that for segmentation of abdominal organs in CT 

images from noisy training annotations, the intersection-over-union (IOU) loss consistently 
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outperformed the cross-entropy loss. The mean DSC achieved with the IOU loss was 1–13% 

higher than the DSC achieved with the cross-entropy loss.

4.4. Data re-weighting

Le et al. (2019) used a data re-weighting method similar to that proposed by Ren et al. 

(2018) to deal with noisy annotations in pancreatic cancer detection from whole-slide digital 

pathology images. They trained their model on a large corpus of patches with noisy labels 

using weights computed from a small set of patches with clean labels. This strategy 

improved the classification accuracy by 10% compared with training on all patches with 

clean and noisy labels without re-weighting. For skin lesion classification in dermoscopy 

images with noisy labels, Xue et al. (2019) used a data re-weighting method that amounted 

to removing data samples with high loss values in each training batch. This method, which is 

similar to some of the methods reviewed above such as the method of Shen and Sanghavi 

(2019), increased the classification accuracy by 2 – 10%, depending on the label noise level.

For segmentation of heart, clavicles, and lung in chest radiographs, Zhu et al. (2019) trained 

a deep learning model to detect incorrect labels. This model assigned a weight to each 

sample in a training batch, aiming to down-weight samples with incorrect labels. The main 

segmentation model was trained in parallel using a loss function that made use of these 

weights. A pixel-wise weighting was proposed by Mirikharaji et al. (2019) for skin lesion 

segmentation from highly inaccurate annotations. The method needed a small dataset with 

correct segmentations alongside the main, larger, dataset with noisy segmentations. For each 

training image with noisy segmentation, a weight map of the same size was considered to 

indicate the pixel-wise confidence in the accuracy of the noisy label. These maps were 

updated in parallel with network parameters with alternating optimization. The authors 

proposed to optimize the weights on the images in the noisy dataset by reducing the loss on 

the clean dataset. In essence, the weight on a pixel is increased if that leads to a reduction in 

the loss on the clean dataset. If increasing the weight on a pixel increases the loss on the 

clean dataset, that weight is set to zero because the label for that pixel is probably incorrect.

4.5. Data and label consistency

For segmentation of the left atrium in MRI from labeled and unlabeled data, Yu et al. 

(2019a) proposed training two separate models: a teacher model that produced noisy labels 

and label uncertainty maps on unlabeled images, and a student model that was trained using 

the generated noisy labels while taking into account the label uncertainty. The student model 

was trained to make correct predictions on the clean dataset and to be consistent with the 

teacher model on noisy labels with uncertainty below a threshold. The teacher model was 

updated in a moving average scheme involving the weights of the student model.

4.6. Training procedures

For bladder, prostate, and rectum segmentation in MRI, Nie et al. (2018) trained a model on 

a dataset with clean labels and used it to predict segmentation masks for a separate unlabeled 

dataset. In parallel, a second model was trained to estimate a confidence map to indicate the 

regions where the predicted labels were more likely to be correct. The confidence maps were 
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used to sample the unlabeled dataset for additional training data for the main model. 

Improvements of approximately 3% in Dice similarity coefficient (DSC) were reported.

Min et al. (2018) employed the ideas proposed by Malach and Shalev-Shwartz (2017) to 

develop label-noise-robust methods for medical image segmentation. As we reviewed above, 

the main idea in the method of Malach and Shalev-Shwartz (2017) was to jointly train two 

separate models and update the models only on the data samples on which the predictions of 

the two models differed. Instead of considering only the final layer predictions, Min et al. 

(2018) introduced attention modules at various depths in the networks to use the gradient 

information at different feature maps to identify and down-weight samples with incorrect 

labels. They reported promising results for cardiac and glioma segmentation in MRI.

For cystic lesion segmentation in lung CT, Zhang et al. (2018) generated initial noisy 

segmentations using unsupervised K-means clustering. These segmentations were used to 

train a CNN. Assuming that the CNN was more accurate than K-means, CNN predictions 

were used as the training labels for the next epoch. This process was repeated, generating 

new labels at the end of each training epoch. Experiments showed that the final trained CNN 

achieved significantly higher segmentation accuracy compared with the K-means method 

used to generate the initial segmentations. A rather similar method was used for 

classification of aortic valve malfunctions in MRI by Fries et al. (2019). Using a small 

dataset of expert-annotated images, simple classifiers based on intensity and shape features 

were developed. Subsequently, a factor graph-based model was trained to estimate the 

classification accuracies of these classifiers and to generate pseudo-ground-truth labels on a 

massive unlabeled dataset. This dataset was then used to train a deep learning classifier. This 

model significantly outperformed models trained on a small set of expert-labeled images.

5. Experiments

In this section, we present our experiments on three medical image datasets with noisy 

labels, in which we explored several methods that we implemented, adapted, or developed to 

analyze and reduce the effect of label noise. Our experiments represent three different 

machine learning problems, namely, detection, classification, and segmentation. The three 

datasets associated with these experiments represent three different noise types, namely, 

label noise due to systematic error by a human annotator, label noise due to inter-observer 

variability, and error/noise in labels generated by an algorithm (Figure 1). In developing and 

comparing techniques, our goal was not to achieve the best, state-of-the-art results in each 

experiment, as that would have required careful design of network architectures, data pre-

processing, and training procedures for each problem. Instead, our goal was to show the 

effects of label noise and the relative effectiveness, merits, and shortcomings of potential 

methods on common label noise types in medical image datasets.

