Skip to main content
. Author manuscript; available in PMC: 2021 Oct 1.
Published in final edited form as: Med Image Anal. 2020 Jun 20;65:101759. doi: 10.1016/j.media.2020.101759

Table 3.

Results of the experiment on prostate cancer digital pathology classification using different methods. The highest accuracy in each classification task (column) has been highlighted in bold text.

Method Cancerous vs. benign High-grade vs. low-grade Percentage of large classification errors
accuracy AUC accuracy AUC
Single pathologist 0.80 0.78 0.65 0.61 0.07
Majority vote 0.86 0.87 0.73 0.74 0.03
STAPLE 0.84 0.86 0.73 0.72 0.03
STAPLE + iMAE loss 0.93 0.91 0.76 0.79 0.03
Minimum-loss label 0.88 0.88 0.80 0.82 0.03
Annotator confusion estimation 0.92 0.93 0.80 0.82 0.01
STAPLE (3–3) 0.86 0.86 0.69 0.70 0.02
STAPLE + iMAE loss (3–3) 0.90 0.88 0.75 0.78 0.02
Annotator confusion estimation (3–3) 0.90 0.88 0.73 0.76 0.03