5.1. Brain lesion detection and segmentation

5.1.1. Data and labels—We used 165 MRI scans from 88 tuberous sclerosis complex 

(TSC) subjects. Each scan included T1, T2, and FLAIR images. An experienced annotator 

segmented the lesions in these scans. We then randomly selected 12 scans for accurate 

annotation and assessment of label noise. Two annotators jointly reviewed these scans in 
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four separate sessions to find and fix missing or inaccurate annotations. The last reading did 

not find any missing lesions in any of the 12 scans. Example scans and their annotations are 

shown in Figure 2. We used these 12 scans and their annotations for evaluation only. We 

refer to these scans as “the clean dataset”. We used the remaining 153 scans and their 

imperfect annotations for training. These are referred to as “the noisy dataset”.

In the 12 scans in the clean dataset, 306 lesions were detected in the first reading and 68 

lesions in the followup readings, suggesting that approximately 18% of the lesions were 

missed in the first reading. Annotation error can be modeled as a random variable, in the 

sense that if the same annotators annotate the same scan a second time (with some time 

interval) they may not make the same errors. Nonetheless, our analysis shows that smaller or 

fainter lesions were more likely to be missed. Specifically, Welchs t-tests showed that the 

lesions that had been missed in the first reading were less dark on the T1 image (p<0.001), 

smaller in size (p<0.001), and farther away from the closest lesion (p=0.004), compared with 

lesions that were detected in the first reading. Therefore, in this application the intrinsic 

limitation of human annotator attention results in systematic errors (noise) in labels.

5.1.2. Methods—For the joint detection and segmentation of lesions in this application, 

we used a baseline CNN similar to the 3D U-Net (Çiçek et al., 2016). This CNN included 

four convolutional blocks in each of the contracting and expanding parts. The first 

convolutional block included 14 feature maps, which increased by a factor of 2 in 

subsequent convolutional blocks, resulting in the coarsest convolutional block with 112 

feature maps. Each convolutional block processed its feature maps with additional 

convolutional layers with residual connections. All convolutional operations were followed 

by ReLU activation. The CNN worked on blocks of size 643 voxels and it was applied in a 

sliding-window fashion to process an image. In addition, since this application can be 

regarded as a detection task, we also used a method based on Faster-RCNN (Ren et al., 

2015), where we used a 3D U-Net architecture for the backbone of this method. To train 

Faster-RCNN, we followed the training methodology of Ren et al. (2015), but made changes 

to adapt it to 3D images. Based on the distribution of lesion size in our data, we used five 

different anchor sizes and three different aspect ratios, for a total of 15 anchors in Faster-

RCNN. The smallest and largest anchors were 3 × 3 × 7 mm3 and 45 × 45 × 61 mm3, 

respectively. Our evaluation was based on two-fold subject-wise cross-validation, each time 

training the model on data from approximately half of the subjects and testing on the 

remaining subjects. Following the latest recommendations in the literature on lesion 

detection applications (Carass et al., 2017; Commowick et al., 2018; Hashemi et al., 2019), 

our main evaluation criterion was lesion-count F1 score; but since this is considered a joint 

segmentation and detection task, we also computed DSC when applicable (i.e., for the 3D 

U-Net). It is noteworthy that due to the criteria that are used in diagnosis/prognosis and 

disease modifying treatments, lesion-count measures such as lesion-count F1-score have 

been considered more appropriate performance measures for lesion detection and 

segmentation algorithms compared to DSC (Commowick et al., 2018; Hashemi et al., 2019).

The methods developed, implemented, and compared in this task include:

• Faster-RCNN trained on noisy labels.
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• Faster-RCNN trained on clean data. Same as the above, but evaluated using two-

fold cross-validation on the clean data.

• Faster-RCNN trained with MAE loss (Ghosh et al., 2017).

• 3D U-Net CNN trained on noisy labels with DSC loss.

• 3D U-Net CNN trained on clean data. Same as the above, but evaluated using 

two-fold cross-validation on the clean data.

• 3D U-Net CNN trained with MAE loss (Ghosh et al., 2017).

• 3D U-Net CNN trained with iMAE loss (Wang et al., 2019b).

• 3D U-Net CNN with data re-weighting. In this method, we ignored data samples 

with very high loss values. We kept the mean and standard deviation of the losses 

of the 100 most recent training samples. If the loss for a training sample was 

higher than 1.5 standard deviations of the mean, the network weights were not 

updated on that sample. To the best of our knowledge, such a method has not 

been proposed for brain lesion detection/segmentation prior to this work.

• Iterative label cleaning. This is a novel technique that we have developed for this 

application. We first trained a random forest classifier to distinguish the true 

lesions missed by the annotator from the false positive lesions in CNN 

predictions. This classification was based on six lesion features: mean image 

intensity in T1, T2, and FLAIR, lesion size, distance to the closest lesion, and 

mean prediction uncertainty, where uncertainty was computed using the methods 

of Kendall and Gal (2017). Then, during training of the CNN on the noisy 

dataset, after each training epoch the random forest classifier was applied on the 

CNN-detected lesions that were not present in the original noisy labels. Lesions 

that were classified as true lesions were added to the noisy labels. Hence, this 

method iteratively improved the noisy labels in parallel with CNN training.

5.1.3. Results—As shown in Table 2, 3D U-Net achieved higher detection accuracy than 

Faster-RCNN. Since our focus is on label noise, we discuss the results of experiments with 

each of these two networks independently. For 3D U-Net, both MAE and iMAE loss 

functions resulted in lower lesion-count F1 score and DSC, compared with the baseline 

CNN trained with a DSC loss. However, both MAE and iMAE have been proposed as 

improvements to the cross-entropy. With a cross-entropy loss, our CNN achieved 

performance similar to iMAE. Interestingly, for Faster-RCNN, compared with the baseline 

that was trained with the cross-entropy loss, using the MAE loss did improve the lesion-

count F1 score by 0.041. This indicates that such loss functions, initially proposed for 

classification and detection tasks, may be more useful for lesion detection than for lesion 

segmentation applications. The data re-weighting method resulted in lesion-count F1 score 

and DSC that were substantially higher than the baseline CNN. Moreover, iterative label 

cleaning achieved much higher lesion-count F1 score and DSC than the baseline and 

outperformed the data re-weighting method too. The increase in the lesion-count F1 score 

shows that iterative label cleaning improves detection of small lesions. The increase in DSC 

is also interesting and less expected since small lesions account for a small fraction of the 

Karimi et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



entire lesion volume, which greatly affects the DSC. We attribute the increase in DSC to a 

better training of the CNN with improved labels. In other words, improving the labels by 

detecting and adding small lesions helped learning a better CNN that performed better on 

segmenting larger lesions as well. Comparing the first and the second rows of Table 2 shows 

that training on the clean dataset achieved results similar to training on the noisy dataset that 

included an order of magnitude larger number of scans. A similar observation was made for 

Faster-RCNN, where the lesion-count F1 score increased by 0.012 when trained on the clean 

dataset. This shows that in this application a small dataset with clean labels can be as good 

as a large dataset with noisy labels. In creating our clean dataset, we had to limit ourselves to 

a small number (12) of scans due to limited annotator time. It is likely that the results could 

further improve with a larger clean dataset.

5.2. Prostate cancer digital pathology classification

5.2.1. Data and labels—We use the data from Gleason2019 challenge. The goal of the 

challenge is to classify prostate tissue micro-array (TMA) cores as one of the four classes: 

benign and cancerous with Gleason grades 3, 4, and 5. Data collection and labeling have 

been described by Nir et al. (2018). In summary, TMA cores have been classified in detail 

(i.e., pixel-wise) by six pathologists independently. The Cohen’s kappa coefficient for the 

general pathologists on this task is approximately between 0.40 and 0.60 (Allsbrook Jr et al., 

2001; Nir et al., 2018), where a value of 0.0 indicates chance agreement and 1.0 indicates 

perfect agreement. The inter-observer variability also depends on experience (Allsbrook Jr et 

al., 2001); pathologists who labeled this dataset had different experience levels, ranging 

from 1 to 27 years. Hence, this is a classification problem and label noise is caused by inter-

observer variability due to the subjective nature of grading. An example TMA core and 

pathologists’ annotations are shown in Figure 3.

5.2.2. Methods—We used a MobileNet CNN architecture, which had been shown to be a 

good choice for this application by Arvaniti et al. (2018); Karimi et al. (2019) and used 

patches of size 768 × 768 pixels at 40X magnification as suggested by Arvaniti et al. (2018). 

The main feature of MobileNets is the use of separable convolutional filters, which replace a 

3D convolution with a 2D depth-wise convolution (applied separately to each of the input 

feature maps) followed by a 1D convolution to combine these depth-wise convolutions. Our 

network had a depth of 7 convolutional blocks. The first block had 16 feature maps. The 

number of feature maps increased by a factor of 2 in each subsequent block, while reducing 

their size by a factor of 2 in each dimension. The output of the final convolutional block was 

flattened and passed through two fully connected layers. All convolutional and fully 

connected layers were followed by ReLU activations.

An important consideration in this application was how to divide the labels from different 

pathologists for training and test stages. For most of our experiments, we used the labels 

from all six pathologists to estimate the ground truth labels on the test data using the 

Simultaneous Truth and Performance Level Estimation (STAPLE) (Warfield et al., 2004). 

Our justification here is that, given the high inter-observer variability, this would be our best 

estimate of the ground truth. For these experiments, we followed a 5-fold cross-validation. 

Each time, we trained the CNN on 80% of the TMA cores and their labels from the six 
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pathologists and then evaluated the trained CNN on the STAPLE-estimated labels of the 

remaining 20% of the cores. However, from the viewpoint of separation between test and 

train data, this may not be the best approach. Therefore, we performed another set of 

experiments, where we used the labels from three of the pathologists for training and used 

STAPLE-estimated ground truth from the other three pathologists on the test set for 

evaluation. For this set of experiments, too, we followed a 5-fold cross-validation. However, 

we repeated these experiments twice, each time using labels from three of the pathologists 

for training. Therefore, each TMA core was tested on twice. We report the average of the 

two results. Below, we denote the results for this set of experiments with “3–3”.

We compared the CNN predictions with the estimated truth by computing the classification 

accuracy and AUC for 1) distinguishing cancerous (Gleason grades 3–5) from benign tissue, 

and 2) in separating high-grade (Gleason grades 4 and 5) from low-grade (Gleason grade 3) 

cancer. In addition, we report the percentage of large classification errors, which we define 

as when the predicted class is 2 or 3 classes away from the true class, such as when Gleason 

grade 5 is classified as benign or Gleason grade 3. The compared methods were the 

following:

• Single pathologist. We used the label provided by one of the pathologists only, 

ignoring the labels provided by the others. We repeated this for all six 

pathologists.

• Majority vote. We computed the pixel-wise majority vote and used that for 

training.

• STAPLE. We used STAPLE to compute a pixel-wise label and used that for 

training.

• STAPLE + iMAE loss. Similar to the above, but instead of the cross-entropy 

loss, we used the iMAE loss (Wang et al., 2019b).

• Minimum-loss label. On each training patch, we computed the loss on labels 

provided by each of the six pathologists and selected the one with the smallest 

loss for error back-propagation. To the best of our knowledge, this method has 

not been proposed previously for this application.

• Annotator confusion estimation. We used the method of Tanno et al. (2019), 

which we reviewed above. This method estimates the labeling patterns of the 

annotators in parallel with the training of the CNN classification model.

5.2.3. Results—Table 3 summarizes our results. The first row shows the average of 

results when using the labels from one of the six pathologists. Comparing this row with the 

second and third rows and the row denoted as “STAPLE (3–3)” shows significant 

improvements due to using labels from multiple experts. Using the iMAE loss considerably 

improved the accuracy, especially for classifying cancerous from benign tissue. The 

minimum-loss label method also improved the classification accuracy. The iMAE loss and 

minimum-loss label method are based on a similar philosophy: to combat label noise, data 

samples with unusually high loss values should be down-weighted because they are likely to 

have incorrect labels. While the iMAE loss down-weights the effect of such data samples, 
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minimum-loss label aims at ignoring incorrect labels by using only the label with the lowest 

loss for each data sample. The iMAE loss performed better on classifying cancerous vs. 

benign tissue, whereas the minimum-loss label method performed better than the iMAE loss 

on classifying high-grade vs. low-grade cancer. This may be because the minimum-loss label 

method has a more aggressive label denoising policy and label noise (manifested as inter-

pathologist disagreement) is known to be higher for high-grade vs. low-grade annotation 

compared with benign vs. cancerous annotation (Gulshan et al., 2016; Nir et al., 2018). 

Annotator confusion estimation also significantly improved the accuracy compared with the 

baseline methods. It can be argued that it is the best among the compared methods, as it 

achieved the best accuracy on high-grade vs. low-grade classification and close to the best 

accuracy on cancerous vs. benign classification. It also displayed the lowest rate of large 

classification errors at 1%. The estimated annotator confusion matrices are shown in Figure 

4, which show that the pathologists had a low disagreement for benign vs. cancerous 

classification but relatively higher disagreement in cancer grading.

Overall, the results when labels from separate pathologists were used for training and test 

stages, presented in the last three rows of the table, showed similar conclusions. Specifically, 

using iMAE loss or modeling annotator accuracies led to better results than with cross-

entropy loss and much better than when labels from a single expert were used. However, the 

results were worse than when labels from all six pathologists were used for training and for 

estimating the truth for the test set, especially for classifying high-grade versus low-grade 

cancer. We attribute this partly to the high inter-observer variability, which makes the 

estimated truth more accurate when labels from all six pathologists are used. However, this 

can also be because using labels from all six pathologists for training and test stages causes 

some overfitting that is avoided when labels from separate pathologists are used for training 

and test.

5.3. Fetal brain segmentation in diffusion-weighted MRI

5.3.1. Data and labels—A total of 2562 diffusion weighted (DW) MR images from 65 

fetuses (between 12 and 96 images from each fetus) were used in this experiment. One 

image from each fetus was manually segmented by two experienced annotators. We refer to 

these as “clean data” and use them for evaluation. For the remaining 2497 images (between 

11 and 95 images from each fetus), we generated approximate (i.e., noisy) segmentations 

using different methods. Method 1: these fetuses had reconstructed T2-weighted MR 

images with accurate brain segmentations, which we could transfer to the DW images via 

image registration. Method 2: we developed an algorithm based on intensity thresholding 

and morphological operations to synthesize approximate segmentations. This algorithm 

sometimes generated very inaccurate segmentations, which were detected by computing the 

DSC between them and the segmentation masks from the T2 image. If this DSC was below a 

threshold, we replaced the synthesized segmentation with that from the T2 image. This 

threshold and the parameters of the algorithm can be tuned to generate noisy segmentations 

with different accuracy levels. Method 3: we used a level set method to generate noisy 

labels. The level set method needs a seed to initialize the segmentation. In one variation of 

this method, we generated the seed by eroding the segmentation obtained from the T2 image 

mentioned above (Method 1). This resembles a semi-automatic method, where the level set 
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method is initialized manually. In another, fully-automatic, variation of this method we used 

the rough segmentations generated by Method 2, after erosion, to initialize the level set 

method. After every 50 training epochs, the current CNN predictions were used to initialize 

the level set method and new training labels were generated. To assess the accuracy of the 

synthesized segmentations for each method and parameter settings, we applied that method 

on the 65 images in the clean dataset and computed the DSC between the synthesized and 

manual segmentations. Figure 5 shows example scans from the clean dataset and several 

noisy segmentations.

5.3.2. Methods—We trained a CNN, similar to 3D U-Net for experiments in this section. 

This architecture included four convolutional blocks in each of its contracting and expanding 

parts. The first block extracted 10 feature maps from the image. The number of feature maps 

increased by a factor of 2 in subsequent convolutional blocks. Each convolutional block 

included two standard convolutional layers with a residual connection. Similar to the other 

networks used in this work, a ReLU activation was used after each convolutional operation. 

We adopted a five-fold cross-validation strategy for all experiments in this section. The 

cross-validation was subject-wise, meaning that no scans from the test subjects were used 

for training. The compared training methods were:

• Baseline CNN.

• Baseline CNN trained with MAE loss.

• Dual CNNs with iterative label update. This is a novel method that we propose 

for fetal brain segmentation for the first time. We trained two CNNs, with the 

same architecture as the baseline CNN, but with 0.80 and 1.25 times the number 

of feature maps as the baseline CNN to encourage diversity. The CNNs were first 

trained on the initial noisy labels. Subsequently, they were used to predict 

segmentations on the images with noisy labels. In an iterative framework, first 

each CNN was trained using the labels predicted by the other CNN or the noisy 

label, whichever resulted in a lower loss. Then, at the end of each training epoch, 

each noisy segmentation mask was replaced by the mask predicted by one of the 

CNNs if any one of them resulted in a lower loss; it was replaced by the average 

of the two CNN-predicted masks if both resulted in lower losses.

5.3.3. Results—The first row of Table 4 shows the DSC of the synthesized noisy 

segmentations, computed on the 65 images with manual segmentation. This can be regarded 

as an estimation of the accuracy of the training labels. The second row shows that strong 

label noise significantly affects the performance of the baseline CNN; the DSC achieved at 

test time always trails the DSC of the training labels. This is in disagreement with the results 

reported for handwritten digit recognition by Rolnick et al. (2017). As we reviewed above, 

Rolnick et al. (2017) found that given sufficient training data with label accuracy slightly 

above random noise, classification accuracy of 90% was achieved at test time. This 

difference is probably because our segmentation problem is more difficult and our training 

set is much smaller. Nonetheless, it is interesting to note that at the lowest label noise (noise 

level 1), the test DSC achieved by the baseline CNN (0.889) was higher than that achieved 

by the same model trained on the clean dataset (0.878), which consisted of approximately 40 
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times fewer images. For higher noise levels, training with MAE loss improved the 

classification results compared with the baseline CNN trained with the DSC loss. Dual CNN 

training with iterative label update performed consistently better than the baseline CNN and 

also performed much better than MAE loss on noise levels 1–5. For noise level 3–5, DSC 

achieved with this method was also higher than the DSC of the noisy labels that were used at 

the start of training.

Table 5 shows more detailed performance measures on three different label noise levels. It 

shows the mean and standard deviation of the DSC and 95-percentile of the Hausdorff 

Distance (HD95), as well as the 5-percentile of the DSC (5% DSC) among the 65 test 

images. The results show that both MAE loss and Dual CNNs with iterative label update 

reduce the large segmentation errors, quantified with HD95, in the presence of strong label 

noise. There is also some improvement in 5% DSC, which is a measure of worst-case 

performance.Worst-case performance of the trained model is affected not only by the model 

accuracy, but also by the outlier data samples. Although the techniques reviewed in this 

paper and the methods used in our experiments are hoped to lead to better models that 

should perform better on average, the link to data outliers and difficult samples is less 

obvious. The great majority of the studies reviewed in this paper do not address the worst-

case performance and data outliers, as those are essentially a different problem than label 

noise.

6. Discussion and Conclusions

Label noise is unavoidable in many medical image datasets. It can be caused by limited 

attention or expertise of the human annotator, subjective nature of labeling, or errors in 

computerized labeling systems. Since deep learning methods are increasingly used in 

medical image analysis, a proper understanding of the effects of label noise in training data 

and methods to manage those effects are essential. To help improve this understanding, this 

paper first presented a review of studies on label noise in machine learning and deep 

learning, followed by a review of studies on label noise in deep learning for medical image 

analysis; and second, investigated several existing and new methods and remedies to deal 

with different types of label noise in three different medical image datasets in detection, 

segmentation, and classification applications.

Our review of the literature shows that many studies have demonstrated negative effects of 

label noise in deep learning. Our review also shows that a diverse set of methods have been 

proposed and successfully applied to handle label noise in deep learning. Most of these 

methods have been developed for general computer vision and machine learning problems. 

Moreover, many of these methods have been evaluated on large-scale image classification 

datasets. Hence, reassessment of their performance for medical image analysis applications 

is warranted. Given the large variability in data size, label noise, and the nature of tasks that 

one may encounter in medical image analysis, it is likely that for each application one has to 

experiment with a number of methods to find the most suitable one. In spite of the need, our 

review of the literature shows that very few studies have directly addressed the issue of label 

noise in deep learning for medical image analysis. Therefore, motivated by the need, in a set 

of experiments reported in Section 5 we investigated and developed several existing 
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strategies and new methods to reduce the negative impact of label noise in deep learning for 

different medical image analysis applications. Based on the results of our experiments and 

the literature, we make general recommendations as follow.

Label cleaning and pre-processing methods can be useful for most medical image analysis 

applications, but one has to be selective. Some methods in this category rely on prediction 

confidence for detecting incorrectly-labeled samples (Northcutt et al., 2017), (Ding et al., 

2018). These methods can only be effective if the trained model has a well-calibrated 

prediction. Moreover, some methods in this category rely on matching a data sample or its 

feature vector with a set of data samples with clean labels (Vo et al., 2015) (Lee et al., 2018). 

These methods may also have limited applicability in medical image analysis because data 

samples are larger in size and fewer in number, making the data matching more challenging 

due to the curse of dimensionality. On the other hand, methods such as that proposed by Veit 

et al. (2017) could be useful in many detection and classification applications. Interestingly, 

in our experiments on brain lesion detection in Section 5.1, we achieved our best results by 

iterative label cleaning, indicating the great potential of these methods.

In the category of studies that suggest changing the network architecture, most methods 

introduce a noise layer or graphical model to learn the label noise statistics in parallel with 

model training. These methods are relatively easy to implement and evaluate. Yet, we are 

aware of only one study that has reported successfully employing such a method in medical 

image analysis (Dgani et al., 2018). Nonetheless, we demonstrated the potential of these 

methods with our experiments in Section 5.2, where we obtained our best results with a 

method in this category involving estimation of the statistics of annotation error. Based on 

our results and those reported by studies in the machine learning and computer vision 

literature, we think methods in this category could be highly effective for classification and 

detection applications. Of particular utility to medical image analysis tasks are methods that 

enable estimation of labeling error of one or multiple annotators, such as the method of 

Tanno et al. (2019) that we used in our experiments in Section 5.2.

Noise-robust loss functions have been mainly proposed as substitutes for cross-entropy loss 

for classification applications. Nonetheless, in addition to our pathology classification 

experiments (Section 5.2), such loss functions also proved to be useful in our fetal brain 

segmentation experiments (Section 5.3). In our experiments, we used MAE and iMAE loss 

functions, which are based on down-weighting data samples that are more likely to be 

incorrectly-labeled. More aggressive loss functions such as those proposed by Thulasidasan 

et al. (2019) and Rusiecki (2019) could be more effective under very strong label noise. An 

advantage of these loss functions is that they are easy to quickly implement and evaluate.

Data re-weighting methods are also typically easy to implement. Several studies have 

already reported successful application of data re-weighting methods in medical image 

analysis ( Le et al. (2019), Xue et al. (2019), Zhu et al. (2019), Mirikharaji et al. (2019)). In 

our own experiments, we implemented two variations of data re-weighting and found both of 

them to be effective. In experiments on lesion detection/segmentation (Section 5.1), we 

down-weighted data samples with high loss values, whereas in experiments on pathology 

classification (Section 5.2), where we had multiple labels for each data sample, we down-
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weighted high-loss labels. Such methods may be effective in many similar applications in 

medical image analysis.

Among the six categories of surveyed methods, those based on data and label consistency 

may be less applicable to medical image analysis tasks. Most of the proposed methods in 

this category are based on some measure of correlation or similarity between different data 

samples in the feature space. Due to the large dimensionality of the feature space in deep 

learning, these methods can suffer from the curse of dimensionality, as suggested by Chen et 

al. (2019a). This problem can be more serious in medical image analysis due to the 

relatively large size of medical images and the relatively small number of samples.

Lastly, methods based on novel training procedures encompass a wide range of techniques 

that could be useful for almost all applications in medical image analysis. Given the 

diversity of methods in this category from the machine learning and computer vision 

literature, this seems to be an area with great potential for innovations and flexible 

application-specific solutions. Previous studies have developed and successfully evaluated 

such application-specific solutions for various medical image analysis tasks including 

segmentation (Min et al. (2018); Nie et al. (2018); Zhang et al. (2018)) and classification 

(Fries et al. (2019)). Our proposed Dual CNNs with iterative label update, presented and 

tested in Section 5.3, is a successful example of these methods for deep learning with noisy 

labels.

Deep learning for medical image analysis presents specific challenges that can be different 

from many computer vision and machine learning applications. These peculiarities may 

influence the choice of solutions for combating label noise as well. Our experiments in 

Section 5 revealed some of these challenges. For example, an important characteristic of 

medical image datasets, in particular those carefully annotated by human experts, is their 

small size. The data size may have a complicated interplay with label noise. In our 

experiments on brain lesion segmentation in Section 5.1, a small (n=12) but carefully 

annotated training dataset resulted in a better model compared with a much larger (n=153) 

dataset with noisy annotations. By contrast, in our fetal brain segmentation experiment in 

Section 5.3, more accurate models were trained using many images (n ≈ 2500) with slightly 

noisy segmentations than using much fewer (n=65) images with manual segmentations. The 

interplay between the size and accuracy of the labeled training data also depends on the 

application. This warrants a reassessment of the optimal ways of obtaining labels from 

human experts or other means for each application.

The data size may also influence the effectiveness of different strategies for handling label 

noise. For example, in several studies in computer vision that we reviewed in this paper, 

down-weighting or completely discarding data samples that were more likely to have 

incorrect labels proved to be an effective approach. This may be a less effective approach in 

medical imaging where datasets are relatively small. As shown in Table 2, for brain lesion 

segmentation we obtained better results by detecting and correcting missing annotations than 

by ignoring data samples with high loss values. For prostate digital pathology experiments in 

Section 5.2, where we had access to labels from six pathologists, ignoring high-loss labels 

proved effective. Nonetheless, on this dataset we achieved better performance by modeling 
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annotator confusion rather than ignoring high-loss labels. For our fetal brain segmentation, 

too, we experimented with methods to down-weight or ignore segmentations that were more 

likely to be incorrect, but we did not achieve good results. Based on our experimental results 

and observations, it is better to improve the label accuracy or estimate the labeling error 

using techniques such as those we used in Sections 5.1 and 5.2 rather than to ignore data 

samples that are likely to have incorrect labels.

Another important consideration in medical image datasets is the subjective nature of 

annotation and the impact of inter-observer variability. If labels are obtained from a single 

expert, as in our experiments in Section 5.1, annotations may be systematically biased due to 

annotation habits or subjective opinion of a single annotator, risking generalizability when 

compared with the “true label”. The level of inter-observer variability depends significantly 

on factors such as the application, observer expertise, and attention (Gurari et al., 2015; 

Lampert et al., 2016; Donovan and Litchfield, 2013; Nagpal et al., 2018). Our experiments 

in Section 5.2 targeted an application with known high inter-observer variability. Our results 

suggest that when labels from multiple experts are available, methods that model observer 

confusion as part of the training process generally perform better than methods that 

aggregate the labels in a separate step prior to training. Our results also showed significant 

gains due to using labels from multiple experts.

Results of our experiments with brain lesion segmentation in Section 5.1 and with digital 

pathology in Section 5.2 share an important lesson. In both of these experiments, we 

achieved improved performance by modeling annotation error of the human expert(s). In 

Section 5.1, we observed that the annotator systematically missed smaller, fainter, and more 

isolated lesions. This is an expected behavior, and similar observations have been reported in 

previous studies (Robinson et al., 2016; Quekel et al., 1999; Kundel and Revesz, 1976). In 

our experiments, we exploited CNN prediction uncertainty, which enabled us to devise a 

novel and effective method to detect and fill in missing annotations in the training labels. 

Similar methods can be effective in training deep learning models for datasets with 

incomplete annotations, which are commonplace in medical image analysis. In Section 5.2, 

on the other hand, we exploited an approach originally proposed for general computer vision 

applications, and achieved very good performance. This method, which estimated the 

annotation error of individual experts in parallel with CNN training, proved to be more 

effective than several other methods including label fusion algorithms.

Our experiment on fetal brain segmentation in DW-MRI in Section 5.3 showed the potential 

value of computer-generated noisy labels. An interesting observation was that the baseline 

CNN achieved better results when trained with noisy segmentation masks transferred from 

the corresponding T2 images than when trained on 65 images that had been manually 

segmented. There are many situations in medical image analysis where such approximate 

annotations can be obtained at little or no cost from other images of the same subject, from 

matched subjects, or from an atlas. Our results demonstrate the potential utility of such 

annotations. Nonetheless, our results also showed that very inaccurate annotations led to 

poor training, indicating an important limitation of such labels.
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In summary, in our experiments we investigated three common types of label noise in 

medical image datasets, and the relative effectiveness of several approaches to reduce the 

negative impact of label noise. The source, statistics, and strength of label noise in medical 

imaging is diverse; and our study shows that the effects of label noise should be carefully 

analyzed in training deep learning algorithms. This warrants further investigations and 

development of robust models and training algorithms.
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Highlights

• Supervised training of deep learning models requires large labeled datasets.

• Label noise can significantly impact the performance of deep learning 

models.

• We critically review recent progress in handling label noise in deep learning.

• We experimentally study this problem in medical image analysis and 

drawuseful conclusions.
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Fig. 1. 
Label noise is a common feature of medical image datasets. Left: The major sources of label 

noise include inter-observer variability, human annotator’s error, and errors in computer-

generated labels. The significance of label noise in such datasets is likely to increase as 

larger datasets are prepared for deep learning. Right: A quick overview of possible strategies 

to deal with, or to account for label noise in deep learning.
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Fig. 2. 
The FLAIR images from three TSC subjects and the lesions that were detected (in blue) and 

missed (in red) by an experienced annotator in the first reading.
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Fig. 3. 
An example TMA core image (top left) and annotations from six pathologists (right) with 

four labels: benign and Gleason cancer grades 3, 4, and 5.
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Fig. 4. 
Examples of the annotator confusion matrices estimated by the method of Tanno et al. 

(2019) on the prostate cancer digital pathology data. In each matrix, rows represent for the 

estimated true label and columns represent the annotator’s labels. Classes are in this order: 

benign and Gleson grades 3–5.
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Fig. 5. 
Examples of DW-MR fetal brain images along with manual segmentation (blue) and several 

noisy segmentations (other colors).
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Table 1.

Summary of the main categories of methods for learning with noisy labels, representative studies, and 

potential applications in medical image analysis. The left column indicates the six categories under which we 

classify the studies reviewed in Sections 2 and 3. The middle column lists several representative studies from 

the fields of machine learning and computer vision and the applications considered in those studies. The right 

column suggests potential applications for the methods in each category in medical image analysis. In this 

column, where applicable, we have cited relevant published studies from the field of medical image analysis 

and experiments reported in Section 5 of this paper as examples of the application of methods adapted or 

developed in each category.

Methods 
category

Representative studies from machine learning and computer vision 
literature

Potential applications in medical image 
analysis

Label cleaning 
and pre-
processing

Ostyakov et al. (2018) - image classification
Lee et al. (2018) - image classification
Northcutt et al. (2017) - image classification
Veit et al. (2017) - image classification
Gao et al. (2017) - regression, classification, semantic segmentation

most applications, including disease and 
pathology classification (Pham et al. (2019); 
experiments in Section 5.2) and lesion 
detection and segmentation (experiments in 
Section 5.1)

Network 
architecture

Sukhbaatar and Fergus (2014) - image classification
Vahdat (2017) - image classification
Yao et al. (2018) - image classification

lesion detection (Dgani et al. (2018)), 
pathology classification (experiments in 
Section 5.2)

Loss functions

Ghosh et al. (2017) - image and text classification
Zhang and Sabuncu (2018) - image classification
Wang et al. (2019b) - image classification, object detection
Rusiecki (2019) - image classification
Boughorbel et al. (2018) - electronic health records
Hendrycks et al. (2018) - image and text classification

lesion detection (experiments in Section 
5.1), pathology classification (experiments 
in Section 5.2), segmentation (Matuszewski 
and Sintorn (2018); experiments in Section 
5.3)

Data re-
weighting

Ren et al. (2018) - image classification
Shu et al. (2019) - image classification
Khetan et al. (2017) - image classification
Tanno et al. (2019) - image classification
Shen and Sanghavi (2019) - image classification

lesion detection (Le et al. (2019)) and 
segmentation (experiments in Section 5.1), 
lesion classification (Xue et al. (2019); 
experiments in Section 5.2), segmentation 
(Zhu et al. (2019); Mirikharaji et al. (2019))

Data and label 
consistency

Lee et al. (2019) - image classification
Zhang et al. (2019) - image classification
Speth and Hand (2019) - facial attribute recognition
Azadi et al. (2015) - image classification
Wang et al. (2018c)- image classification
Reed et al. (2014) - image classification, emotion recognition, object 
detection

lesion detection and classification, 
segmentation (Yu et al. (2019a))

Training 
procedures

Zhong et al. (2019) - face recognition
Jiang et al. (2017) - image classification
Sukhbaatar and Fergus (2014) - image classification
Han et al. (2018b) - image classification
(Zhang et al., 2017) - image classification
Acuna et al. (2019) - boundary segmentation
Yu et al. (2018) - boundary segmentation

most applications, including segmentation 
(experiments in Section 5.3; Min et al. 
(2018); Nie et al. (2018); Zhang et al. 
(2018)), lesion detection (experiments in 
Section 5.1), and classification (Fries et al. 
(2019))
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Table 2.

Performance metrics (DSC and lesion-count F1 score) obtained in the experiment on TSC brain lesion 

detection using different techniques listed in Section 5.1.2 compared with the baseline models trained with 

noisy labels (i.e., Faster-RCNN trained on noisy labels, and 3D U-Net CNN) and baseline models trained on 

clean data (i.e., Faster-RCNN trained on clean data, and 3D U-Net trained on clean data). The best 

performance metric value (in each column) has been highlighted in bold. The results show that in this 

application methods based on data re-weighting and iterative label cleaning substantially improved the 

performance of the CNNs trained with noisy labels. The best results in terms of both the DSC and the lesion-

count F1 score were obtained from our 3D U-Net with iterative label cleaning.

Method DSC lesion-count F1 score

Faster-RCNN trained on noisy labels - 0.541

Faster-RCNN trained on clean data - 0.553

Faster-RCNN trained with MAE loss (Ghosh et al., 2017) - 0.582

3D U-Net CNN 0.584 0.747

3D U-Net CNN trained on clean data 0.578 0.743

3D U-Net CNN trained with MAE loss 0.541 0.695

3D U-Net CNN trained with iMAE loss 0.485 0.657

3D U-Net CNN with data re-weighting 0.600 0.802

3D U-Net with Iterative label cleaning 0.605 0.819
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Table 3.

Results of the experiment on prostate cancer digital pathology classification using different methods. The 

highest accuracy in each classification task (column) has been highlighted in bold text.

Method

Cancerous vs. benign High-grade vs. low-grade

Percentage of large classification errorsaccuracy AUC accuracy AUC

Single pathologist 0.80 0.78 0.65 0.61 0.07

Majority vote 0.86 0.87 0.73 0.74 0.03

STAPLE 0.84 0.86 0.73 0.72 0.03

STAPLE + iMAE loss 0.93 0.91 0.76 0.79 0.03

Minimum-loss label 0.88 0.88 0.80 0.82 0.03

Annotator confusion estimation 0.92 0.93 0.80 0.82 0.01

STAPLE (3–3) 0.86 0.86 0.69 0.70 0.02

STAPLE + iMAE loss (3–3) 0.90 0.88 0.75 0.78 0.02

Annotator confusion estimation (3–3) 0.90 0.88 0.73 0.76 0.03
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Table 4.

Comparison of different methods for fetal brain segmentation in DW-MR images in terms of DSC for different 

levels of label noise. The highest DSC scores have been highlighted in bold text for each noise level. Our dual 

CNNs with iterative label update generated the highest DSC scores at small and medium noise levels, whereas 

the CNN trained with MAE loss generated better results for high noise levels.

Clean 
data

noise level 1 
(Method 1)

noise level 2 
(Method 2)

noise level 3 
(Method 3)

noise level 4 
(Method 2)

noise level 5 
(Method 3)

noise level 6 
(Method 2)

noise level 7 
(Method 2)

Average DSC of 
the training 
labels

1.000 0.949 0.924 0.854 0.807 0.790 0.777 0.742

Baseline CNN 0.878 0.889 0.862 0.846 0.755 0.730 0.736 0.724

Baseline CNN 
trained with 
MAE loss

- 0.881 0.864 0.840 0.780 0.741 0.778 0.760

Dual CNNs with 
iterative label 
update

- 0.906 0.895 0.886 0.849 0.804 0.773 0.732
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Table 5.

More detailed performance measures for fetal brain segmentation in DW-MRI. According to detailed analysis 

by three performance measures at different noise levels, our proposed dual CNNs with iterative label update 

outperformed both the baseline CNN and the baseline CNN trained with the MAE loss.

noise level 1 (Method 1) noise level 3 (Method 3) noise level 5 (Method 3)

DSC 5% 
DSC

HD95 (mm) DSC 5% 
DSC

HD95 (mm) DSC 5% 
DSC

HD95 (mm)

Baseline CNN 0.89 ± 
0.06

0.80 5.9 ± 2.6 0.85 ± 
0.08

0.73 6.8 ± 2.6 0.73 ± 0.10 0.60 8.0 ± 4.9

Baseline CNN 
trained with 
MAE loss

0.88 ± 
0.07

0.79 5.6 ± 2.3 0.84 ± 
0.08

0.72 6.2 ± 2.5 0.74 ± 0.10 0.61 8.2 ± 3.6

Dual CNNs 
with iterative 
label update

0.91 ± 
0.06

0.79 5.6 ± 2.4 0.89 ± 
0.08

0.75 6.0 ± 2.6 0.80±0.11 0.63 7.8 ± 4.0
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